On the total number of prime factors of an odd perfect number

Joshua Zelinsky
Hopkins School
zelinsky@gmail.com

October 5, 2019
A number is perfect if \(\sigma(n) = 2n \) e.g. \(n = 6 \), or \(n = 28 \).
A number is perfect if $\sigma(n) = 2n$ e.g. $n = 6$, or $n = 28$.
Is there an odd N such that $\sigma(N) = 2N$?
Throughout this talk N will denote an odd perfect number.
What is known?

- $N = q^e m^2$, $(m, q) = 1$, $q \equiv e \equiv 1 \pmod{4}$. (Euler)
What is known?

- $N = q^e m^2$, $(m, q) = 1$, $q \equiv e \equiv 1 \pmod{4}$. (Euler)
- $N > 10^{1500}$. (Ochem, Rao)
What is known?

- \(N = q^e m^2, (m, q) = 1, q \equiv e \equiv 1 \pmod{4} \). (Euler)
- \(N > 10^{1500} \). (Ochem, Rao)
- Write \(\omega = \omega(N) \), and \(\Omega = \Omega(N) \). Then:
What is known?

- $N = q^e m^2$, $(m, q) = 1$, $q \equiv e \equiv 1 \pmod{4}$. (Euler)
- $N > 10^{1500}$. (Ochem, Rao)
- Write $\omega = \omega(N)$, and $\Omega = \Omega(N)$. Then:
- $N < 2^{4\omega}$ and $\omega \geq 10$. (Nielsen)
What is known?

- \(N = q^e m^2, \ (m, q) = 1, \ q \equiv e \equiv 1 \pmod{4} \). (Euler)
- \(N > 10^{1500} \). (Ochem, Rao)
- Write \(\omega = \omega(N) \), and \(\Omega = \Omega(N) \). Then:
 - \(N < 2^{4\omega} \) and \(\omega \geq 10 \). (Nielsen)
From Euler’s result, one has $\Omega \geq 2\omega - 1$.
- From Euler’s result, one has \(\Omega \geq 2\omega - 1 \).
- Ochem and Rao showed \(\Omega \geq \frac{18\omega - 31}{7} \). Can we do better?
From Euler’s result, one has $\Omega \geq 2\omega - 1$.

Ochem and Rao showed $\Omega \geq \frac{18\omega - 31}{7}$. Can we do better?

Theorem

(Z.) If N is an odd perfect number with $3 \nmid N$, then

$$\Omega \geq \frac{302}{113}\omega - \frac{286}{133}.$$ \hfill (1)

If N is an odd perfect number, with $3|N$, then

$$\Omega \geq \frac{66}{25}\omega - 5.$$ \hfill (2)
\(\sigma(n) \) is multiplicative and \(\sigma(p^k) = \frac{p^{k+1}-1}{p-1} \).
• \(\sigma(n)\) is multiplicative and \(\sigma(p^k) = \frac{p^{k+1} - 1}{p-1}\).

• \(x^k - 1\) factors as the product of cyclotomic polynomials:

\[
x^k - 1 = \prod_{d|k} \Phi_d(x).
\]
σ(n) is multiplicative and \(\sigma(p^k) = \frac{p^{k+1} - 1}{p-1} \).

\(x^k - 1 \) factors as the product of cyclotomic polynomials:

\[
x^k - 1 = \prod_{d|k} \Phi_d(x).
\]

Euler’s result follows immediately from considering what happens mod 4.
\(\sigma(n) \) is multiplicative and \(\sigma(p^k) = \frac{p^{k+1}-1}{p-1} \).

\(x^k - 1 \) factors as the product of cyclotomic polynomials:

\[
x^k - 1 = \prod_{d | k} \Phi_d(x).
\]

Euler’s result follows immediately from considering what happens mod 4.

\(\sigma(p^2) = p^2 + p + 1 \), and \(\sigma(p^4) = p^4 + p^3 + p^2 + p + 1 \).
• $\sigma(n)$ is multiplicative and $\sigma(p^k) = \frac{p^{k+1}-1}{p-1}$.

• $x^k - 1$ factors as the product of cyclotomic polynomials:

$$x^k - 1 = \prod_{d|k} \Phi_d(x).$$

• Euler’s result follows immediately from considering what happens mod 4.

• $\sigma(p^2) = p^2 + p + 1$, and $\sigma(p^4) = p^4 + p^3 + p^2 + p + 1$.

• If $p|n^2 + n + 1$, then $p \equiv 1 \pmod{3}$ or $p = 3$. Similar statement for $p|n^4 + n^3 + n^2 + n + 1$.
Central ingredients to Ochem and Rao

- Key insight: Either we have many copies of 3 in the factorization, or we have many primes raised to a power greater than 2.
- Use a system of linear inequalities on the number of prime factors.
- If $p \equiv 1 \pmod{3}$, then $3 | \sigma(p^2)$.

Lemma (Ochem and Rao)

Let p, q, and r be positive integers. If $p^2 + p + 1 = r$ and $q^2 + q + 1 = 3r$, then p is not an odd prime.
Key insight: Either we have many copies of 3 in the factorization, or we have many primes raised to a power greater than 2.

Use a system of linear inequalities on the number of prime factors.

If \(p \equiv 1 \pmod{3} \), then \(3 \mid \sigma(p^2) \).

If \(p^2 \mid \mid N \), and \(q \mid \sigma(p^2) \), then either \(q^4 \mid N \) or \(q \) contributes a 3.

Lemma (Ochem and Rao)

Let \(p \), \(q \) and \(r \) *be positive integers. If* \(p^2 + p + 1 = r \) *and* \(q^2 + q + 1 = 3r \), *then* \(p \) *is not an odd prime.*

Look at number of primes in \(S \) (set of primes of \(N \) which are raised to the second power), and the number of primes in \(T \) (set of primes which are raised to the fourth power), and \(U \) set of primes raised to higher powers. Keep the special prime and the powers of 3 separate.
Lemma

Let a and b be distinct odd primes and p a prime such that $p|(a^2 + a + 1)$ and $p|(b^2 + b + 1)$. If $a \equiv b \equiv 2 \pmod{3}$, then $p \leq \frac{a+b+1}{5}$. If $a \equiv b \equiv 1 \pmod{3}$, then $p \leq \frac{a+b+1}{3}$.

Forces a large set of distinct primes from S.
Define a Triple Threat as a quadruplet of primes \((x, a, b, c)\) with \(\sigma(a^2), \sigma(b^2)\) and \(\sigma(c^2)\) also prime and

\[
\sigma(x^2) = \sigma(a^2)\sigma(b^2)\sigma(c^2).
\]
Define a Triple Threat as a quadruplet of primes \((x, a, b, c)\) with
\[\sigma(a^2), \sigma(b^2), \sigma(c^2)\] also prime and
\[\sigma(x^2) = \sigma(a^2)\sigma(b^2)\sigma(c^2).\]

We expect that no Triple Threats exist.
Define a Triple Threat as a quadruplet of primes \((x, a, b, c)\) with
\[\sigma(a^2), \sigma(b^2)\] \text{ and } \sigma(c^2) \text{ also prime and}
\[\sigma(x^2) = \sigma(a^2)\sigma(b^2)\sigma(c^2).\]

We expect that no Triple Threats exist. We have:

Lemma

No triple threat exists with \(x \equiv a \equiv 1 \pmod{5}\).

Combine this with many primes in \(S\) being \(1 \pmod{5}\).
Define a Triple Threat as a quadruplet of primes \((x, a, b, c)\) with
\[\sigma(a^2), \sigma(b^2)\] and \(\sigma(c^2)\) also prime and
\[\sigma(x^2) = \sigma(a^2)\sigma(b^2)\sigma(c^2).\]

We expect that no Triple Threats exist. We have:

Lemma

No triple threat exists with \(x \equiv a \equiv 1 \pmod{5}\).

Combine this with many primes in \(S\) being \(1 \pmod{5}\).

Primes in \(T\) contribute a lot or we have a lot of info about the primes: Set \(g(x) = x^4 + x^3 + x^2 + x + 1,\) \(f(x) = x^2 + x + 1.\) Then
\[f(g(x)) = (x^2 - x + 1)(x^6 + 3x^5 + 5x^4 + 6x^3 + 7x^2 + 6x + 3).\]
Conjecture

Let p and q be distinct odd primes and let $\Phi_p(x)$ and $\Phi_q(x)$ be the pth and qth cyclotomic polynomials. Then aside from a finite set of exceptions, at least one of $\Phi_p(\Phi_q(x))$ or $\Phi_q(\Phi_p(x))$ is irreducible.
Conjecture

Let p and q be distinct odd primes and let $\Phi_p(x)$ and $\Phi_q(x)$ be the pth and qth cyclotomic polynomials. Then aside from a finite set of exceptions, at least one of $\Phi_p(\Phi_q(x))$ or $\Phi_q(\Phi_p(x))$ is irreducible.

- Call an ordered pair of positive integers (m, n) a good pair if $\Phi_m(\Phi_n(x))$ factors over the integers where Φ_m and Φ_n are the mth and nth cyclotomic polynomials. Let $D(t)$ count the number of good pairs with both $m \leq t$ and $n \leq t$.

Conjecture

$$\lim_{t \to \infty} \frac{D(t)}{t^2} = 0.$$
Future work

- Tightening up the main theorem.
Future work

- Tightening up the main theorem.
- Can we restrict triple threats more?
Future work

- Tightening up the main theorem.
- Can we restrict triple threats more?
- Understanding cyclotomic polynomial composition.
Future work

- Tightening up the main theorem.
- Can we restrict triple threats more?
- Understanding cyclotomic polynomial composition.
- Generalizing these results (Multiply perfect numbers, Ore harmonic numbers).
Future work

- Tightening up the main theorem.
- Can we restrict triple threats more?
- Understanding cyclotomic polynomial composition.
- Generalizing these results (Multiply perfect numbers, Ore harmonic numbers).
- Can we get a better than linear inequality?
Acknowledgments

- Pascal Ochem, Maria Stadnik, Aaron “Bernie” Silberstein, Glenn Stevens