On the total number of prime factors of an odd perfect number

Joshua Zelinsky

Hopkins School

zelinsky@gmail.com

October 5, 2019

• A number is perfect if $\sigma(n) = 2n$ e.g. n = 6, or n = 28.

< 4[™] ▶

э

- A number is perfect if $\sigma(n) = 2n$ e.g. n = 6, or n = 28.
- Is there an odd N such that $\sigma(N) = 2N$?
- Throughout this talk N will denote an odd perfect number.

• $N = q^e m^2$, (m, q) = 1, $q \equiv e \equiv 1 \pmod{4}$. (Euler)

< □ > < 同 > < 三</p>

э

N = q^em², (m, q) = 1, q ≡ e ≡ 1 (mod 4). (Euler)
N > 10¹⁵⁰⁰. (Ochem, Rao)

- $N = q^e m^2$, (m, q) = 1, $q \equiv e \equiv 1 \pmod{4}$. (Euler)
- $N > 10^{1500}$. (Ochem, Rao)
- Write $\omega = \omega(N)$, and $\Omega = \Omega(N)$. Then:

- $N = q^e m^2$, (m,q) = 1, $q \equiv e \equiv 1 \pmod{4}$. (Euler)
- $N > 10^{1500}$. (Ochem, Rao)
- Write $\omega = \omega(N)$, and $\Omega = \Omega(N)$. Then:
- $N < 2^{4^\omega}$ and $\omega \ge 10$. (Nielsen)

- $N = q^e m^2$, (m,q) = 1, $q \equiv e \equiv 1 \pmod{4}$. (Euler)
- $N > 10^{1500}$. (Ochem, Rao)
- Write $\omega = \omega(N)$, and $\Omega = \Omega(N)$. Then:
- $N < 2^{4^\omega}$ and $\omega \ge 10$. (Nielsen)

• From Euler's result, one has $\Omega \ge 2\omega - 1$.

• From Euler's result, one has $\Omega \ge 2\omega - 1$.

• Ochem and Rao showed $\Omega \geq \frac{18\omega - 31}{7}$. Can we do better?

- From Euler's result, one has $\Omega \ge 2\omega 1$.
- Ochem and Rao showed $\Omega \geq \frac{18\omega 31}{7}$. Can we do better?

Theorem

(Z.) If N is an odd perfect number with 3 $\not|N$, then

$$\Omega \geq rac{302}{113}\omega - rac{286}{133}\omega$$

If N is an odd perfect number, with 3|N, then

$$\Omega \ge \frac{66}{25}\omega - 5. \tag{2}$$

(1)

• $\sigma(n)$ is multiplicative and $\sigma(p^k) = \frac{p^{k+1}-1}{p-1}$.

(日) (四) (日) (日) (日)

Foundations

- $\sigma(n)$ is multiplicative and $\sigma(p^k) = \frac{p^{k+1}-1}{p-1}$.
- $x^k 1$ factors as the product of cyclotomic polynomials:

$$x^k - 1 = \prod_{d|k} \Phi_d(x).$$

- $\sigma(n)$ is multiplicative and $\sigma(p^k) = \frac{p^{k+1}-1}{p-1}$.
- $x^k 1$ factors as the product of cyclotomic polynomials:

$$x^k - 1 = \prod_{d|k} \Phi_d(x).$$

• Euler's result follows immediately from considering what happens mod 4.

- $\sigma(n)$ is multiplicative and $\sigma(p^k) = \frac{p^{k+1}-1}{p-1}$.
- $x^k 1$ factors as the product of cyclotomic polynomials:

$$x^k - 1 = \prod_{d|k} \Phi_d(x).$$

- Euler's result follows immediately from considering what happens mod 4.
- $\sigma(p^2) = p^2 + p + 1$, and $\sigma(p^4) = p^4 + p^3 + p^2 + p + 1$.

- $\sigma(n)$ is multiplicative and $\sigma(p^k) = \frac{p^{k+1}-1}{p-1}$.
- $x^k 1$ factors as the product of cyclotomic polynomials:

$$x^k - 1 = \prod_{d|k} \Phi_d(x).$$

- Euler's result follows immediately from considering what happens mod 4.
- $\sigma(p^2) = p^2 + p + 1$, and $\sigma(p^4) = p^4 + p^3 + p^2 + p + 1$.
- If $p|n^2 + n + 1$, then $p \equiv 1 \pmod{3}$ or p = 3. Similar statement for $p|n^4 + n^3 + n^2 + n + 1$.

Central ingredients to Ochem and Rao

- Key insight: Either we have many copies of 3 in the factorization, or we have many primes raised to a power greater than 2.
- Use a system of linear inequalities on the number of prime factors.
- If $p \equiv 1 \pmod{3}$, then $3|\sigma(p^2)$.

Central ingredients to Ochem and Rao

- Key insight: Either we have many copies of 3 in the factorization, or we have many primes raised to a power greater than 2.
- Use a system of linear inequalities on the number of prime factors.
- If $p \equiv 1 \pmod{3}$, then $3|\sigma(p^2)$.
- If $p^2 || N$, and $q |\sigma(p^2)$, then either $q^4 |N$ or q contributes a 3.

Lemma (Ochem and Rao)

Let p, q and r be positive integers. If $p^2 + p + 1 = r$ and $q^2 + q + 1 = 3r$, then p is not an odd prime.

• Look at number of primes in *S* (set of primes of *N* which are raised to the second power), and the number of primes in *T* (set of primes which are raised to the fourth power), and *U* set of primes raised to higher powers. Keep the special prime and the powers of 3 separate.

Lemma

Let a and b be distinct odd primes and p a prime such that $p|(a^2 + a + 1)$ and $p|(b^2 + b + 1)$. If $a \equiv b \equiv 2 \pmod{3}$, then $p \leq \frac{a+b+1}{5}$. If $a \equiv b \equiv 1 \pmod{3}$, then $p \leq \frac{a+b+1}{3}$.

Forces a large set of distinct primes from S.

• Define a Triple Threat as a quadruplet of primes (x, a, b, c) with $\sigma(a^2)$, $\sigma(b^2)$ and $\sigma(c^2)$ also prime and

$$\sigma(x^2) = \sigma(a^2)\sigma(b^2)\sigma(c^2).$$

• Define a Triple Threat as a quadruplet of primes (x, a, b, c) with $\sigma(a^2)$, $\sigma(b^2)$ and $\sigma(c^2)$ also prime and

$$\sigma(x^2) = \sigma(a^2)\sigma(b^2)\sigma(c^2).$$

• We expect that no Triple Threats exist.

• Define a Triple Threat as a quadruplet of primes (x, a, b, c) with $\sigma(a^2)$, $\sigma(b^2)$ and $\sigma(c^2)$ also prime and

$$\sigma(x^2) = \sigma(a^2)\sigma(b^2)\sigma(c^2).$$

• We expect that no Triple Threats exist. We have:

Lemma

No triple threat exists with $x \equiv a \equiv 1 \pmod{5}$.

• Combine this with many primes in *S* being 1 (mod 5).

• Define a Triple Threat as a quadruplet of primes (x, a, b, c) with $\sigma(a^2)$, $\sigma(b^2)$ and $\sigma(c^2)$ also prime and

$$\sigma(x^2) = \sigma(a^2)\sigma(b^2)\sigma(c^2).$$

• We expect that no Triple Threats exist. We have:

Lemma

No triple threat exists with $x \equiv a \equiv 1 \pmod{5}$.

- Combine this with many primes in S being 1 (mod 5).
- Primes in *T* contribute a lot or we have a lot of info about the primes: Set $g(x) = x^4 + x^3 + x^2 + x + 1$, $f(x) = x^2 + x + 1$. Then $f(g(x)) = (x^2 x + 1)(x^6 + 3x^5 + 5x^4 + 6x^3 + 7x^2 + 6x + 3)$.

Conjecture

Let p and q be distinct odd primes and let $\Phi_p(x)$ and $\Phi_q(x)$ be the pth and qth cyclotomic polynomials. Then aside from a finite set of exceptions, at least one of $\Phi_p(\Phi_q(x))$ or $\Phi_q(\Phi_p(x))$ is irreducible.

Conjecture

Let p and q be distinct odd primes and let $\Phi_p(x)$ and $\Phi_q(x)$ be the pth and qth cyclotomic polynomials. Then aside from a finite set of exceptions, at least one of $\Phi_p(\Phi_q(x))$ or $\Phi_q(\Phi_p(x))$ is irreducible.

• Call an ordered pair of positive integers (m, n) a good pair if $\Phi_m(\Phi_n(x))$ factors over the integers where Φ_m and Φ_n are the *m*th and *n*th cyclotomic polynomials. Let D(t) count the number of good pairs with both $m \leq t$ and $n \leq t$.

Conjecture

$$\lim_{t\to\infty}\frac{D(t)}{t^2}=0.$$

< □ > < 同 > < 三 > <

• Tightening up the main theorem.

Image: A matched by the second sec

э

- Tightening up the main theorem.
- Can we restrict triple threats more?

- Tightening up the main theorem.
- Can we restrict triple threats more?
- Understanding cyclotomic polynomial composition.

- Tightening up the main theorem.
- Can we restrict triple threats more?
- Understanding cyclotomic polynomial composition.
- Generalizing these results (Multiply perfect numbers, Ore harmonic numbers).

- Tightening up the main theorem.
- Can we restrict triple threats more?
- Understanding cyclotomic polynomial composition.
- Generalizing these results (Multiply perfect numbers, Ore harmonic numbers).
- Can we get a better than linear inequality?

• Pascal Ochem, Maria Stadnik, Aaron "Bernie" Silberstein, Glenn Stevens