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A subset A of the positive integers is said to be primitive if no
member of A divides another.

Some examples:

1. The set P of prime numbers.

2. More generally, the set Nk = {n ∶ Ω(n) = k}, where Ω(n) is the
number of prime factors of n counted with repetition.

3. The set (x,2x] ∩N.

4. With σ the sum-of-divisors function, the set

A = {n ∈ N ∶ σ(n)/n ≥ 2, σ(d)/d < 2 for all d ∣ n, d < n}.
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This last example goes back to Pythagoras.

He was quite interested in the sum-of-divisors function σ, and

he and his followers classified the natural numbers into 3

categories:

● deficient: σ(n)/n < 2, like n = 1, 2, 3, 4, 5, 7, 8, 9, 10, . . . ,

● perfect: σ(n)/n = 2, like n = 6, 28, 496, 8128, . . . ,

● abundant: σ(n)/n > 2, like n = 12, 18, 20, 24, . . . .
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The primitive set

A = {n ∈ N ∶ σ(n)/n ≥ 2, σ(d)/d < 2 for all d ∣ n, d < n}.

consists of the nondeficient numbers n with every proper divisor

deficient. The set of multiples of A consists of all of the

nondeficient numbers.

So, if the sum of reciprocals of the members of A is

convergent, then the nondeficient numbers would have an

asymptotic density.

Since it’s easy to see the perfect numbers have density 0 (Euler

showed that any perfect number is of the form pm2 where p is

a prime factor of σ(m2)), it would follow that the abundant

numbers have a density, as do the deficient numbers.
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Erdős (1934). The reciprocal sum of the primitive nondeficient

numbers is finite.

Corollary. The set of nondeficient numbers has a positive

density.

Pythagoras of Samos Leonhard Euler Paul Erdős
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We now know (Kobayashi, 2010) that the density of the
abundant numbers (= the density of the nondeficient numbers)
lies between 0.2476171 and 0.2476475.

And we know (Lichtman, 2018) that the sum of reciprocals of
the primitive nondeficient numbers is between 0.34842 and
0.37937.

Mitsuo Kobayashi Jared Lichtman
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Actually, it was known before Erdős that the density of the

nondeficient numbers exists:

Davenport (1933) showed the density D(u) of {n ∶ σ(n)/n ≤ u}

exists, and that D(u) is continuous.

Davenport strongly used a technical criterion of Schoenberg,

who in 1928 proved an analogous result for the density of

numbers n with n/ϕ(n) ≤ u. Here ϕ is Euler’s function.

With his paper on primitive nondeficient numbers in 1934,

Erdős began studying this subject, looking for the great

theorem that would unite these threads. His elementary

approach through primitive sets led him to believe that

non-technical methods could be used.
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Harold Davenport Isaac J. Schoenberg
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This culminated in the Erdős–Wintner theorem in 1939 and
the Erdős–Kac theorem the same year. And so was born the
subject of probabilistic number theory.

Erdős became interested in primitive sets for their own sake,
and this led in interesting directions as well.

Aurel Wintner Mark Kac
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One might guess that a primitive set always has asymptotic
density 0. It’s true for our 4 examples, and more generally, it’s
true that the lower asymptotic density of a primitive set must
be 0. Somewhat counter-intuitively, the upper asymptotic
density need not be zero!

In 1934, Besicovitch showed that there are primitive sets with
upper density arbitrarily close to 1/2. The idea: use the sets
(x,2x] for a rapidly increasing sequence of numbers x,
discarding the few numbers from an interval that are multiples
of numbers from a prior interval. The fact that there are only a
few numbers to discard is the key here.

This lemma, that when x is large, few numbers have a divisor
in (x,2x], led to the “multiplication table theorem” of Erdős.
But that’s a story for a different lecture . . . .

9



The famous Erdős Conjecture on primitive sets is based on

the following old theorem.

Theorem (Erdős, 1935). If A is a primitive set, then

f(A) ∶= ∑
a∈A
a>1

1

a loga
<∞.

In fact, f(A) is uniformly bounded as A varies over primitive

sets.

Assume 1 ∉ A. Let P (A) denote the set of primes dividing some

member of A.

Conjecture (Erdős, 1988). For A primitive, f(A) ≤ f(P (A)).
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With P the set of primes, let C = f(P) = 1.63661632336 . . . , the

calculation done by Cohen.

The Erdős conjecture is equivalent to:

Conjecture (Erdős, 1988). For A primitive,

f(A) ≤ C = 1.63661632336 . . . , where f(A) = ∑a∈A1/(a loga).

What do we know about f(A)?

Erdős, Zhang (unpublished): f(A) < 2.886.

Robin (unpublished): f(A) < 2.77.

Erdős, Zhang (1993): f(A) < 1.84.
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Guy Robin Zhenxiang Zhang
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Recall that Nk = {n ∶ Ω(n) = k},

P(A) = {p prime ∶ p divides some member of A}.

Zhang (1991): f(A) ≤ C if each a ∈ A has Ω(a) ≤ 4.

Zhang (1993): For each k ≥ 2, f(Nk) < f(N1) = C.

Banks, Martin (2013): If ∑p∈P(A) 1/p < 1.7401 . . . , then

f(A) ≤ f(P(A)).

Banks, Martin (2013): Conjecture: f(N1) > f(N2) > f(N3) > . . . .
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Recall that Nk = {n ∶ Ω(n) = k},

P(A) = {p prime ∶ p divides some member of A}.

Zhang (1991): f(A) ≤ C if each a ∈ A has Ω(a) ≤ 4.

Zhang (1993): For each k ≥ 2, f(Nk) < f(N1) = C.

Banks, Martin (2013): If ∑p∈P(A) 1/p < 1.7401 . . . , then

f(A) ≤ f(P(A)).

Banks, Martin (2013): Conjecture: f(N1) > f(N2) > f(N3) > . . . .

Lichtman (2019): The Banks–Martin Conjecture is false.
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Bill Banks Greg Martin
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Lichtman, P (2019). For A primitive,

● f(A) < eγ = 1.78109 . . . .

● If no member of A is divisible by 8, then

f(A) < f(P(A)) + 2.37 × 10−7.

● Assuming RH and LI, there is a set of primes P0 of relative

lower logarithmic density ≥ 0.995 such that f(A) ≤ f(P(A))

when P(A) ⊂ P0. Unconditionally, P0 contains all of the odd

primes up to exp(106).
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Note: The relative lower logarithmic density of a set of primes

P0 is

lim inf
x→∞

1

log logx
∑
p ∈P0
p≤x

1

p
.

In a new paper Lichtman, Martin, & P show that P0 has

relative lower asymptotic density at least 0.99999973 . . . .

Notation: For an integer a ≥ 2, let

p(a) ∶ = min{p prime ∶ p ∣ a},

P (a) ∶ = max{p prime ∶ p ∣ a}.
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A version of the 1935 Erdős argument:

Let Sa = {ba ∶ p(b) ≥ P (a)}. The asymptotic density of Sa is

δ(Sa) =
1

a
∏

p<P (a)

(1 −
1

p
) .

Moreover the sets Sa, as a varies over a primitive set A, are

pairwise disjoint. So

∑
a∈A

1

a
∏

p<P (a)

(1 −
1

p
) = ∑

a∈A

δ(Sa) ≤ δ̄ (⋃
a∈A

Sa) ≤ 1.

But
1

a
∏

p<P (a)

(1 −
1

p
) ≫

1

a logP (a)
≥

1

a loga
,

so that f(A) ≪ 1.
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We should be more careful with the step where we say
∏p<P (a)(1 − 1/p) ≫ 1/ logP (a).

Using some modern computations involving the theorem of
Mertens, we were able to show that f(A) < eγ.

To do better, we followed an idea of Erdős and Zhang:
partition A by the least prime factor of the elements. Let
A(q) = {a ∈ A ∶ p(a) = q}. We’d love to show that
f(A(q)) ≤ 1/(q log q), and this is clear if q ∈ A(q).

Say q ∉ A(q). Then

f(A(q)) = ∑
a∈A(q)

1

a loga
< ∑
a∈A(q)

eγ

a
∏

p<P (a)

(1 − 1/p)

= eγ ∑
a∈A(q)

δ(Sa) ≤ eγ δ̄(∪a∈A(q)Sa) ≤
eγ

q
∏
p<q

(1 − 1/p).
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Again: A(q) = {a ∈ A ∶ p(a) = q}. We’d like to show

f(A(q)) ≤ 1/(q log q).

This holds if A(q) = {q}. If not, we have

f(A(q)) ≤
eγ

q
∏
p<q

(1 − 1/p).

We’d be laughing if

eγ∏
p<q

(1 −
1

p
) ≤

1

log q
.

In fact, the famous theorem of Mertens says that the left side

is asymptotically equal to the right side as q →∞.
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Say a prime q is Mertens if

eγ∏
p<q

(1 −
1

p
) ≤

1

log q
.

So, if q is Mertens, then f(A(q)) ≤ 1/(q log q) regardless if q ∈ A(q)

or q ∉ A(q). Thus, if every prime in P(A) is Mertens, then

f(A) = ∑
q∈P(A)

f(A(q)) ≤ ∑
q∈P(A)

1

q log q
= f(P(A)).

Franz Mertens
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A prime q is Mertens if eγ∏p<q(1 − 1/p) ≤ 1/ log q. And, if every

prime in P(A) is Mertens, then f(A) ≤ f(P(A)). That is, the

Erdős conjecture is true for sets supported on the Mertens

primes.

Let’s try it out. Is 2 Mertens?

∏
p<2

(1 −
1

p
) = 1,

1

eγ log 2
= 0.81001 . . . .

So, 2 is not Mertens. /
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A prime q is Mertens if eγ∏p<q(1 − 1/p) ≤ 1/ log q. And, if every

prime in P(A) is Mertens, then f(A) ≤ f(P(A)). That is, the

Erdős conjecture is true for sets supported on the Mertens

primes.

Let’s try it out. Is 2 Mertens?

∏
p<2

(1 −
1

p
) = 1,

1

eγ log 2
= 0.81001 . . . .

So, 2 is not Mertens. /
But every odd prime up to p108 is indeed Mertens. ,
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A prime q is Mertens if eγ∏p<q(1 − 1/p) ≤ 1/ log q. And, if every

prime in P(A) is Mertens, then f(A) ≤ f(P(A)). That is, the

Erdős conjecture is true for sets supported on the Mertens

primes.

Let’s try it out. Is 2 Mertens?

∏
p<2

(1 −
1

p
) = 1,

1

eγ log 2
= 0.81001 . . . .

So, 2 is not Mertens. /
But every odd prime up to p108 is indeed Mertens. ,

Theorem (Lamzouri, 2016). Assuming RH and LI, the set of

real numbers x with eγ∏p≤x(1 − 1/p) < 1/ logx has logarithmic

density 0.99999973 . . . .
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Corollary (Lichtman, Martin, P, 2019). Assuming RH and

LI, the set of Mertens primes has relative logarithmic density

0.99999973 . . . .

Note that 0.99999973 . . . is the exact same log density that

Rubinstein & Sarnak found in their famous 1994 paper for

the set of x where li(x) > π(x), on assumption of RH and LI,

though the two sets are not the same. (For technical reasons,

the density of the Mertens race and the density of the π/li race

turn out to be the same number.)

When we started investigating primitive sets we had no idea

that we would find a connection to “Chebyshev’s bias” and

“prime number races”.
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For details and our other results, see our papers:

J. D. Lichtman and C. Pomerance, The Erdős conjecture for

primitive sets, Proc. Amer. Math. Soc. Ser. B 6 (2019), 1–14.

J. D. Lichtman, G. Martin, and C. Pomerance, Primes in prime

number races, Proc. Amer. Math. Soc. 147 (2019),

3743–3757.

Thank you
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