Counting elliptic curves with an isogeny of degree three

John Voight
Dartmouth College

Joint work with
Maggie Pizzo and Carl Pomerance

Maine/Québec Number Theory Conference
University of Maine
5 October 2019

Torsion is rare

To quantify the fact that most elliptic curves do not have torsion, we count as follows.

Every elliptic curve E over \mathbb{Q} is uniquely of the form

$$
E: y^{2}=x^{3}+A x+B
$$

with $A, B \in \mathbb{Z}$ satisfying $4 A^{3}+27 B^{2} \neq 0$ and such that there is no prime ℓ such that $\ell^{4} \mid A$ and $\ell^{6} \mid B$.

For each such elliptic curve E, define its height:

$$
\text { ht } E:=\max \left(\left|4 A^{3}\right|,\left|27 B^{2}\right|\right) .
$$

By Mazur's theorem, there are only finitely many possible groups G such that $E(\mathbb{Q})_{\text {tors }} \simeq G$. For each such group G, Harron-Snowden prove that

$$
N_{G}(H):=\#\left\{E: h t(E) \leq H \text { and } E(\mathbb{Q})_{\mathrm{tors}} \simeq G\right\} \asymp H^{1 / d(G)}
$$

for H large, where $d(G)$ is given explicitly.

Torsion is rare (Harron-Snowden)

$N_{G}(H):=\#\left\{E: \operatorname{ht}(E) \leq H\right.$ and $\left.E(\mathbb{Q})_{\text {tors }} \simeq G\right\} \asymp H^{1 / d(G)}$

G	$\#$ curves $=H^{1 / d(G)}$
-	$H^{5 / 6}$
$\mathbb{Z} / 2 \mathbb{Z}$	$H^{1 / 2}$
$\mathbb{Z} / 3 \mathbb{Z}$	$H^{1 / 3}$
$\mathbb{Z} / 4 \mathbb{Z}$	$H^{1 / 4}$
$\mathbb{Z} / 5 \mathbb{Z}$	$H^{1 / 6}$
$\mathbb{Z} / 6 \mathbb{Z}$	$H^{1 / 6}$
$\mathbb{Z} / 7 \mathbb{Z}$	$H^{1 / 12}$
$\mathbb{Z} / 8 \mathbb{Z}$	$H^{1 / 12}$
$\mathbb{Z} / 9 \mathbb{Z}$	$H^{1 / 18}$
$\mathbb{Z} / 10 \mathbb{Z}$	$H^{1 / 18}$
$\mathbb{Z} / 12 \mathbb{Z}$	$H^{1 / 24}$
$\mathbb{Z} / \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	$H^{1 / 3}$
$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$	$H^{1 / 6}$
$\mathbb{Z} / \mathbb{Z} \times \mathbb{Z} / \mathbb{Z}$	$H^{1 / 12}$
$\mathbb{Z} / \mathbb{Z} \times \mathbb{Z} / \mathbb{Z}$	$H^{1 / 24}$

Explicit asymptotics

To study $\#\{E: \operatorname{ht}(E) \leq H\}$, we need to count pairs

$$
(A, B) \in \mathbb{Z}^{2} \text { such that }|A| \leq(H / 4)^{1 / 3},|B| \leq(H / 27)^{1 / 2}
$$

and then sieve out those with $\ell^{4}\left|A, \ell^{6}\right| B$ for some prime ℓ; the number with $4 A^{3}+27 B^{2}=0$ are only $O\left(H^{1 / 6}\right)$. So we need to count lattice points in a rectangle with sides of lengths $2(H / 4)^{1 / 3}$ and $2(H / 27)^{1 / 2}$, as $H \rightarrow \infty$.

By the Principle of Lipschitz, the number of lattice points in a region is given by its area up to an error proportional to length of its (rectifiable) boundary. So the above count is

$$
4(1 / 4)^{1 / 3}(1 / 27)^{1 / 2} H^{5 / 6}+O\left(H^{1 / 2}\right)
$$

The condition at ℓ says we have overcounted and need to multiply the result by $\left(1-\ell^{10}\right)$; a standard sieve argument then gives

$$
\#\{E: h t(E) \leq H\}=2^{4 / 3} 3^{-3 / 2} \zeta(10)^{-1} H^{5 / 6}+O\left(H^{1 / 2}\right) .
$$

Explicit asymptotics: $\# G=2,3$

Harron-Snowden carried out this strategy for the cases $\# G=2,3$:

$$
\begin{aligned}
& \#\left\{E: \operatorname{ht}(E) \leq H \text { and } E(\mathbb{Q})_{\mathrm{tors}} \simeq G\right\} \\
& \quad=\frac{\operatorname{area}\left(R_{G}\right)}{\zeta(12 / d(G))} H^{1 / d(G)}+O\left(H^{1 / e(G)}\right)
\end{aligned}
$$

for

G	$H^{1 / d(G)}$	$O\left(H^{1 / e(G)}\right)$
-	$H^{5 / 6}$	$O\left(H^{1 / 2}\right)$
$\mathbb{Z} / 2 \mathbb{Z}$	$H^{1 / 2}$	$O\left(H^{1 / 3}\right)$
$\mathbb{Z} / 3 \mathbb{Z}$	$H^{1 / 3}$	$O\left(H^{1 / 4}\right)$

Question

Without computing the constant, can one use this method to prove there exists an effectively computable constant for all G ?

Counting isogenies

In this talk, we are concerned not with counting elliptic curves with torsion subgroups but rather elliptic curves with an isogeny (over Q).

For $m \in \mathbb{Z}_{\geq 1}$, let

$$
N_{m}(H):=\left\{E: \begin{array}{l}
\text { ht }(E) \leq H \text { and } \\
\text { there exists } \phi: E \rightarrow E^{\prime} \text { cyclic of degree } m
\end{array}\right\}
$$

For $m=1,2$, a generator of the kernel of a cyclic m-isogeny is a rational m-torsion point, so we are in the previous case: $N_{m}(H)=N_{\mathbb{Z} / m \mathbb{Z}}(H)$ for $m=1$, 2. (In terms of modular curves, $X_{1}(m)=X_{0}(m)$ for $m=1,2$.)

Main result: counting cyclic 3-isogenies

Theorem (Pizzo-Pomerance-V)

There exist $c_{1}, c_{2} \in \mathbb{R}$ such that for $H \geq 1$,

$$
N_{3}(H)=\frac{2}{3 \sqrt{3} \zeta(6)} H^{1 / 2}+c_{1} H^{1 / 3} \log H+c_{2} H^{1 / 3}+O\left(H^{7 / 24}\right)
$$

Moreover,

$$
\frac{2}{3 \sqrt{3} \zeta(6)}=0.378338 \ldots \quad c_{1}=\frac{c_{0}}{8 \pi^{2} \zeta(4)}=0.107437 \ldots
$$

where c_{0} is explicitly given and c_{2} is effectively computable.

- Same asymptotic if we count those equipped with a 3-isogeny.
- The main term of order $H^{1 / 2}$ counts just those elliptic curves with $A=0$ (having j-invariant 0).
- Matches computations to $H=10^{25}$, suggesting $c_{2} \approx 0.163$.
- 3-isogenies are more frequent than $\mathbb{Z} / 3 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$-torsion, by a log factor (its first appearance).

A hint of the proof

An elliptic curve E has a 3-isogeny (defined over \mathbb{Q}) if and only if its 3 -division polynomial

$$
\psi(x)=3 x^{4}+6 A x^{2}+12 B x-A^{2}
$$

has a root in \mathbb{Q}; if $a \in \mathbb{Q}$ is such a root, then in fact $a \in \mathbb{Z}$.
So we need to count triples $(A, B, a) \in \mathbb{Z}^{3}$ satisfying:
(N1) $A \neq 0$ and $\psi_{A, B}(a)=0$;
(N2) $\left|4 A^{3}\right|,\left|27 B^{2}\right| \leq H$;
(N3) $4 A^{3}+27 B^{2} \neq 0$; and
(N4) there is no prime ℓ with $\ell^{4} \mid A$ and $\ell^{6} \mid B$.
We show that this count is of size $H^{1 / 3} \log H$; we use that

$$
12 B=\frac{A^{2}}{a}-6 A a-3 a^{3}
$$

so it is enough to work with A, a such that $a \mid A^{2}$, together with conditions at 2,3 .

Our region

Geometric interpretation; conclusion

$N_{3}(H)$ counts rational points of bounded height on $X_{0}(3)$ with respect to the height arising from the pullback of the natural height on $X(1)$.

The main term corresponds to a single elliptic point of order 3 on $X_{0}(3)$! The modular curves $X_{0}(N)$ are not fine moduli spaces (owing to quadratic twists), so our proof is quite different than the method used by Harron-Snowden.

We hope that our method and the lower-order terms in our result will be useful in understanding counts of rational points on stacky curves (as in recent work of Ellenberg-Satriano-Zureick-Brown).

Question

Can one predict the answer for the count of elliptic curves with a cyclic m-isogeny for general m (in terms of the signature of $X_{0}(m)$?)?

