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The Euler characteristic

X compact complex manifold, F holomorphic vector
bundle.

Euler characteristic χ (X,F ) =
∑

(−1)i dim H i (X,F ).

g holomorphic map X → X lifting to F , acts on
H (X,F ).

Lefschetz number L (g) = Trs
H(X,F ) [g].
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The Riemann-Roch and Lefschetz formulas

RR-Hirzebruch: χ (X,F ) =
∫
X

Td (TX) ch (F ).

Lefschetz-RR: L (g) =
∫
Xg

Tdg (TX) chg (F )

Proof based on a suitable deformation (normal cone,
embeddings . . . )
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Selberg’s explicit trace formula

X Riemann surface of constant scalar curvature −2, lγ
length of closed geodesics γ.

Tr
[
exp

(
t∆X/2

)]︸ ︷︷ ︸
Laplacian

=
exp (−t/8)

2πt
Vol (X)︸ ︷︷ ︸

geodesic flow

∫
R

exp
(
−y2/2t

) y/2

sinh (y/2)

dy√
2πt

+
∑
γ 6=0

Volγ√
2πt

exp
(
−`2

γ/2t− t/8
)

2 sinh (`γ/2)
.

• Explicit evaluation of orbital integrals.
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Selberg’s explicit formula as a local formula

The left-hand side is global, the right-hand side is
‘local’.

The formula in the right-hand side looks like
Riemann-Roch.

1 Is Selberg explicit formula a Riemann-Roch formula ?

2 Is there a global-local deformation principle?
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Geodesics
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A reductive Lie group

G reductive Lie group, K maximal compact.

g = p⊕ k Cartan splitting.

B invariant bilinear form > 0 on p, < 0 on k.

X = G/K symmetric space, Riemannian with
curvature ≤ 0.

Example

G = SL2 (R), K = S1, X upper half-plane.
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A locally symmetric space

Γ ⊂ G torsion free discrete subgroup.

Z = Γ \X compact locally symmetric space.

pZt , p
X
t smooth heat kernels on X,Z.

Selberg: TrC
∞(Z,R)

[
et∆

Z/2
]

=
∑

[γ] Vol[γ]Tr[γ]
[
pXt
]
.

Tr[γ]
[
pXt
]

orbital integral.

Tr[γ]
[
pXt
]

=
∫
Z(γ)\G p

X
t (g−1γg) dg.

Orbital integrals considered as generalized Euler
characteristic.

Will be computed explicitly by Riemann-Roch formula.
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More general orbital integrals

Cg Casimir operator on G generalized Laplacian.

ρ : K → Aut (E) representation, descends to vector
bundle F on X.

Cg acts as Cg,X on C∞ (X,F ).

For t > 0, Tr[γ]
[
exp

(
−tCg,X/2

)]
orbital integral for

heat kernel on C∞ (X,F ).
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Semisimple orbital integrals

Theorem (B. 2011)

There is an explicit function Jγ
(
Y k

0

)
, Y k

0 ∈ ik (γ), such that

Tr[γ]
[
exp

(
−t
(
Cg,X − c

)
/2
)]

=
exp

(
− |a|2 /2t

)
(2πt)p/2∫

ik(γ)

Jγ
(
Y k

0

)
Tr
[
ρE
(
k−1e−Y

k
0

)]
exp

(
−
∣∣Y k

0

∣∣2 /2t) dY k
0

(2πt)q/2
.

Note the integral on ik (γ). . .
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The function Jγ
(
Y k

0

)
, Y k

0 ∈ ik (γ)

Definition

Jγ
(
Y k

0

)
=

1∣∣∣det (1− Ad (γ)) |z⊥0
∣∣∣1/2

Â
(
ad
(
Y k

0

)
|p(γ)

)
Â
(

ad
(
Y k

0

)
k(γ)

)
[

1

det (1− Ad (k−1)) |z⊥0 (γ)

det
(

1− Ad
(
k−1e−Y

k
0

))
|k⊥0 (γ)

det
(
1− Ad

(
k−1e−Y

k
0

))
|p⊥0 (γ)

]1/2

.
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Applications

In work with Shu SHEN, we extended our formula to
arbitrary elements of the center of the enveloping
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Harish-Chandra had obtained non-explicit formulas in
terms of Cartan subalgebras.
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and “automorphic Riemann-Roch”.
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The heat equation method for Riemann-Roch

X compact complex, F holomorphic vector bundle.(
Ω0,• (X,F ) , ∂

X
)

Dolbeault complex, cohomology

H• (X,F ).

gTX Kähler metric, ∂
X∗

adjoint of ∂
X

, DX = ∂
X

+ ∂
X∗

Dirac operator.

DX,2 =
[
∂
X
, ∂

X∗
]

Hodge Laplacian.

McKean-Singer: For any s > 0,
L (g) = Trs

[
g exp

(
−sDX,2

)]
.

•L (g) |s=+∞︸ ︷︷ ︸
global

Trs[g exp(−sDX,2)]|s>0

−−−−−−−−−−−−→ Fixed point formula︸ ︷︷ ︸
local

|s=0.
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The heat operator of X

X compact Riemannian manifold.

∆X Laplacian on X.

For t > 0, g = exp
(
t∆X/2

)
heat operator acting on

C∞ (X,R).
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Is TrC
∞(X,R) [g] an Euler characteristic?

1 Can I find a resolution C∞ (X,R) by a complex (R, d)?

2 Does (R, d) have a Hodge theory?

3 Does the heat kernel g lift to (R, d)?

4 Can I write a formula of the type

TrC
∞(X,R) [g] = Trs

R
[
g exp

(
−D2

R,b/2
)]
.

5 By making b→ +∞, do we obtain Selberg’s trace
formula ?

6 Is Selberg’s trace formula a Lefschetz formula?
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The analogy

L (g) |s=+∞︸ ︷︷ ︸
global

Trs[g exp(−sDX,2)]|s>0

−−−−−−−−−−−−→ Fixed point formula︸ ︷︷ ︸
local

|s=0.

TrC
∞(X,R) [g]b=0︸ ︷︷ ︸

global

Trs[g exp(−DR,2
b )]|b>0

−−−−−−−−−−−−→ Selberg t.f.|b=+∞︸ ︷︷ ︸
local via closed geodesics

.
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1. Finding a resolution of C∞ (X,R)

Is C∞ (X,R) the cohomology of ‘some complex’ ?

E real vector bundle on X.

R =
(
Ω• (E) , dE

)
fibrewise de Rham complex.

By Poincaré lemma, cohomology is equal to
C∞ (X,R).
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2. Does the resolution have a Hodge theory?

(
E, gE

)
real Euclidean vector bundle.

Standard Laplacian on fibers of E has continuous
spectrum.

If Y tautological section of E on E , use instead the
volume exp

(
− |Y |2

)
dY .

The corresponding fiberwise Laplacian is a harmonic
oscillator, has discrete spectrum, and Hodge theory
holds.

The function 1 on E is L2 and fiberwise harmonic.
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3. Does g lift to a morphism of complexes?

exp
(
t∆X/2

)
morphism of

(
Ω• (E,R) , dE

)
?

∆X should lift and commute with dE.

In general, the answer is no!

On locally symmetric spaces, the Casimir restricts to
∆X , lifts to everything, and commutes with everything.

E should be related to TX . . .

. . . since we look for closed geodesics.
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Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

3. Does g lift to a morphism of complexes?

exp
(
t∆X/2

)
morphism of

(
Ω• (E,R) , dE

)
?

∆X should lift and commute with dE.

In general, the answer is no!

On locally symmetric spaces, the Casimir restricts to
∆X , lifts to everything, and commutes with everything.

E should be related to TX . . .

. . . since we look for closed geodesics.

Jean-Michel Bismut Riemann-Roch and the trace formula 22 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

3. Does g lift to a morphism of complexes?

exp
(
t∆X/2

)
morphism of

(
Ω• (E,R) , dE

)
?

∆X should lift and commute with dE.

In general, the answer is no!

On locally symmetric spaces, the Casimir restricts to
∆X , lifts to everything, and commutes with everything.

E should be related to TX . . .

. . . since we look for closed geodesics.

Jean-Michel Bismut Riemann-Roch and the trace formula 22 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

3. Does g lift to a morphism of complexes?

exp
(
t∆X/2

)
morphism of

(
Ω• (E,R) , dE

)
?

∆X should lift and commute with dE.

In general, the answer is no!

On locally symmetric spaces, the Casimir restricts to
∆X , lifts to everything, and commutes with everything.

E should be related to TX . . .

. . . since we look for closed geodesics.

Jean-Michel Bismut Riemann-Roch and the trace formula 22 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

3. Does g lift to a morphism of complexes?

exp
(
t∆X/2

)
morphism of

(
Ω• (E,R) , dE

)
?

∆X should lift and commute with dE.

In general, the answer is no!

On locally symmetric spaces, the Casimir restricts to
∆X , lifts to everything, and commutes with everything.

E should be related to TX . . .

. . . since we look for closed geodesics.

Jean-Michel Bismut Riemann-Roch and the trace formula 22 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

3. Does g lift to a morphism of complexes?

exp
(
t∆X/2

)
morphism of

(
Ω• (E,R) , dE

)
?

∆X should lift and commute with dE.

In general, the answer is no!

On locally symmetric spaces, the Casimir restricts to
∆X , lifts to everything, and commutes with everything.

E should be related to TX . . .

. . . since we look for closed geodesics.

Jean-Michel Bismut Riemann-Roch and the trace formula 22 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

3. Does g lift to a morphism of complexes?

exp
(
t∆X/2

)
morphism of

(
Ω• (E,R) , dE

)
?

∆X should lift and commute with dE.

In general, the answer is no!

On locally symmetric spaces, the Casimir restricts to
∆X , lifts to everything, and commutes with everything.

E should be related to TX . . .

. . . since we look for closed geodesics.

Jean-Michel Bismut Riemann-Roch and the trace formula 22 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

The case of symmetric spaces

G reductive Lie group, K maximal compact.

g = p⊕ k Cartan splitting of g equipped with bilinear
form B. . .

X = G/K symmetric space.

g = p⊕ k descends to bundle of Lie algebras TX ⊕N .

One should expect G× g to play an important role in the
construction.

Jean-Michel Bismut Riemann-Roch and the trace formula 23 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

The case of symmetric spaces

G reductive Lie group, K maximal compact.

g = p⊕ k Cartan splitting of g equipped with bilinear
form B. . .

X = G/K symmetric space.

g = p⊕ k descends to bundle of Lie algebras TX ⊕N .

One should expect G× g to play an important role in the
construction.

Jean-Michel Bismut Riemann-Roch and the trace formula 23 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

The case of symmetric spaces

G reductive Lie group, K maximal compact.

g = p⊕ k Cartan splitting of g equipped with bilinear
form B. . .

X = G/K symmetric space.

g = p⊕ k descends to bundle of Lie algebras TX ⊕N .

One should expect G× g to play an important role in the
construction.

Jean-Michel Bismut Riemann-Roch and the trace formula 23 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

The case of symmetric spaces

G reductive Lie group, K maximal compact.

g = p⊕ k Cartan splitting of g equipped with bilinear
form B. . .

X = G/K symmetric space.

g = p⊕ k descends to bundle of Lie algebras TX ⊕N .

One should expect G× g to play an important role in the
construction.

Jean-Michel Bismut Riemann-Roch and the trace formula 23 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

The case of symmetric spaces

G reductive Lie group, K maximal compact.

g = p⊕ k Cartan splitting of g equipped with bilinear
form B. . .

X = G/K symmetric space.

g = p⊕ k descends to bundle of Lie algebras TX ⊕N .

One should expect G× g to play an important role in the
construction.

Jean-Michel Bismut Riemann-Roch and the trace formula 23 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

Jean-Michel Bismut Riemann-Roch and the trace formula 24 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

The algebraic de Rham complex on g

A (g∗) = Λ (g∗)⊗ S (g∗) polynomial forms on g.

(A (g∗) , dg) de Rham complex, dg =
∑
ei ⊗∇ei .

Y section of g, iY =
∑
iei ⊗ ei.

For any nondegenerate symmetric form on g, dg,∗ = iY .

[dg, iY ] = NA(g∗), (dg + iY )2 = NA(g∗).

(A (g∗) , dg) resolution of R (algebraic Poincaré
lemma).
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lemma).

Jean-Michel Bismut Riemann-Roch and the trace formula 25 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

The algebraic de Rham complex on g

A (g∗) = Λ (g∗)⊗ S (g∗) polynomial forms on g.

(A (g∗) , dg) de Rham complex, dg =
∑
ei ⊗∇ei .

Y section of g, iY =
∑
iei ⊗ ei.

For any nondegenerate symmetric form on g, dg,∗ = iY .

[dg, iY ] = NA(g∗), (dg + iY )2 = NA(g∗).

(A (g∗) , dg) resolution of R (algebraic Poincaré
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lemma).

Jean-Michel Bismut Riemann-Roch and the trace formula 25 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

The algebraic de Rham complex on g

A (g∗) = Λ (g∗)⊗ S (g∗) polynomial forms on g.

(A (g∗) , dg) de Rham complex, dg =
∑
ei ⊗∇ei .

Y section of g, iY =
∑
iei ⊗ ei.

For any nondegenerate symmetric form on g, dg,∗ = iY .

[dg, iY ] = NA(g∗), (dg + iY )2 = NA(g∗).

(A (g∗) , dg) resolution of R (algebraic Poincaré
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Casimir and Kostant on G

Cg = −
∑
e∗i ei Casimir (differential operator on G),

positive on p, negative on k.

ĉ (g) Clifford algebra of (g,−B) acts on Λ (g∗).

U (g) enveloping algebra (left-invariant differential
operators on G).

D̂Ko ∈ ĉ (g)⊗ U (g) Dirac operator of Kostant.

D̂Ko = ĉ (e∗i ) ei + 1
2
ĉ (−κg).
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D̂Ko ∈ ĉ (g)⊗ U (g) Dirac operator of Kostant.
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ĉ (−κg).

Jean-Michel Bismut Riemann-Roch and the trace formula 26 / 40



Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals

Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

A formula of Kostant

Theorem (Kostant)

D̂Ko,2 = −Cg +B∗ (ρg, ρg) .

Remark

•D̂Ko acts on C∞ (G,R)⊗ Λ (g∗), while Cg acts on
C∞ (G,R).
• Solution: tensor by S (g∗), and use the fact that
Λ (g∗)⊗ S (g∗) ' R.
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Reconciling G and g

dg + iY acts on Λ (g∗)⊗ S (g∗).

D̂Ko acts on C∞ (G,R)⊗ Λ (g∗).

For b > 0, Db = D̂Ko + 1
b

(dg + iY ) acts on
C∞ (G,R)⊗ S (g∗)⊗ Λ (g∗).

C∞ (G,R)⊗ S (g∗)⊗ Λ (g∗) ⊂ C∞ (G× g,R)⊗ Λ (g∗).
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Descending the constructions to X

The above objects are K-invariant.

g descend a flat bundle TX ⊕N of Lie algebras on X.

S (g∗)⊗ Λ (g∗) descends to fiberwise polynomial forms
on TX ⊕N .

Db descends to DX
b acting on

C∞ (X,S (T ∗X ⊕N∗)⊗ Λ (T ∗X ⊕N∗)⊗ F ).

S (T ∗X ⊕N∗)⊗ Λ (T ∗X ⊕N∗) infinite dimensional
vector bundle on X.
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Algebraic and smooth de Rham

Using bilinear form B, the commutation relations of
operators acting on S (g∗)

[
∂
∂Y i , Y

j
]

= δij. . .

. . . have representation in terms of operators acting on
L2, ∂

∂Y i → ∂
∂Y i , Y

j → − ∂
∂Y j + Y j.

Bargmann isomorphism, (A (g∗) , dg)→ (Ω• (g,R) , dg)
L2 de Rham complex with volume exp

(
− |Y |2

)
dY .
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The operator DX
b

X total space of TX ⊕N over X.

DX
b acts on C∞ (X , π∗ (Λ (T ∗X ⊕N∗)⊗ F )).

DX
b = D̂Ko,X︸ ︷︷ ︸

Kostant

+ic
([
Y k, Y p

])
+

1
b

(
dTX⊕N + Y ∧+dTX⊕N∗ + iY · · ·

)︸ ︷︷ ︸
de Rham−Witten

.

The quadratic term is related to the quotienting by K.
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The hypoelliptic Laplacian

Set LXb = 1
2

(
−D̂Ko,2 + DX,2

b

)
.

LXb = 1
2

(
−D̂Ko,2 + DX,2

b

)
acts on

C∞ (X , π̂∗Λ (T ∗X ⊕N∗)⊗ F ) .

Remark

Using the fiberwise Bargmann isomorphism, LXb acts on

C∞ (X,S (T ∗X ⊕N∗)⊗ Λ (T ∗X ⊕N∗)⊗ F ) .
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The hypoelliptic Laplacian as a deformation

LXb =
1

2

∣∣[Y N , Y TX
]∣∣2+

1

2b2

(
−∆TX⊕N + |Y |2 − n

)︸ ︷︷ ︸
Harmonic oscillator of TX⊕N

+
NΛ(T ∗X⊕N∗)

b2

+
1

b

(
∇Y TX︸ ︷︷ ︸

geodesic flow

+ĉ
(
ad
(
Y TX

))
−c
(
ad
(
Y TX

)
+ iθad

(
Y N
)))

.

Remark

LXb not self-adjoint, not elliptic, hypoelliptic (has heat
kernel).
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Three fundamental properties of the hypoelliptic

Laplacian (B. 2011)

1 • b→ 0, LXb → 1
2

(
Cg,X − c

)
: X collapses to X (B.

2011).
2 • b→ +∞, geodesic f. ∇Y TX dominates ⇒ closed

geodesics.
3 If γ ∈ G semisimple, for b > 0, t > 0,

Tr[γ]
[
exp

(
−t
(
Cg,X − c

)
/2
)]

= Trs
[γ]
[
exp

(
−tLXb

)]
.

Tr[γ]
[
exp

(
−tCg,X/2

)]
= Trs

[γ]
[
exp

(
−tCg,X/2

)
exp

(
−DX,2

b /2
)]
.
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The limit as b→ +∞

As b→ +∞,

LXb =
b4

2

∣∣[Y TX , Y N
]∣∣2 + b∇Y TX

+ . . .

.

∇Y TX
generator of geodesic flow ultimately dominates.

Forces orbital integral to localize on geodesics.

Gives explicit formula for orbital integrals.
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An interpolation property

LXb = 1
2b2

(
−∆V + |Y |2 − n

)
− ∇Y TX

b
+ . . ..

Interpolation by operators

−∆X/2|b=0

LXb |b>0

−−−−−−−−−−−−→ ∇Y TX |b=+∞.

Interpolation by dynamical systems

ẋ = ẇ︸ ︷︷ ︸
Brownian motion

|b=0

b2ẍ+ẋ=ẇ |b>0

−−−−−−−−−−−−→ ẍ = 0︸ ︷︷ ︸
geodesic

|b=+∞.
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ẋ = ẇ︸ ︷︷ ︸
Brownian motion

|b=0
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The Langevin equation

In 1908, on R3, Langevin introduced the Langevin
equation mẍ = −ẋ+ ẇ. . .

. . . to reconcile Brownian motion ẋ = ẇ and classical
mechanics: ẍ = 0.

In the theory of the hypoelliptic Laplacian, m = b2 is a
mass.

Welcome to Hodge theory with mass!
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