On the total number of prime factors

of an odd perfect number

Joshua Zelinsky

Hopkins School

zelinsky@gmail.com

October 5, 2019

Joshua Zelinsky Odd perfect numbers October 5, 2019 1/11



@ A number is perfect if o(n) =2ne.g. n=26, or n=28.
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@ A number is perfect if o(n) =2ne.g. n=26, or n=28.
o Is there an odd N such that o(N) = 2N?
@ Throughout this talk N will denote an odd perfect number.
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o N=g*m? (m,q)=1,g=e=1 (mod 4). (Euler)
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o N=g*m? (m,q)=1,g=e=1 (mod 4). (Euler)
o N > 10%%_ (Ochem, Rao)
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o N=g*m? (m,q)=1,g=e=1 (mod 4). (Euler)
o N > 10%%_ (Ochem, Rao)
o Write w = w(N), and Q = Q(N). Then:
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o N=g*m? (m,q)=1,g=e=1 (mod 4). (Euler)
o N > 10%%_ (Ochem, Rao)

o Write w = w(N), and Q = Q(N). Then:

o N < 2% and w > 10. (Nielsen)
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@ From Euler’s result, one has Q > 2w — 1.
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@ From Euler’s result, one has Q > 2w — 1.
@ Ochem and Rao showed 2 > M. Can we do better?

Joshua Zelinsky Odd perfect numbers October 5, 2019 4/11



@ From Euler’s result, one has Q > 2w — 1.
@ Ochem and Rao showed 2 > M. Can we do better?

Theorem
(Z.) If N is an odd perfect number with 3 fN, then

302 286
>ty — =
2 173% " 133 (1)

If N is an odd perfect number, with 3|N, then

66
> —w — 5.
Q> T 5 (2)
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Foundations

e o(n) is multiplicative and o(p¥) = %
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_ pi-1
S

@ xk —1 factors as the product of cyclotomic polynomials:

xk 1= H¢d(X)-

d|k

e o(n) is multiplicative and o(p)
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k+171
p—1 -
@ xk —1 factors as the product of cyclotomic polynomials:

xk 1= H¢d(X)-

d|k

e o(n) is multiplicative and o(p¥) = 2

@ Euler’s result follows immediately from considering what happens
mod 4.
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k+171
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@ xk —1 factors as the product of cyclotomic polynomials:

xk 1= H¢d(X)-

d|k

e o(n) is multiplicative and o(p¥) = 2

@ Euler’s result follows immediately from considering what happens
mod 4.

o o(p?)=p*+p+1ando(p*) =p* +p>+p*+p+ 1
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k+171
p—1 -
@ xk —1 factors as the product of cyclotomic polynomials:

xk 1= H¢d(X)-

d|k

e o(n) is multiplicative and o(p¥) = 2

@ Euler’s result follows immediately from considering what happens
mod 4.

o o(p?)=p*+p+1ando(p*) =p* +p>+p*+p+ 1
o If p|n> + n+1, then p =1 (mod 3) or p = 3. Similar statement for
pln* +n®+n?+n+1.

Joshua Zelinsky Odd perfect numbers October 5, 2019 5/11



Central ingredients to Ochem and Rao

o Key insight: Either we have many copies of 3 in the factorization, or
we have many primes raised to a power greater than 2.

@ Use a system of linear inequalities on the number of prime factors.
o If p=1 (mod 3), then 3|o(p?).
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Central ingredients to Ochem and Rao

o Key insight: Either we have many copies of 3 in the factorization, or
we have many primes raised to a power greater than 2.

@ Use a system of linear inequalities on the number of prime factors.
o If p=1 (mod 3), then 3|o(p?).
o If p?||N, and g|o(p?), then either g*|N or g contributes a 3.

Lemma (Ochem and Rao)

Let p, g and r be positive integers. If p> +p+1=r and g°> + q+1 = 3r,
then p is not an odd prime.

@ Look at number of primes in S (set of primes of N which are raised to
the second power), and the number of primes in T (set of primes
which are raised to the fourth power), and U set of primes raised to
higher powers. Keep the special prime and the powers of 3 separate.
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Additional ingredients

Let a and b be distinct odd primes and p a prime such that p|(a® + a+ 1)
and p|(b?> + b+1). fa=b=2 (mod 3), then p < ZE*L jfa=h=1
(mod 3), then p < a+—i3’+1.

Forces a large set of distinct primes from S.
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Major obstruction

e Define a Triple Threat as a quadruplet of primes (x, a, b, ¢) with
o(a?), o(b?) and o(c?) also prime and

o(x?) = o(a®)o(b?)o(c?).
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e Define a Triple Threat as a quadruplet of primes (x, a, b, ¢) with
o(a?), o(b?) and o(c?) also prime and

o(x?) = o(a®)o(b?)o(c?).

@ We expect that no Triple Threats exist.
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Major obstruction

e Define a Triple Threat as a quadruplet of primes (x, a, b, ¢) with
o(a?), o(b?) and o(c?) also prime and

o(x?) = o(a®)o(b?)o(c?).

@ We expect that no Triple Threats exist. We have:

No triple threat exists with x = a=1 (mod 5). l

@ Combine this with many primes in S being 1 (mod 5).
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Major obstruction

e Define a Triple Threat as a quadruplet of primes (x, a, b, ¢) with
o(a?), o(b?) and o(c?) also prime and

o(x?) = o(a®)o(b?)o(c?).

@ We expect that no Triple Threats exist. We have:

No triple threat exists with x = a=1 (mod 5). \

@ Combine this with many primes in S being 1 (mod 5).

@ Primes in T contribute a lot or we have a lot of info about the
primes: Set g(x) = x* +x3+x2 + x+ 1, f(x) = x>+ x+ 1. Then
f(g(x)) = (x® — x + 1)(x® + 3x% + 5x* + 6x3 + 7x% + 6x + 3).
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Did we get lucky?

Let p and q be distinct odd primes and let ®,(x) and ®4(x) be the pth
and qth cyclotomic polynomials. Then aside from a finite set of
exceptions, at least one of ®,(Pq4(x)) or Pg(P,y(x)) is irreducible.
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Did we get lucky?

Let p and q be distinct odd primes and let ®,(x) and ®4(x) be the pth
and qth cyclotomic polynomials. Then aside from a finite set of
exceptions, at least one of ®,(Pq4(x)) or Pg(P,y(x)) is irreducible.

o Call an ordered pair of positive integers (m, n) a good pair if
&, (Pp(x)) factors over the integers where @, and @, are the mth
and nth cyclotomic polynomials. Let D(t) count the number of good
pairs with both m <t and n < t.

lim o)

t—00 t2

=0.
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Future work

o Tightening up the main theorem.
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o Tightening up the main theorem.

@ Can we restrict triple threats more?
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@ Tightening up the main theorem.
@ Can we restrict triple threats more?

@ Understanding cyclotomic polynomial composition.
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Tightening up the main theorem.
Can we restrict triple threats more?

Understanding cyclotomic polynomial composition.

Generalizing these results (Multiply perfect numbers, Ore harmonic
numbers).
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@ Tightening up the main theorem.

@ Can we restrict triple threats more?

@ Understanding cyclotomic polynomial composition.

@ Generalizing these results (Multiply perfect numbers, Ore harmonic
numbers).

@ Can we get a better than linear inequality?
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