Intersection Numbers of Modular Geodesics

James Rickards

McGill University

james.rickards@mail.mcgill.ca

October 6th 2019

• Γ is a discrete subgroup of $PSL(2, \mathbb{R})$.

- Γ is a discrete subgroup of $PSL(2, \mathbb{R})$.
- Equip $\Gamma \backslash \mathbb{H}$ with the usual hyperbolic metric.

- Γ is a discrete subgroup of $PSL(2, \mathbb{R})$.
- Equip $\Gamma \backslash \mathbb{H}$ with the usual hyperbolic metric.
- Geodesics on $\Gamma \setminus \mathbb{H}$ are the images of hyperbolic geodesics in \mathbb{H} , i.e. vertical lines and semi-circles centred on the real axis.

- Γ is a discrete subgroup of $PSL(2, \mathbb{R})$.
- Equip $\Gamma \setminus \mathbb{H}$ with the usual hyperbolic metric.
- Geodesics on $\Gamma \setminus \mathbb{H}$ are the images of hyperbolic geodesics in \mathbb{H} , i.e. vertical lines and semi-circles centred on the real axis.
- We would like to study the subset of closed geodesics.

 When γ ∈ Γ is hyperbolic and primitive, the equation γx = x has two real roots, γ_f, γ_s (the first and second root).

- When γ ∈ Γ is hyperbolic and primitive, the equation γx = x has two real roots, γ_f, γ_s (the first and second root).
- ℓ_{γ} is the geodesic in \mathbb{H} running from γ_s to γ_f .

- When γ ∈ Γ is hyperbolic and primitive, the equation γx = x has two real roots, γ_f, γ_s (the first and second root).
- ℓ_{γ} is the geodesic in \mathbb{H} running from γ_s to γ_f .
- If $z \in \ell_{\gamma}$, then $\gamma z \in \ell_{\gamma}$.

- When γ ∈ Γ is hyperbolic and primitive, the equation γx = x has two real roots, γ_f, γ_s (the first and second root).
- ℓ_{γ} is the geodesic in \mathbb{H} running from γ_s to γ_f .
- If $z \in \ell_{\gamma}$, then $\gamma z \in \ell_{\gamma}$.
- $\ell_{z,\gamma z}$ is the upper half plane geodesic running from z to γz , including z but not γz .

- When γ ∈ Γ is hyperbolic and primitive, the equation γx = x has two real roots, γ_f, γ_s (the first and second root).
- ℓ_{γ} is the geodesic in \mathbb{H} running from γ_s to γ_f .
- If $z \in \ell_{\gamma}$, then $\gamma z \in \ell_{\gamma}$.
- $\dot{\ell}_{z,\gamma z}$ is the upper half plane geodesic running from z to γz , including z but not γz .
- $\tilde{\ell}_{\gamma}$ is the projection of $\dot{\ell}_{z,\gamma z}$ to $\Gamma \setminus \mathbb{H}$.

- When γ ∈ Γ is hyperbolic and primitive, the equation γx = x has two real roots, γ_f, γ_s (the first and second root).
- ℓ_{γ} is the geodesic in \mathbb{H} running from γ_s to γ_f .
- If $z \in \ell_{\gamma}$, then $\gamma z \in \ell_{\gamma}$.
- $\dot{\ell}_{z,\gamma z}$ is the upper half plane geodesic running from z to γz , including z but not γz .
- $\tilde{\ell}_{\gamma}$ is the projection of $\dot{\ell}_{z,\gamma z}$ to $\Gamma \setminus \mathbb{H}$.
- $\tilde{\ell}_{\gamma}$ is a closed geodesic, and the image of ℓ_{γ} runs over it infinitely many times.

- When γ ∈ Γ is hyperbolic and primitive, the equation γx = x has two real roots, γ_f, γ_s (the first and second root).
- ℓ_{γ} is the geodesic in \mathbb{H} running from γ_s to γ_f .
- If $z \in \ell_{\gamma}$, then $\gamma z \in \ell_{\gamma}$.
- $\ell_{z,\gamma z}$ is the upper half plane geodesic running from z to γz , including z but not γz .
- $\tilde{\ell}_{\gamma}$ is the projection of $\dot{\ell}_{z,\gamma z}$ to $\Gamma \setminus \mathbb{H}$.
- $\tilde{\ell}_{\gamma}$ is a closed geodesic, and the image of ℓ_{γ} runs over it infinitely many times.
- All closed geodesics of $\Gamma \backslash \mathbb{H}$ arise in this way.

Example

Example

• $\tilde{\ell}_{\gamma}$ is constant across a Γ -conjugacy class of hyperbolic matrices.

- $\tilde{\ell}_{\gamma}$ is constant across a Γ -conjugacy class of hyperbolic matrices.
- $\tilde{\ell}_{\gamma^{-1}}$ overlaps $\tilde{\ell}_{\gamma}$, but runs in the opposite direction.

- $\tilde{\ell}_{\gamma}$ is constant across a Γ -conjugacy class of hyperbolic matrices.
- $\tilde{\ell}_{\gamma^{-1}}$ overlaps $\tilde{\ell}_{\gamma}$, but runs in the opposite direction.
- $\tilde{\ell}_{\gamma}$ can have self-intersections.

- $\tilde{\ell}_{\gamma}$ is constant across a Γ -conjugacy class of hyperbolic matrices.
- $\tilde{\ell}_{\gamma^{-1}}$ overlaps $\tilde{\ell}_{\gamma}$, but runs in the opposite direction.
- $\tilde{\ell}_{\gamma}$ can have self-intersections.
- If $\gamma_1, \gamma_2 \in \Gamma$ satisfy γ_1 is not conjugate to γ_2 or γ_2^{-1} , we call γ_1, γ_2 strongly inequivalent.

- $\tilde{\ell}_{\gamma}$ is constant across a Γ -conjugacy class of hyperbolic matrices.
- $\tilde{\ell}_{\gamma^{-1}}$ overlaps $\tilde{\ell}_{\gamma}$, but runs in the opposite direction.
- $\tilde{\ell}_{\gamma}$ can have self-intersections.
- If $\gamma_1, \gamma_2 \in \Gamma$ satisfy γ_1 is not conjugate to γ_2 or γ_2^{-1} , we call γ_1, γ_2 strongly inequivalent.
- We will consider the intersections of $\tilde{\ell}_{\gamma_1}$ with $\tilde{\ell}_{\gamma_2}$ for γ_1,γ_2 strongly inequivalent.

Definition

Let f be a function, let γ_1,γ_2 be strongly inequivalent, and define the $f-{\rm weighted}$ intersection number to be

$$\mathsf{Int}_{\mathsf{\Gamma}}^f(\gamma_1,\gamma_2) = \sum_{\tilde{z} \in \tilde{\ell}_{\gamma_1} \cap \tilde{\ell}_{\gamma_2}} f(\tilde{z},\tilde{\ell}_{\gamma_1},\tilde{\ell}_{\gamma_2}).$$

Definition

Let f be a function, let γ_1,γ_2 be strongly inequivalent, and define the $f-{\rm weighted}$ intersection number to be

$$\mathsf{Int}_{\mathsf{\Gamma}}^f(\gamma_1,\gamma_2) = \sum_{\tilde{z}\in \tilde{\ell}_{\gamma_1}\cap \tilde{\ell}_{\gamma_2}} f(\tilde{z},\tilde{\ell}_{\gamma_1},\tilde{\ell}_{\gamma_2}).$$

• f = 1 is the *unweighted* intersection number, denoted Int_{Γ} .

Definition

Let f be a function, let γ_1,γ_2 be strongly inequivalent, and define the $f-{\rm weighted}$ intersection number to be

$$\mathsf{Int}^f_{\mathsf{\Gamma}}(\gamma_1,\gamma_2) = \sum_{ ilde{z} \in ilde{\ell}_{\gamma_1} \cap ilde{\ell}_{\gamma_2}} f(ilde{z}, ilde{\ell}_{\gamma_1}, ilde{\ell}_{\gamma_2}).$$

• f = 1 is the *unweighted* intersection number, denoted Int_{Γ} .

 The geodesics carry an orientation, and this allows us to define a sign of intersection. Choosing f to be the sign of the intersection is denoted Int[±]_Γ, and is called the *signed* intersection number.

Definition

Let f be a function, let γ_1,γ_2 be strongly inequivalent, and define the $f-{\rm weighted}$ intersection number to be

$$\mathsf{Int}^f_{\mathsf{\Gamma}}(\gamma_1,\gamma_2) = \sum_{ ilde{z} \in ilde{\ell}_{\gamma_1} \cap ilde{\ell}_{\gamma_2}} f(ilde{z}, ilde{\ell}_{\gamma_1}, ilde{\ell}_{\gamma_2}).$$

• f = 1 is the *unweighted* intersection number, denoted Int_{Γ} .

- The geodesics carry an orientation, and this allows us to define a sign of intersection. Choosing f to be the sign of the intersection is denoted Int[±]_Γ, and is called the *signed* intersection number.
- When $\Gamma \setminus \mathbb{H}$ is a Shimura curve, we can define a *p*-weighted intersection, Int_{Γ}^{p} , for primes *p*.

Alternate interpretation of the intersection number

• Define an equivalence relation on $\Gamma \times \Gamma$ by simultaneous conjugation, i.e.

 $(\sigma_1, \sigma_2) \sim (\alpha \sigma_1 \alpha^{-1}, \alpha \sigma_2 \alpha^{-1})$ for $\alpha \in \Gamma$.

Alternate interpretation of the intersection number

 $\bullet\,$ Define an equivalence relation on $\Gamma\times\Gamma$ by simultaneous conjugation, i.e.

$$(\sigma_1, \sigma_2) \sim (\alpha \sigma_1 \alpha^{-1}, \alpha \sigma_2 \alpha^{-1})$$
 for $\alpha \in \Gamma$.

• Each intersection of $\tilde{\ell}_{\gamma_1}$ and $\tilde{\ell}_{\gamma_2}$ lifts to a pair $(\sigma_1, \sigma_2) \in [\gamma_1] \times [\gamma_2]$ such that $\ell_{\sigma_1}, \ell_{\sigma_2}$ intersect.

Alternate interpretation of the intersection number

 $\bullet\,$ Define an equivalence relation on $\Gamma\times\Gamma$ by simultaneous conjugation, i.e.

$$(\sigma_1, \sigma_2) \sim (\alpha \sigma_1 \alpha^{-1}, \alpha \sigma_2 \alpha^{-1})$$
 for $\alpha \in \Gamma$.

- Each intersection of $\tilde{\ell}_{\gamma_1}$ and $\tilde{\ell}_{\gamma_2}$ lifts to a pair $(\sigma_1, \sigma_2) \in [\gamma_1] \times [\gamma_2]$ such that $\ell_{\sigma_1}, \ell_{\sigma_2}$ intersect.
- This lifting is unique up to \sim . In particular,

$$\mathsf{Int}_{\mathsf{F}}^{f}(\gamma_{1},\gamma_{2}) = \sum_{\substack{(\sigma_{1},\sigma_{2}) \in ([\gamma_{1}] \times [\gamma_{2}]) / \\\ell_{\sigma_{1}} \cap \ell_{\sigma_{2}} \neq \emptyset}} f(\sigma_{1},\sigma_{2}).$$

• This interpretation allows us to focus only on upper half plane geodesics.

- This interpretation allows us to focus only on upper half plane geodesics.
- Each intersection determines a Γ-orbit of the intersection point, as well as a unique intersection angle.

- This interpretation allows us to focus only on upper half plane geodesics.
- Each intersection determines a Γ-orbit of the intersection point, as well as a unique intersection angle.

- This interpretation allows us to focus only on upper half plane geodesics.
- Each intersection determines a Γ-orbit of the intersection point, as well as a unique intersection angle.

- This interpretation allows us to focus only on upper half plane geodesics.
- Each intersection determines a Γ-orbit of the intersection point, as well as a unique intersection angle.

- This interpretation allows us to focus only on upper half plane geodesics.
- Each intersection determines a Γ-orbit of the intersection point, as well as a unique intersection angle.

• Let B be an indefinite quaternion algebra over \mathbb{Q} with discriminant \mathfrak{D} , and let \mathbb{O} be an Eichler order of level \mathfrak{M} in B.

- Let B be an indefinite quaternion algebra over Q with discriminant D, and let O be an Eichler order of level M in B.
- Fix an embedding ι : B → M₂(ℝ), and then Γ_{D,M} = Γ = ι(O_{N=1})/{±1} is a discrete subgroup of PSL(2, ℝ) (the image of the elements of norm 1 in O).

- Let B be an indefinite quaternion algebra over Q with discriminant D, and let O be an Eichler order of level M in B.
- Fix an embedding ι : B → M₂(ℝ), and then Γ_{D,M} = Γ = ι(O_{N=1})/{±1} is a discrete subgroup of PSL(2, ℝ) (the image of the elements of norm 1 in O).
- Let D be a discriminant, and let \mathcal{O}_D be the unique quadratic order of discriminant D. An optimal embedding of \mathcal{O}_D into \mathbb{O} is a ring homomorphism $\phi : \mathcal{O}_D \to \mathbb{O}$ which does not extend to an embedding of a larger quadratic order.

- Let B be an indefinite quaternion algebra over \mathbb{Q} with discriminant \mathfrak{D} , and let \mathbb{O} be an Eichler order of level \mathfrak{M} in B.
- Fix an embedding ι : B → M₂(ℝ), and then Γ_{D,M} = Γ = ι(O_{N=1})/{±1} is a discrete subgroup of PSL(2, ℝ) (the image of the elements of norm 1 in O).
- Let D be a discriminant, and let \mathcal{O}_D be the unique quadratic order of discriminant D. An optimal embedding of \mathcal{O}_D into \mathbb{O} is a ring homomorphism $\phi : \mathcal{O}_D \to \mathbb{O}$ which does not extend to an embedding of a larger quadratic order.
- Let ϵ_D be the fundamental unit of positive norm in \mathcal{O}_D .
Optimal embeddings in Eichler orders

- Let B be an indefinite quaternion algebra over \mathbb{Q} with discriminant \mathfrak{D} , and let \mathbb{O} be an Eichler order of level \mathfrak{M} in B.
- Fix an embedding ι : B → M₂(ℝ), and then Γ_{D,M} = Γ = ι(O_{N=1})/{±1} is a discrete subgroup of PSL(2, ℝ) (the image of the elements of norm 1 in O).
- Let D be a discriminant, and let \mathcal{O}_D be the unique quadratic order of discriminant D. An optimal embedding of \mathcal{O}_D into \mathbb{O} is a ring homomorphism $\phi : \mathcal{O}_D \to \mathbb{O}$ which does not extend to an embedding of a larger quadratic order.
- Let ϵ_D be the fundamental unit of positive norm in \mathcal{O}_D .
- Note that ι(φ(ε_D)) is a primitive hyperbolic matrix in Γ, and all such matrices arise in this fashion.

Intersection number of optimal embeddings

Definition

Let f be a function, let ϕ_1, ϕ_2 be optimal embeddings of $\mathcal{O}_{D_1}, \mathcal{O}_{D_2}$ into \mathbb{O} , and define the f-weighted intersection number to be

$$\mathsf{Int}^{f}(\phi_{1},\phi_{2})=\mathsf{Int}_{\Gamma}^{f}(\iota(\phi_{1}(\epsilon_{D_{1}})),\iota(\phi_{2}(\epsilon_{D_{2}}))).$$

 \bullet Conjugacy classes in Γ correspond to equivalence of optimal embeddings, which is defined by

 $\phi \sim u\phi u^{-1}$ for all $u \in \mathbb{O}_{N=1}$.

 \bullet Conjugacy classes in Γ correspond to equivalence of optimal embeddings, which is defined by

 $\phi \sim u\phi u^{-1}$ for all $u \in \mathbb{O}_{N=1}$.

• Equivalent embeddings are locally equivalent, and the set of local equivalence classes gives rise to a notion of "orientation".

 \bullet Conjugacy classes in Γ correspond to equivalence of optimal embeddings, which is defined by

 $\phi \sim u\phi u^{-1}$ for all $u \in \mathbb{O}_{N=1}$.

- Equivalent embeddings are locally equivalent, and the set of local equivalence classes gives rise to a notion of "orientation".
- There is a simply transitive action of $Cl^+(D)$ on equivalence classes of optimal embeddings of discriminant D of a fixed orientation.

 \bullet Conjugacy classes in Γ correspond to equivalence of optimal embeddings, which is defined by

 $\phi \sim u\phi u^{-1}$ for all $u \in \mathbb{O}_{N=1}$.

- Equivalent embeddings are locally equivalent, and the set of local equivalence classes gives rise to a notion of "orientation".
- There is a simply transitive action of $Cl^+(D)$ on equivalence classes of optimal embeddings of discriminant D of a fixed orientation.
- When $\Gamma = PSL(2, Z)$, there is a canonical basepoint, and we can replace "equivalence class of optimal embedding" with "primitive indefinite binary quadratic form".

• Let ϕ_1, ϕ_2 be optimal embeddings of $\mathcal{O}_{D_1}, \mathcal{O}_{D_2}$ into \mathbb{O} . Call the embeddings x-linked, where x is the integer satisfying

$$x=rac{1}{2}\operatorname{Tr}(\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2})).$$

• Let ϕ_1, ϕ_2 be optimal embeddings of $\mathcal{O}_{D_1}, \mathcal{O}_{D_2}$ into \mathbb{O} . Call the embeddings x-linked, where x is the integer satisfying

$$x=\frac{1}{2}\operatorname{Tr}(\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2})).$$

• The root geodesics of $\iota(\phi_i(\epsilon_{D_i}))$ intersect if and only if $x^2 < D_1 D_2.$

• Let ϕ_1, ϕ_2 be optimal embeddings of $\mathcal{O}_{D_1}, \mathcal{O}_{D_2}$ into \mathbb{O} . Call the embeddings x-linked, where x is the integer satisfying

$$x=\frac{1}{2}\operatorname{Tr}(\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2})).$$

The root geodesics of ι(φ_i(ε_{Di})) intersect if and only if
 x² < D₁D₂.

• If the root geodesics intersect, the intersection point is the fixed point of $\iota(\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2}))$. This corresponds to a (not necessarily optimal) embedding of discriminant $x^2 - D_1D_2$.

• Let ϕ_1, ϕ_2 be optimal embeddings of $\mathcal{O}_{D_1}, \mathcal{O}_{D_2}$ into \mathbb{O} . Call the embeddings x-linked, where x is the integer satisfying

$$x=\frac{1}{2}\operatorname{Tr}(\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2})).$$

The root geodesics of ι(φ_i(ε_{Di})) intersect if and only if
 x² < D₁D₂.

• If the root geodesics intersect, the intersection point is the fixed point of
$$\iota(\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2}))$$
. This corresponds to a (not necessarily optimal) embedding of discriminant $x^2 - D_1 D_2$.

• If the root geodesics intersect, the intersection angle $\boldsymbol{\theta}$ satisfies

$$\tan(\theta) = \frac{\sqrt{D_1 D_2 - x^2}}{x}$$

James Rickards (McGill)

$$\Gamma = \mathsf{PSL}(2, \mathbb{Z})$$

$$\gamma_1 = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$

$$\gamma_2 = \begin{pmatrix} 57 & 16 \\ 32 & 9 \end{pmatrix}$$

$$z = \frac{3 + \sqrt{47}i}{7}$$

$$\theta \approx 1.28694 \approx 73.7362^\circ$$

$$\Gamma = \mathsf{PSL}(2, \mathbb{Z})$$

$$\gamma_1 = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$

$$\gamma_2 = \begin{pmatrix} 57 & 16 \\ 32 & 9 \end{pmatrix}$$

$$z = \frac{3 + \sqrt{47}i}{7}$$

$$\theta \approx 1.28694 \approx 73.7362^\circ$$

 $\begin{array}{l} D_1 = 12 \\ D_2 = 17 \end{array}$

$$\Gamma = \mathsf{PSL}(2, \mathbb{Z})$$

$$\gamma_1 = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$

$$\gamma_2 = \begin{pmatrix} 57 & 16 \\ 32 & 9 \end{pmatrix}$$

$$z = \frac{3 + \sqrt{47}i}{7}$$

$$\theta \approx 1.28694 \approx 73.7362$$

 $\begin{array}{l} D_1 = 12 \\ D_2 = 17 \\ \phi_1(\sqrt{12}/2) = \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix} \\ \phi_2((1 + \sqrt{17})/2) = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix} \end{array}$

$$\Gamma = \mathsf{PSL}(2, \mathbb{Z})$$

$$\gamma_1 = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$

$$\gamma_2 = \begin{pmatrix} 57 & 16 \\ 32 & 9 \end{pmatrix}$$

$$z = \frac{3 + \sqrt{47}i}{7}$$

$$\theta \approx 1.28694 \approx 73.7362^\circ$$

 $D_{1} = 12$ $D_{2} = 17$ $\phi_{1}(\sqrt{12}/2) = \begin{pmatrix} -1 & 2\\ 1 & 1 \end{pmatrix}$ $\phi_{2}((1 + \sqrt{17})/2) = \begin{pmatrix} 2 & 1\\ 2 & -1 \end{pmatrix}$ $\phi_{1}(\sqrt{12})\phi_{2}(\sqrt{17}) = \begin{pmatrix} 10 & -16\\ 14 & -2 \end{pmatrix}$

$$D_{1} = 12 D_{2} = 17 \phi_{1}(\sqrt{12}/2) = \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix} \phi_{2}((1 + \sqrt{17})/2) = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix} x = 4 \phi_{2}((1 + \sqrt{17})/2) = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}$$

 $\phi_2((1+\sqrt{17})/2) = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}$

• Algorithms to optimally embed quadratic orders in Eichler orders and compute intersection numbers have been implemented.

- Algorithms to optimally embed quadratic orders in Eichler orders and compute intersection numbers have been implemented.
- The algorithms are fast enough to support large-scale computations, assuming at least one of D_1, D_2 is relatively small.

- Algorithms to optimally embed quadratic orders in Eichler orders and compute intersection numbers have been implemented.
- The algorithms are fast enough to support large-scale computations, assuming at least one of D_1, D_2 is relatively small.
- If $\Gamma = PSL(2, \mathbb{Z})$, we can interpret intersection numbers as a combinatorial calculation involving the rivers of binary quadratic forms. This computation is extremely fast.

- Algorithms to optimally embed quadratic orders in Eichler orders and compute intersection numbers have been implemented.
- The algorithms are fast enough to support large-scale computations, assuming at least one of D_1, D_2 is relatively small.
- If $\Gamma = PSL(2, \mathbb{Z})$, we can interpret intersection numbers as a combinatorial calculation involving the rivers of binary quadratic forms. This computation is extremely fast.
- All implementations are done in GP/PARI.

Definition of ϵ

• For simplicity, assume that D_1, D_2 are positive coprime fundamental discriminants. For all primes p with $\left(\frac{D_1D_2}{p}\right) \neq -1$, define

$$\epsilon(p) := \begin{cases} \left(\frac{D_1}{p}\right) & \text{if } p \text{ and } D_1 \text{ are coprime;} \\ \\ \left(\frac{D_2}{p}\right) & \text{if } p \text{ and } D_2 \text{ are coprime.} \end{cases}$$

Extend this multiplicatively.

• If $x \equiv D_1 D_2 \pmod{2}$, then

$$\epsilon\left(\frac{D_1D_2-x^2}{4}\right)=1.$$

Existence of intersection

Theorem

Let B be the indefinite quaternion algebra of discriminant $\mathfrak{D},$ and let \mathbb{O} be a maximal order. Factorize

$$\frac{D_1D_2-x^2}{4}=\prod_{i=1}^r p_i^{2e_i+1}\prod_{i=1}^s q_i^{2f_i}\prod_{i=1}^t w_i^{g_i},$$

where $\epsilon(p_i) = \epsilon(q_i) = -\epsilon(w_i) = -1$. Then,

Existence of intersection

Theorem

Let B be the indefinite quaternion algebra of discriminant $\mathfrak{D},$ and let \mathbb{O} be a maximal order. Factorize

$$\frac{D_1D_2-x^2}{4}=\prod_{i=1}^r p_i^{2e_i+1}\prod_{i=1}^s q_i^{2f_i}\prod_{i=1}^t w_i^{g_i},$$

where $\epsilon(p_i) = \epsilon(q_i) = -\epsilon(w_i) = -1$. Then,

• There exist x-linked optimal embeddings of discriminants D_1, D_2 if and only if $\mathfrak{D} = \prod_{i=1}^r p_i$.

Existence of intersection

Theorem

Let B be the indefinite quaternion algebra of discriminant $\mathfrak{D},$ and let \mathbb{O} be a maximal order. Factorize

$$\frac{D_1D_2-x^2}{4}=\prod_{i=1}^r p_i^{2e_i+1}\prod_{i=1}^s q_i^{2f_i}\prod_{i=1}^t w_i^{g_i},$$

where $\epsilon(p_i) = \epsilon(q_i) = -\epsilon(w_i) = -1$. Then,

- There exist x-linked optimal embeddings of discriminants D_1, D_2 if and only if $\mathfrak{D} = \prod_{i=1}^r p_i$.
- The number of pairs of x-linked optimal embeddings of discriminants D₁, D₂ up to simultaneous conjugation is equal to

$$2^{r+1}\prod_{i=1}^{t}(g_i+1)=2^{r+1}\sum_{\substack{d\mid \frac{D_1D_2-x^2}{4\mathfrak{D}}}}\epsilon(d).$$

• Consider the set of quaternion algebras for which there exist optimal embeddings of discriminants D_1, D_2 that have non-trivial intersection numbers.

Consequences

- Consider the set of quaternion algebras for which there exist optimal embeddings of discriminants D_1, D_2 that have non-trivial intersection numbers.
- It suffices to consider x-linking, for $x \equiv D_1D_2 \pmod{2}$ and $|x| < \sqrt{D_1D_2}$.

Consequences

- Consider the set of quaternion algebras for which there exist optimal embeddings of discriminants D_1, D_2 that have non-trivial intersection numbers.
- It suffices to consider x-linking, for $x \equiv D_1D_2 \pmod{2}$ and $|x| < \sqrt{D_1D_2}$.
- Each such x corresponds to a unique quaternion algebras for which there are intersections.

Consequences

- Consider the set of quaternion algebras for which there exist optimal embeddings of discriminants D_1, D_2 that have non-trivial intersection numbers.
- It suffices to consider x-linking, for $x \equiv D_1D_2 \pmod{2}$ and $|x| < \sqrt{D_1D_2}$.
- Each such x corresponds to a unique quaternion algebras for which there are intersections.
- Therefore, for all but finitely many quaternion algebras, the modular geodesics corresponding to optimal embeddings of discriminants D_1 , D_2 will not intersect.

 Let Emb(𝔅) denote the group of Z−linear formal sums of equivalence classes of optimal embeddings of positive discriminants into 𝔅.

- Let Emb(𝔅) denote the group of ℤ-linear formal sums of equivalence classes of optimal embeddings of positive discriminants into 𝔅.
- Let the signed intersection number be denoted by ⟨·, ·⟩, where we take inputs in Emb(ℂ) × Emb(ℂ) (set ⟨[φ], [φ]⟩ = 0).

- Let Emb(𝔅) denote the group of ℤ-linear formal sums of equivalence classes of optimal embeddings of positive discriminants into 𝔅.
- Let the signed intersection number be denoted by ⟨·, ·⟩, where we take inputs in Emb(𝔅) × Emb(𝔅) (set ⟨[φ], [φ]⟩ = 0).
- We can define a Hecke operator T_n that acts on $\text{Emb}(\mathbb{O})$.

- Let Emb(𝔅) denote the group of Z−linear formal sums of equivalence classes of optimal embeddings of positive discriminants into 𝔅.
- Let the signed intersection number be denoted by ⟨·, ·⟩, where we take inputs in Emb(𝔅) × Emb(𝔅) (set ⟨[φ], [φ]⟩ = 0).
- We can define a Hecke operator T_n that acts on $\text{Emb}(\mathbb{O})$.
- Let $q = e^{2\pi i \theta}$, and form the formal power series

$$E_{\phi_1,\phi_2}(\theta) := \sum_{n=1}^{\infty} \langle [\phi_1], T_n[\phi_2] \rangle q^n.$$

- Let Emb(𝔅) denote the group of ℤ−linear formal sums of equivalence classes of optimal embeddings of positive discriminants into 𝔅.
- Let the signed intersection number be denoted by ⟨·, ·⟩, where we take inputs in Emb(𝔅) × Emb(𝔅) (set ⟨[φ], [φ]⟩ = 0).
- We can define a Hecke operator T_n that acts on $\text{Emb}(\mathbb{O})$.
- Let $q = e^{2\pi i \theta}$, and form the formal power series

$$E_{\phi_1,\phi_2}(\theta) := \sum_{n=1}^{\infty} \langle [\phi_1], T_n[\phi_2] \rangle q^n.$$

Theorem

$$E_{\phi_1,\phi_2}(heta)\in S_2(\mathfrak{DM}).$$

James Rickards (McGill)

Intersection Numbers

Connection to other work

• A lot of expressions and formulas are analogous to parts of "On singular moduli" by Gross and Zagier.

Connection to other work

- A lot of expressions and formulas are analogous to parts of "On singular moduli" by Gross and Zagier.
- In "Modular cocycles and linking numbers" by Duke, Imamo \bar{g} lu, and Tóth, the linking numbers of certain links on the space SL(2, \mathbb{Z})\SL(2, \mathbb{R}) are considered. These linking numbers correspond exactly to unweighted intersection numbers in case $\Gamma = PSL(2, \mathbb{Z})$.
Connection to other work

- A lot of expressions and formulas are analogous to parts of "On singular moduli" by Gross and Zagier.
- In "Modular cocycles and linking numbers" by Duke, Imamo \bar{g} lu, and Tóth, the linking numbers of certain links on the space SL(2, \mathbb{Z})\SL(2, \mathbb{R}) are considered. These linking numbers correspond exactly to unweighted intersection numbers in case $\Gamma = PSL(2, \mathbb{Z})$.
- Let τ_1, τ_2 be real quadratic, representing coprime fundamental discriminants, and let p be a prime. In "Singular moduli for real quadratic fields", Darmon and Vonk derive generate a p-adic number $J_p(\tau_1, \tau_2)$, which is conjecturally algebraic and a real quadratic analgoue to $j(\tau_1) - j(\tau_2)$. The valuations of J_p at primes lying above q are conjectured to be q-weighted intersection numbers. This conjecture has been computationally verified for a large amount of data.

Acknowledgments and References

This research was supported by an NSERC Vanier Scholarship.


```
Darmon, Vonk (2018)
```

Singular Moduli for Real Quadratic Fields: a Rigid Analytic Approach *Preprint*

Duke, Imamoğlu, and Tóth (2017) Modular cocycles and linking numbers *Duke Math. J.* 166(6)

Gross, Zagier (1985)

On Singular Moduli

J. Reine Agnew. Math. 355

Rickards (2019)

Intersections of Closed Geodesics on the Modular Curve

Preprint