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Introduction

Γ is a discrete subgroup of PSL(2,R).

Equip Γ\H with the usual hyperbolic metric.

Geodesics on Γ\H are the images of hyperbolic geodesics in H, i.e. vertical
lines and semi-circles centred on the real axis.

We would like to study the subset of closed geodesics.
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Closed geodesics

When γ ∈ Γ is hyperbolic and primitive, the equation γx = x has two real
roots, γf , γs (the first and second root).

`γ is the geodesic in H running from γs to γf .

If z ∈ `γ , then γz ∈ `γ .

˙̀
z,γz is the upper half plane geodesic running from z to γz , including z but

not γz .

˜̀
γ is the projection of ˙̀

z,γz to Γ\H.

˜̀
γ is a closed geodesic, and the image of `γ runs over it infinitely many times.

All closed geodesics of Γ\H arise in this way.
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Example

Γ = PSL(2,Z), γ = ( 1 2
1 3 ) , z =

−5 +
√

3i

2
.

−3 −2 −1 0 1

1

2

γfγs

R

I`γ
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Closed geodesic facts

˜̀
γ is constant across a Γ−conjugacy class of hyperbolic matrices.

˜̀
γ−1 overlaps ˜̀

γ , but runs in the opposite direction.

˜̀
γ can have self-intersections.

If γ1, γ2 ∈ Γ satisfy γ1 is not conjugate to γ2 or γ−1
2 , we call γ1, γ2 strongly

inequivalent.

We will consider the intersections of ˜̀
γ1 with ˜̀

γ2 for γ1, γ2 strongly
inequivalent.
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Intersection number definition

Definition

Let f be a function, let γ1, γ2 be strongly inequivalent, and define the f−weighted
intersection number to be

IntfΓ(γ1, γ2) =
∑

z̃∈ ˜̀
γ1
∩ ˜̀

γ2

f (z̃ , ˜̀
γ1 ,

˜̀
γ2 ).

f = 1 is the unweighted intersection number, denoted IntΓ.

The geodesics carry an orientation, and this allows us to define a sign of
intersection. Choosing f to be the sign of the intersection is denoted Int±Γ ,
and is called the signed intersection number.

When Γ\H is a Shimura curve, we can define a p−weighted intersection,
IntpΓ, for primes p.
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Alternate interpretation of the intersection number

Define an equivalence relation on Γ× Γ by simultaneous conjugation, i.e.

(σ1, σ2) ∼ (ασ1α
−1, ασ2α

−1) for α ∈ Γ.

Each intersection of ˜̀
γ1 and ˜̀

γ2 lifts to a pair (σ1, σ2) ∈ [γ1]× [γ2] such that
`σ1 , `σ2 intersect.

This lifting is unique up to ∼. In particular,

IntfΓ(γ1, γ2) =
∑

(σ1,σ2)∈([γ1]×[γ2])/∼
`σ1
∩`σ2

6=∅

f (σ1, σ2).
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Remarks on the intersection number

This interpretation allows us to focus only on upper half plane geodesics.

Each intersection determines a Γ−orbit of the intersection point, as well as a
unique intersection angle.

Γ = PSL(2,Z), γ1 = ( 1 2
1 3 ) , γ2 = ( 57 16

32 9 ) .

−3 −2 −1 0 1 2

1

2

R

I
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Remarks on the intersection number

This interpretation allows us to focus only on upper half plane geodesics.

Each intersection determines a Γ−orbit of the intersection point, as well as a
unique intersection angle.

Γ = PSL(2,Z), γ1 = ( 1 2
1 3 ) , γ2 = ( 57 16

32 9 ) .

−3 −2 −1 0 1 2
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z =
3 +
√

47i

7

θ ≈ 1.28694 ≈ 73.7362◦
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Optimal embeddings in Eichler orders

Let B be an indefinite quaternion algebra over Q with discriminant D, and
let O be an Eichler order of level M in B.

Fix an embedding ι : B → M2(R), and then ΓD,M = Γ = ι(ON=1)/{±1} is a
discrete subgroup of PSL(2,R) (the image of the elements of norm 1 in O).

Let D be a discriminant, and let OD be the unique quadratic order of
discriminant D. An optimal embedding of OD into O is a ring
homomorphism φ : OD → O which does not extend to an embedding of a
larger quadratic order.

Let εD be the fundamental unit of positive norm in OD .

Note that ι(φ(εD)) is a primitive hyperbolic matrix in Γ, and all such
matrices arise in this fashion.

James Rickards (McGill) Intersection Numbers October 6th 2019 9 / 20



Optimal embeddings in Eichler orders

Let B be an indefinite quaternion algebra over Q with discriminant D, and
let O be an Eichler order of level M in B.

Fix an embedding ι : B → M2(R), and then ΓD,M = Γ = ι(ON=1)/{±1} is a
discrete subgroup of PSL(2,R) (the image of the elements of norm 1 in O).

Let D be a discriminant, and let OD be the unique quadratic order of
discriminant D. An optimal embedding of OD into O is a ring
homomorphism φ : OD → O which does not extend to an embedding of a
larger quadratic order.

Let εD be the fundamental unit of positive norm in OD .

Note that ι(φ(εD)) is a primitive hyperbolic matrix in Γ, and all such
matrices arise in this fashion.

James Rickards (McGill) Intersection Numbers October 6th 2019 9 / 20



Optimal embeddings in Eichler orders

Let B be an indefinite quaternion algebra over Q with discriminant D, and
let O be an Eichler order of level M in B.

Fix an embedding ι : B → M2(R), and then ΓD,M = Γ = ι(ON=1)/{±1} is a
discrete subgroup of PSL(2,R) (the image of the elements of norm 1 in O).

Let D be a discriminant, and let OD be the unique quadratic order of
discriminant D. An optimal embedding of OD into O is a ring
homomorphism φ : OD → O which does not extend to an embedding of a
larger quadratic order.

Let εD be the fundamental unit of positive norm in OD .

Note that ι(φ(εD)) is a primitive hyperbolic matrix in Γ, and all such
matrices arise in this fashion.

James Rickards (McGill) Intersection Numbers October 6th 2019 9 / 20



Optimal embeddings in Eichler orders

Let B be an indefinite quaternion algebra over Q with discriminant D, and
let O be an Eichler order of level M in B.

Fix an embedding ι : B → M2(R), and then ΓD,M = Γ = ι(ON=1)/{±1} is a
discrete subgroup of PSL(2,R) (the image of the elements of norm 1 in O).

Let D be a discriminant, and let OD be the unique quadratic order of
discriminant D. An optimal embedding of OD into O is a ring
homomorphism φ : OD → O which does not extend to an embedding of a
larger quadratic order.

Let εD be the fundamental unit of positive norm in OD .

Note that ι(φ(εD)) is a primitive hyperbolic matrix in Γ, and all such
matrices arise in this fashion.

James Rickards (McGill) Intersection Numbers October 6th 2019 9 / 20



Optimal embeddings in Eichler orders

Let B be an indefinite quaternion algebra over Q with discriminant D, and
let O be an Eichler order of level M in B.

Fix an embedding ι : B → M2(R), and then ΓD,M = Γ = ι(ON=1)/{±1} is a
discrete subgroup of PSL(2,R) (the image of the elements of norm 1 in O).

Let D be a discriminant, and let OD be the unique quadratic order of
discriminant D. An optimal embedding of OD into O is a ring
homomorphism φ : OD → O which does not extend to an embedding of a
larger quadratic order.

Let εD be the fundamental unit of positive norm in OD .

Note that ι(φ(εD)) is a primitive hyperbolic matrix in Γ, and all such
matrices arise in this fashion.

James Rickards (McGill) Intersection Numbers October 6th 2019 9 / 20



Intersection number of optimal embeddings

Definition

Let f be a function, let φ1, φ2 be optimal embeddings of OD1 ,OD2 into O, and
define the f−weighted intersection number to be

Intf (φ1, φ2) = IntfΓ(ι(φ1(εD1 )), ι(φ2(εD2 ))).
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A word on optimal embeddings

Conjugacy classes in Γ correspond to equivalence of optimal embeddings,
which is defined by

φ ∼ uφu−1 for all u ∈ ON=1.

Equivalent embeddings are locally equivalent, and the set of local equivalence
classes gives rise to a notion of “orientation”.

There is a simply transitive action of Cl+(D) on equivalence classes of
optimal embeddings of discriminant D of a fixed orientation.

When Γ = PSL(2,Z ), there is a canonical basepoint, and we can replace
“equivalence class of optimal embedding” with “primitive indefinite binary
quadratic form”.
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Intersection point and angle

Let φ1, φ2 be optimal embeddings of OD1 ,OD2 into O. Call the embeddings
x−linked, where x is the integer satisfying

x =
1

2
Tr(φ1(

√
D1)φ2(

√
D2)).

The root geodesics of ι(φi (εDi )) intersect if and only if

x2 < D1D2.

If the root geodesics intersect, the intersection point is the fixed point of
ι(φ1(

√
D1)φ2(

√
D2)). This corresponds to a (not necessarily optimal)

embedding of discriminant x2 − D1D2.

If the root geodesics intersect, the intersection angle θ satisfies

tan(θ) =

√
D1D2 − x2

x
.
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If the root geodesics intersect, the intersection point is the fixed point of
ι(φ1(

√
D1)φ2(

√
D2)). This corresponds to a (not necessarily optimal)

embedding of discriminant x2 − D1D2.

If the root geodesics intersect, the intersection angle θ satisfies

tan(θ) =

√
D1D2 − x2

x
.
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Example, revisited

−3 −2 −1 0 1 2

1

2

z θ

R

I`γ1

`γ2 Γ = PSL(2,Z)
γ1 = ( 1 2

1 3 )

γ2 = ( 57 16
32 9 )

z =
3 +
√

47i

7

θ ≈ 1.28694 ≈ 73.7362◦
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A word on computations

Algorithms to optimally embed quadratic orders in Eichler orders and
compute intersection numbers have been implemented.

The algorithms are fast enough to support large-scale computations,
assuming at least one of D1,D2 is relatively small.

If Γ = PSL(2,Z), we can interpret intersection numbers as a combinatorial
calculation involving the rivers of binary quadratic forms. This computation is
extremely fast.

All implementations are done in GP/PARI.
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Definition of ε

For simplicity, assume that D1,D2 are positive coprime fundamental

discriminants. For all primes p with
(

D1D2

p

)
6= −1, define

ε(p) :=



(
D1

p

)
if p and D1 are coprime;

(
D2

p

)
if p and D2 are coprime.

Extend this multiplicatively.

If x ≡ D1D2 (mod 2), then

ε

(
D1D2 − x2

4

)
= 1.
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Existence of intersection

Theorem

Let B be the indefinite quaternion algebra of discriminant D, and let O be a
maximal order. Factorize

D1D2 − x2

4
=

r∏
i=1

p2ei+1
i

s∏
i=1

q2fi
i

t∏
i=1

wgi
i ,

where ε(pi ) = ε(qi ) = −ε(wi ) = −1. Then,

There exist x−linked optimal embeddings of discriminants D1,D2 if and only
if D =

∏r
i=1 pi .

The number of pairs of x−linked optimal embeddings of discriminants D1,D2

up to simultaneous conjugation is equal to

2r+1
t∏

i=1

(gi + 1) = 2r+1
∑

d| D1D2−x2

4D

ε(d).
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Consequences

Consider the set of quaternion algebras for which there exist optimal
embeddings of discriminants D1,D2 that have non-trivial intersection
numbers.

It suffices to consider x−linking, for x ≡ D1D2 (mod 2) and |x | <
√
D1D2.

Each such x corresponds to a unique quaternion algebras for which there are
intersections.

Therefore, for all but finitely many quaternion algebras, the modular
geodesics corresponding to optimal embeddings of discriminants D1,D2 will
not intersect.
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Modular forms

Let Emb(O) denote the group of Z−linear formal sums of equivalence classes
of optimal embeddings of positive discriminants into O.

Let the signed intersection number be denoted by 〈·, ·〉, where we take inputs
in Emb(O)× Emb(O) (set 〈[φ], [φ]〉 = 0).

We can define a Hecke operator Tn that acts on Emb(O).

Let q = e2πiθ, and form the formal power series

Eφ1,φ2 (θ) :=
∞∑
n=1

〈[φ1],Tn[φ2]〉qn.

Theorem

Eφ1,φ2 (θ) ∈ S2(DM).
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Connection to other work

A lot of expressions and formulas are analogous to parts of “On singular
moduli” by Gross and Zagier.

In “Modular cocycles and linking numbers” by Duke, Imamoḡlu, and Tóth,
the linking numbers of certain links on the space SL(2,Z)\SL(2,R) are
considered. These linking numbers correspond exactly to unweighted
intersection numbers in case Γ = PSL(2,Z).

Let τ1, τ2 be real quadratic, representing coprime fundamental discriminants,
and let p be a prime. In “Singular moduli for real quadratic fields”, Darmon
and Vonk derive generate a p−adic number Jp(τ1, τ2), which is conjecturally
algebraic and a real quadratic analgoue to j(τ1)− j(τ2). The valuations of Jp
at primes lying above q are conjectured to be q−weighted intersection
numbers. This conjecture has been computationally verified for a large
amount of data.
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