On the total number of prime factors of an odd perfect number

Joshua Zelinsky
Hopkins School
zelinsky@gmail.com

October 5, 2019

- A number is perfect if $\sigma(n)=2 n$ e.g. $n=6$, or $n=28$.
- A number is perfect if $\sigma(n)=2 n$ e.g. $n=6$, or $n=28$.
- Is there an odd N such that $\sigma(N)=2 N$?
- Throughout this talk N will denote an odd perfect number.

What is known?

- $N=q^{e} m^{2},(m, q)=1, q \equiv e \equiv 1(\bmod 4)$. (Euler)

What is known?

- $N=q^{e} m^{2},(m, q)=1, q \equiv e \equiv 1(\bmod 4)$. (Euler)
- $N>10^{1500}$. (Ochem, Rao)

What is known?

- $N=q^{e} m^{2},(m, q)=1, q \equiv e \equiv 1(\bmod 4)$. (Euler)
- $N>10^{1500}$. (Ochem, Rao)
- Write $\omega=\omega(N)$, and $\Omega=\Omega(N)$. Then:

What is known?

- $N=q^{e} m^{2},(m, q)=1, q \equiv e \equiv 1(\bmod 4)$. (Euler)
- $N>10^{1500}$. (Ochem, Rao)
- Write $\omega=\omega(N)$, and $\Omega=\Omega(N)$. Then:
- $N<2^{4^{\omega}}$ and $\omega \geq 10$. (Nielsen)

What is known?

- $N=q^{e} m^{2},(m, q)=1, q \equiv e \equiv 1(\bmod 4)$. (Euler)
- $N>10^{1500}$. (Ochem, Rao)
- Write $\omega=\omega(N)$, and $\Omega=\Omega(N)$. Then:
- $N<2^{4^{\omega}}$ and $\omega \geq 10$. (Nielsen)
- From Euler's result, one has $\Omega \geq 2 \omega-1$.
- From Euler's result, one has $\Omega \geq 2 \omega-1$.
- Ochem and Rao showed $\Omega \geq \frac{18 \omega-31}{7}$. Can we do better?
- From Euler's result, one has $\Omega \geq 2 \omega-1$.
- Ochem and Rao showed $\Omega \geq \frac{18 \omega-31}{7}$. Can we do better?

Theorem

(Z.) If N is an odd perfect number with $3 \backslash N$, then

$$
\begin{equation*}
\Omega \geq \frac{302}{113} \omega-\frac{286}{133} \tag{1}
\end{equation*}
$$

If N is an odd perfect number, with $3 \mid N$, then

$$
\begin{equation*}
\Omega \geq \frac{66}{25} \omega-5 . \tag{2}
\end{equation*}
$$

Foundations

- $\sigma(n)$ is multiplicative and $\sigma\left(p^{k}\right)=\frac{p^{k+1}-1}{p-1}$.

Foundations

- $\sigma(n)$ is multiplicative and $\sigma\left(p^{k}\right)=\frac{p^{k+1}-1}{p-1}$.
- $x^{k}-1$ factors as the product of cyclotomic polynomials:

$$
x^{k}-1=\prod_{d \mid k} \Phi_{d}(x)
$$

Foundations

- $\sigma(n)$ is multiplicative and $\sigma\left(p^{k}\right)=\frac{p^{k+1}-1}{p-1}$.
- $x^{k}-1$ factors as the product of cyclotomic polynomials:

$$
x^{k}-1=\prod_{d \mid k} \Phi_{d}(x)
$$

- Euler's result follows immediately from considering what happens $\bmod 4$.

Foundations

- $\sigma(n)$ is multiplicative and $\sigma\left(p^{k}\right)=\frac{p^{k+1}-1}{p-1}$.
- $x^{k}-1$ factors as the product of cyclotomic polynomials:

$$
x^{k}-1=\prod_{d \mid k} \Phi_{d}(x)
$$

- Euler's result follows immediately from considering what happens mod 4.
- $\sigma\left(p^{2}\right)=p^{2}+p+1$, and $\sigma\left(p^{4}\right)=p^{4}+p^{3}+p^{2}+p+1$.

Foundations

- $\sigma(n)$ is multiplicative and $\sigma\left(p^{k}\right)=\frac{p^{k+1}-1}{p-1}$.
- $x^{k}-1$ factors as the product of cyclotomic polynomials:

$$
x^{k}-1=\prod_{d \mid k} \Phi_{d}(x)
$$

- Euler's result follows immediately from considering what happens mod 4.
- $\sigma\left(p^{2}\right)=p^{2}+p+1$, and $\sigma\left(p^{4}\right)=p^{4}+p^{3}+p^{2}+p+1$.
- If $p \mid n^{2}+n+1$, then $p \equiv 1(\bmod 3)$ or $p=3$. Similar statement for $p \mid n^{4}+n^{3}+n^{2}+n+1$.

Central ingredients to Ochem and Rao

- Key insight: Either we have many copies of 3 in the factorization, or we have many primes raised to a power greater than 2.
- Use a system of linear inequalities on the number of prime factors.
- If $p \equiv 1(\bmod 3)$, then $3 \mid \sigma\left(p^{2}\right)$.

Central ingredients to Ochem and Rao

- Key insight: Either we have many copies of 3 in the factorization, or we have many primes raised to a power greater than 2 .
- Use a system of linear inequalities on the number of prime factors.
- If $p \equiv 1(\bmod 3)$, then $3 \mid \sigma\left(p^{2}\right)$.
- If $p^{2} \| N$, and $q \mid \sigma\left(p^{2}\right)$, then either $q^{4} \mid N$ or q contributes a 3 .

Lemma (Ochem and Rao)

Let p, q and r be positive integers. If $p^{2}+p+1=r$ and $q^{2}+q+1=3 r$, then p is not an odd prime.

- Look at number of primes in S (set of primes of N which are raised to the second power), and the number of primes in T (set of primes which are raised to the fourth power), and U set of primes raised to higher powers. Keep the special prime and the powers of 3 separate.

Additional ingredients

Lemma

Let a and b be distinct odd primes and p a prime such that $p \mid\left(a^{2}+a+1\right)$ and $p \mid\left(b^{2}+b+1\right)$. If $a \equiv b \equiv 2(\bmod 3)$, then $p \leq \frac{a+b+1}{5}$. If $a \equiv b \equiv 1$ $(\bmod 3)$, then $p \leq \frac{a+b+1}{3}$.

Forces a large set of distinct primes from S.

Major obstruction

- Define a Triple Threat as a quadruplet of primes (x, a, b, c) with $\sigma\left(a^{2}\right), \sigma\left(b^{2}\right)$ and $\sigma\left(c^{2}\right)$ also prime and

$$
\sigma\left(x^{2}\right)=\sigma\left(a^{2}\right) \sigma\left(b^{2}\right) \sigma\left(c^{2}\right)
$$

Major obstruction

- Define a Triple Threat as a quadruplet of primes (x, a, b, c) with $\sigma\left(a^{2}\right), \sigma\left(b^{2}\right)$ and $\sigma\left(c^{2}\right)$ also prime and

$$
\sigma\left(x^{2}\right)=\sigma\left(a^{2}\right) \sigma\left(b^{2}\right) \sigma\left(c^{2}\right)
$$

- We expect that no Triple Threats exist.

Major obstruction

- Define a Triple Threat as a quadruplet of primes (x, a, b, c) with $\sigma\left(a^{2}\right), \sigma\left(b^{2}\right)$ and $\sigma\left(c^{2}\right)$ also prime and

$$
\sigma\left(x^{2}\right)=\sigma\left(a^{2}\right) \sigma\left(b^{2}\right) \sigma\left(c^{2}\right)
$$

- We expect that no Triple Threats exist. We have:

Lemma

No triple threat exists with $x \equiv a \equiv 1(\bmod 5)$.

- Combine this with many primes in S being $1(\bmod 5)$.

Major obstruction

- Define a Triple Threat as a quadruplet of primes (x, a, b, c) with $\sigma\left(a^{2}\right), \sigma\left(b^{2}\right)$ and $\sigma\left(c^{2}\right)$ also prime and

$$
\sigma\left(x^{2}\right)=\sigma\left(a^{2}\right) \sigma\left(b^{2}\right) \sigma\left(c^{2}\right)
$$

- We expect that no Triple Threats exist. We have:

Lemma

No triple threat exists with $x \equiv a \equiv 1(\bmod 5)$.

- Combine this with many primes in S being $1(\bmod 5)$.
- Primes in T contribute a lot or we have a lot of info about the primes: Set $g(x)=x^{4}+x^{3}+x^{2}+x+1, f(x)=x^{2}+x+1$. Then $f(g(x))=\left(x^{2}-x+1\right)\left(x^{6}+3 x^{5}+5 x^{4}+6 x^{3}+7 x^{2}+6 x+3\right)$.

Did we get lucky?

Conjecture

Let p and q be distinct odd primes and let $\Phi_{p}(x)$ and $\Phi_{q}(x)$ be the pth and qth cyclotomic polynomials. Then aside from a finite set of exceptions, at least one of $\Phi_{p}\left(\Phi_{q}(x)\right)$ or $\Phi_{q}\left(\Phi_{p}(x)\right)$ is irreducible.

Did we get lucky?

Conjecture

Let p and q be distinct odd primes and let $\Phi_{p}(x)$ and $\Phi_{q}(x)$ be the pth and qth cyclotomic polynomials. Then aside from a finite set of exceptions, at least one of $\Phi_{p}\left(\Phi_{q}(x)\right)$ or $\Phi_{q}\left(\Phi_{p}(x)\right)$ is irreducible.

- Call an ordered pair of positive integers (m, n) a good pair if $\Phi_{m}\left(\Phi_{n}(x)\right)$ factors over the integers where Φ_{m} and Φ_{n} are the m th and nth cyclotomic polynomials. Let $D(t)$ count the number of good pairs with both $m \leq t$ and $n \leq t$.

Conjecture

$$
\lim _{t \rightarrow \infty} \frac{D(t)}{t^{2}}=0
$$

Future work

- Tightening up the main theorem.

Future work

- Tightening up the main theorem.
- Can we restrict triple threats more?

Future work

- Tightening up the main theorem.
- Can we restrict triple threats more?
- Understanding cyclotomic polynomial composition.

Future work

- Tightening up the main theorem.
- Can we restrict triple threats more?
- Understanding cyclotomic polynomial composition.
- Generalizing these results (Multiply perfect numbers, Ore harmonic numbers).

Future work

- Tightening up the main theorem.
- Can we restrict triple threats more?
- Understanding cyclotomic polynomial composition.
- Generalizing these results (Multiply perfect numbers, Ore harmonic numbers).
- Can we get a better than linear inequality?

Acknowledgments

- Pascal Ochem, Maria Stadnik, Aaron "Bernie" Silberstein, Glenn Stevens

