Riemann-Roch and the trace formula

Jean-Michel Bismut

Institut de Mathématique d'Orsay
Le 26 septembre 2020
2020 Québec-Maine Number Theory Conference
(1) Euler characteristic and heat equation
(2) Explicit formulas for semisimple orbital integrals
(3) Hypoelliptic Laplacian and orbital integrals
(4) Hypoelliptic Laplacian, math, and 'physics'

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The Euler characteristic

The Euler characteristic

- X compact complex manifold, F holomorphic vector bundle.

The Euler characteristic

- X compact complex manifold, F holomorphic vector bundle.
- Euler characteristic $\chi(X, F)=\sum(-1)^{i} \operatorname{dim} H^{i}(X, F)$.

The Euler characteristic

- X compact complex manifold, F holomorphic vector bundle.
- Euler characteristic $\chi(X, F)=\sum(-1)^{i} \operatorname{dim} H^{i}(X, F)$.
- g holomorphic map $X \rightarrow X$ lifting to F, acts on $H(X, F)$.

The Euler characteristic

- X compact complex manifold, F holomorphic vector bundle.
- Euler characteristic $\chi(X, F)=\sum(-1)^{i} \operatorname{dim} H^{i}(X, F)$.
- g holomorphic map $X \rightarrow X$ lifting to F, acts on $H(X, F)$.
- Lefschetz number $L(g)=\operatorname{Tr}_{\mathrm{s}}{ }^{H(X, F)}[g]$.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The Riemann-Roch and Lefschetz formulas

The Riemann-Roch and Lefschetz formulas

- RR-Hirzebruch: $\chi(X, F)=\int_{X} \operatorname{Td}(T X) \operatorname{ch}(F)$.

The Riemann-Roch and Lefschetz formulas

- RR-Hirzebruch: $\chi(X, F)=\int_{X} \operatorname{Td}(T X) \operatorname{ch}(F)$.
- Lefschetz-RR: $L(g)=\int_{X_{g}} \operatorname{Td}_{g}(T X) \operatorname{ch}_{g}(F)$

The Riemann-Roch and Lefschetz formulas

- RR-Hirzebruch: $\chi(X, F)=\int_{X} \operatorname{Td}(T X) \operatorname{ch}(F)$.
- Lefschetz-RR: $L(g)=\int_{X_{g}} \operatorname{Td}_{g}(T X) \operatorname{ch}_{g}(F)$
- Proof based on a suitable deformation (normal cone, embeddings ...)

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

Selberg's explicit trace formula

Selberg's explicit trace formula

- X Riemann surface of constant scalar curvature $-2, l_{\gamma}$ length of closed geodesics γ.

Selberg's explicit trace formula

- X Riemann surface of constant scalar curvature $-2, l_{\gamma}$ length of closed geodesics γ.

$$
\underbrace{\operatorname{Tr}\left[\exp \left(t \Delta^{X} / 2\right)\right]}_{\text {Laplacian }}=\underbrace{\frac{\exp (-t / 8)}{2 \pi t} \operatorname{Vol}(X)}_{\text {geodesic flow }}
$$

Selberg's explicit trace formula

- X Riemann surface of constant scalar curvature $-2, l_{\gamma}$ length of closed geodesics γ.

$$
\underbrace{\operatorname{Tr}\left[\exp \left(t \Delta^{X} / 2\right)\right]}_{\text {Laplacian }}=\underbrace{\frac{\exp (-t / 8)}{2 \pi t} \operatorname{Vol}(X)}_{\text {geodesic flow }}
$$

$$
\int_{\mathbf{R}} \exp \left(-y^{2} / 2 t\right) \frac{y / 2}{\sinh (y / 2)} \frac{d y}{\sqrt{2 \pi t}}
$$

Selberg's explicit trace formula

- X Riemann surface of constant scalar curvature $-2, l_{\gamma}$ length of closed geodesics γ.

$$
\begin{gathered}
\underbrace{\operatorname{Tr}\left[\exp \left(t \Delta^{X} / 2\right)\right]}_{\text {Laplacian }}=\underbrace{\frac{\exp (-t / 8)}{2 \pi t} \operatorname{Vol}(X)}_{\text {geodesic flow }} \\
\int_{\mathbf{R}} \exp \left(-y^{2} / 2 t\right) \frac{y / 2}{\sinh (y / 2)} \frac{d y}{\sqrt{2 \pi t}} \\
\quad+\sum_{\gamma \neq 0} \frac{\operatorname{Vol}_{\gamma}}{\sqrt{2 \pi t}} \frac{\exp \left(-\ell_{\gamma}^{2} / 2 t-t / 8\right)}{2 \sinh \left(\ell_{\gamma} / 2\right)} .
\end{gathered}
$$

Selberg's explicit trace formula

- X Riemann surface of constant scalar curvature $-2, l_{\gamma}$ length of closed geodesics γ.

$$
\begin{gathered}
\underbrace{\operatorname{Tr}\left[\exp \left(t \Delta^{X} / 2\right)\right]}_{\text {Laplacian }}=\underbrace{\frac{\exp (-t / 8)}{2 \pi t} \operatorname{Vol}(X)}_{\text {geodesic flow }} \\
\quad \int_{\mathbf{R}} \exp \left(-y^{2} / 2 t\right) \frac{y / 2}{\sinh (y / 2)} \frac{d y}{\sqrt{2 \pi t}} \\
\quad+\sum_{\gamma \neq 0} \frac{\operatorname{Vol}_{\gamma}}{\sqrt{2 \pi t}} \frac{\exp \left(-\ell_{\gamma}^{2} / 2 t-t / 8\right)}{2 \sinh \left(\ell_{\gamma} / 2\right)} .
\end{gathered}
$$

- Explicit evaluation of orbital integrals.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

Selberg's explicit formula as a local formula

Selberg's explicit formula as a local formula

- The left-hand side is global, the right-hand side is 'local'.

Selberg's explicit formula as a local formula

- The left-hand side is global, the right-hand side is 'local'.
- The formula in the right-hand side looks like Riemann-Roch.

Selberg's explicit formula as a local formula

- The left-hand side is global, the right-hand side is 'local'.
- The formula in the right-hand side looks like Riemann-Roch.
(1) Is Selberg explicit formula a Riemann-Roch formula ?

Selberg's explicit formula as a local formula

- The left-hand side is global, the right-hand side is 'local'.
- The formula in the right-hand side looks like Riemann-Roch.
(1) Is Selberg explicit formula a Riemann-Roch formula ?
(2) Is there a global-local deformation principle?

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

Geodesics

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

A reductive Lie group

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

A reductive Lie group

- G reductive Lie group, K maximal compact.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

A reductive Lie group

- G reductive Lie group, K maximal compact.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ Cartan splitting.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

A reductive Lie group

- G reductive Lie group, K maximal compact.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ Cartan splitting.
- B invariant bilinear form >0 on $\mathfrak{p},<0$ on \mathfrak{k}.

A reductive Lie group

- G reductive Lie group, K maximal compact.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ Cartan splitting.
- B invariant bilinear form >0 on $\mathfrak{p},<0$ on \mathfrak{k}.
- $X=G / K$ symmetric space, Riemannian with curvature ≤ 0.

A reductive Lie group

- G reductive Lie group, K maximal compact.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ Cartan splitting.
- B invariant bilinear form >0 on $\mathfrak{p},<0$ on \mathfrak{k}.
- $X=G / K$ symmetric space, Riemannian with curvature ≤ 0.

Example
 $G=\mathrm{SL}_{2}(\mathbf{R}), K=S^{1}, X$ upper half-plane.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

A locally symmetric space

A locally symmetric space

- $\Gamma \subset G$ torsion free discrete subgroup.

A locally symmetric space

- $\Gamma \subset G$ torsion free discrete subgroup.
- $Z=\Gamma \backslash X$ compact locally symmetric space.

A locally symmetric space

- $\Gamma \subset G$ torsion free discrete subgroup.
- $Z=\Gamma \backslash X$ compact locally symmetric space.
- p_{t}^{Z}, p_{t}^{X} smooth heat kernels on X, Z.

A locally symmetric space

- $\Gamma \subset G$ torsion free discrete subgroup.
- $Z=\Gamma \backslash X$ compact locally symmetric space.
- p_{t}^{Z}, p_{t}^{X} smooth heat kernels on X, Z.
- Selberg: $\operatorname{Tr}^{C^{\infty}(Z, \mathbf{R})}\left[e^{t \Delta^{Z} / 2}\right]=\sum_{[\gamma]} \operatorname{Vol}_{[\gamma]} \operatorname{Tr}^{[\gamma]}\left[p_{t}^{X}\right]$.

A locally symmetric space

- $\Gamma \subset G$ torsion free discrete subgroup.
- $Z=\Gamma \backslash X$ compact locally symmetric space.
- p_{t}^{Z}, p_{t}^{X} smooth heat kernels on X, Z.
- Selberg: $\operatorname{Tr}^{C^{\infty}(Z, \mathbf{R})}\left[e^{t \Delta^{Z} / 2}\right]=\sum_{[\gamma]} \operatorname{Vol}_{[\gamma]} \operatorname{Tr}^{[\gamma]}\left[p_{t}^{X}\right]$.
- $\operatorname{Tr}^{[\gamma]}\left[p_{t}^{X}\right]$ orbital integral.

A locally symmetric space

- $\Gamma \subset G$ torsion free discrete subgroup.
- $Z=\Gamma \backslash X$ compact locally symmetric space.
- p_{t}^{Z}, p_{t}^{X} smooth heat kernels on X, Z.
- Selberg: $\operatorname{Tr}^{C^{\infty}(Z, \mathbf{R})}\left[e^{t \Delta^{Z} / 2}\right]=\sum_{[\gamma]} \operatorname{Vol}_{[\gamma]} \operatorname{Tr}^{[\gamma]}\left[p_{t}^{X}\right]$.
- $\operatorname{Tr}^{[\gamma]}\left[p_{t}^{X}\right]$ orbital integral.
- $\operatorname{Tr}^{[\gamma]}\left[p_{t}^{X}\right]=\int_{Z(\gamma) \backslash G} p_{t}^{X}\left(g^{-1} \gamma g\right) d g$.

A locally symmetric space

- $\Gamma \subset G$ torsion free discrete subgroup.
- $Z=\Gamma \backslash X$ compact locally symmetric space.
- p_{t}^{Z}, p_{t}^{X} smooth heat kernels on X, Z.
- Selberg: $\operatorname{Tr}^{C^{\infty}(Z, \mathbf{R})}\left[e^{t \Delta^{Z} / 2}\right]=\sum_{[\gamma]} \operatorname{Vol}_{[\gamma]} \operatorname{Tr}^{[\gamma]}\left[p_{t}^{X}\right]$.
- $\operatorname{Tr}^{[\gamma]}\left[p_{t}^{X}\right]$ orbital integral.
- $\operatorname{Tr}^{[\gamma]}\left[p_{t}^{X}\right]=\int_{Z(\gamma) \backslash G} p_{t}^{X}\left(g^{-1} \gamma g\right) d g$.
- Orbital integrals considered as generalized Euler characteristic.

A locally symmetric space

- $\Gamma \subset G$ torsion free discrete subgroup.
- $Z=\Gamma \backslash X$ compact locally symmetric space.
- p_{t}^{Z}, p_{t}^{X} smooth heat kernels on X, Z.
- Selberg: $\operatorname{Tr}^{C^{\infty}(Z, \mathbf{R})}\left[e^{t \Delta^{Z} / 2}\right]=\sum_{[\gamma]} \operatorname{Vol}_{[\gamma]} \operatorname{Tr}^{[\gamma]}\left[p_{t}^{X}\right]$.
- $\operatorname{Tr}^{[\gamma]}\left[p_{t}^{X}\right]$ orbital integral.
- $\operatorname{Tr}^{[\gamma]}\left[p_{t}^{X}\right]=\int_{Z(\gamma) \backslash G} p_{t}^{X}\left(g^{-1} \gamma g\right) d g$.
- Orbital integrals considered as generalized Euler characteristic.
- Will be computed explicitly by Riemann-Roch formula.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

More general orbital integrals

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

More general orbital integrals

- $C^{\mathfrak{g}}$ Casimir operator on G generalized Laplacian.

More general orbital integrals

- $C^{\mathfrak{g}}$ Casimir operator on G generalized Laplacian.
- $\rho: K \rightarrow \operatorname{Aut}(E)$ representation, descends to vector bundle F on X.

More general orbital integrals

- $C^{\mathfrak{g}}$ Casimir operator on G generalized Laplacian.
- $\rho: K \rightarrow \operatorname{Aut}(E)$ representation, descends to vector bundle F on X.
- $C^{\mathfrak{g}}$ acts as $C^{\mathfrak{g}, X}$ on $C^{\infty}(X, F)$.

More general orbital integrals

- $C^{\mathfrak{g}}$ Casimir operator on G generalized Laplacian.
- $\rho: K \rightarrow$ Aut (E) representation, descends to vector bundle F on X.
- $C^{\mathfrak{g}}$ acts as $C^{\mathfrak{g}, X}$ on $C^{\infty}(X, F)$.
- For $t>0, \operatorname{Tr}^{[\gamma]}\left[\exp \left(-t C^{\mathfrak{g}, X} / 2\right)\right]$ orbital integral for heat kernel on $C^{\infty}(X, F)$.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The centralizer of γ

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The centralizer of γ

- $\gamma \in G$ semisimple, $\gamma=e^{a} k^{-1}, a \in \mathfrak{p}, k \in K$, $\operatorname{Ad}(k) a=a$.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The centralizer of γ

- $\gamma \in G$ semisimple, $\gamma=e^{a} k^{-1}, a \in \mathfrak{p}, k \in K$, $\operatorname{Ad}(k) a=a$.
- $Z(\gamma) \subset G$ centralizer of γ.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals

The centralizer of γ

- $\gamma \in G$ semisimple, $\gamma=e^{a} k^{-1}, a \in \mathfrak{p}, k \in K$, $\operatorname{Ad}(k) a=a$.
- $Z(\gamma) \subset G$ centralizer of γ.
- $Z(\gamma)$ reductive group, $\mathfrak{z}(\gamma)=\mathfrak{p}(\gamma) \oplus \mathfrak{k}(\gamma)$ Cartan splitting.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

Semisimple orbital integrals

Semisimple orbital integrals

Theorem (B. 2011)

There is an explicit function $\mathcal{J}_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right), Y_{0}^{\mathfrak{k}} \in i \mathfrak{k}(\gamma)$, such that

Semisimple orbital integrals

Theorem (B. 2011)

There is an explicit function $\mathcal{J}_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right), Y_{0}^{\mathfrak{k}} \in i \mathfrak{k}(\gamma)$, such that

$$
\begin{aligned}
& \operatorname{Tr}^{[\gamma]}\left[\exp \left(-t\left(C^{\mathfrak{q}, X}-c\right) / 2\right)\right]=\frac{\exp \left(-|a|^{2} / 2 t\right)}{(2 \pi t)^{p / 2}} \\
& \int_{i \mathfrak{k}(\gamma)} \mathcal{J}_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right) \operatorname{Tr}\left[\rho^{E}\left(k^{-1} e^{-Y_{0}^{\mathfrak{t}}}\right)\right] \\
& \exp \left(-\left|Y_{0}^{\mathfrak{k}}\right|^{2} / 2 t\right) \frac{d Y_{0}^{\mathfrak{k}}}{(2 \pi t)^{q / 2}}
\end{aligned}
$$

Semisimple orbital integrals

Theorem (B. 2011)

There is an explicit function $\mathcal{J}_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right), Y_{0}^{\mathfrak{k}} \in \mathfrak{i k}(\gamma)$, such that

$$
\begin{aligned}
& \operatorname{Tr}^{[\gamma]}\left[\exp \left(-t\left(C^{\mathfrak{q}, X}-c\right) / 2\right)\right]=\frac{\exp \left(-|a|^{2} / 2 t\right)}{(2 \pi t)^{p / 2}} \\
& \int_{i \mathfrak{k}(\gamma)} \mathcal{J}_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right) \operatorname{Tr}\left[\rho^{E}\left(k^{-1} e^{-Y_{0}^{\mathfrak{k}}}\right)\right] \\
& \exp \left(-\left|Y_{0}^{\mathfrak{k}}\right|^{2} / 2 t\right) \frac{d Y_{0}^{\mathfrak{k}}}{(2 \pi t)^{q / 2}}
\end{aligned}
$$

Note the integral on $\mathfrak{i k}(\gamma) \ldots$

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The function $\mathcal{J}_{\gamma}\left(Y_{0}^{\mathrm{t}}\right), Y_{0}^{\mathfrak{k}} \in \mathfrak{i k}(\gamma)$

The function $\mathcal{J}_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right), Y_{0}^{\mathfrak{k}} \in \mathfrak{i k}(\gamma)$

Definition

$$
\begin{aligned}
\mathcal{J}_{\gamma}\left(Y_{0}^{\mathfrak{t}}\right)= & \frac{1}{\left.|\operatorname{det}(1-\operatorname{Ad}(\gamma))|_{\mathfrak{z}_{0}^{\perp}}\right|^{1 / 2}} \frac{\widehat{A}\left(\left.\operatorname{ad}\left(Y_{0}^{\mathfrak{t}}\right)\right|_{\mathfrak{p}(\gamma)}\right)}{\widehat{A}\left(\operatorname{ad}\left(Y_{0}^{\mathfrak{t}}\right)_{\mathfrak{e}(\gamma)}\right)} \\
& {\left[\frac{1}{\left.\operatorname{det}\left(1-\operatorname{Ad}\left(k^{-1}\right)\right)\right|_{\mathfrak{z}_{\frac{1}{0}}^{\prime}(\gamma)}}\right.} \\
& \left.\frac{\left.\operatorname{det}\left(1-\operatorname{Ad}\left(k^{-1} e^{-Y_{0}^{\mathfrak{t}}}\right)\right)\right|_{\mathfrak{e}_{0}^{\perp}(\gamma)}}{\left.\operatorname{det}\left(1-\operatorname{Ad}\left(k^{-1} e^{-Y_{0}^{\mathfrak{t}}}\right)\right)\right|_{\mathfrak{p}_{0}^{\perp}(\gamma)} ^{1 / 2}}\right]^{1 / 2} .
\end{aligned}
$$

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

Applications

Applications

- In work with Shu SHEN, we extended our formula to arbitrary elements of the center of the enveloping algebra.

Applications

- In work with Shu SHEN, we extended our formula to arbitrary elements of the center of the enveloping algebra.
- Harish-Chandra had obtained non-explicit formulas in terms of Cartan subalgebras.

Applications

- In work with Shu SHEN, we extended our formula to arbitrary elements of the center of the enveloping algebra.
- Harish-Chandra had obtained non-explicit formulas in terms of Cartan subalgebras.
- On complex locally symmetric spaces, Riemann-Roch and "automorphic Riemann-Roch".

Applications

- In work with Shu SHEN, we extended our formula to arbitrary elements of the center of the enveloping algebra.
- Harish-Chandra had obtained non-explicit formulas in terms of Cartan subalgebras.
- On complex locally symmetric spaces, Riemann-Roch and "automorphic Riemann-Roch".
- Applications to eta invariants and analytic torsion.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The method

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The method

- We will use cohomological methods.

The method

- We will use cohomological methods.
- Global-local interpolation.

The method

- We will use cohomological methods.
- Global-local interpolation.
- We proceed formally as in the heat equation method for RR-Hirzebruch and Lefschetz RR.

The heat equation method for Riemann-Roch

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The heat equation method for Riemann-Roch

- X compact complex, F holomorphic vector bundle.

The heat equation method for Riemann-Roch

- X compact complex, F holomorphic vector bundle.
- $\left(\Omega^{0, \bullet}(X, F), \bar{\partial}^{X}\right)$ Dolbeault complex, cohomology $H^{\bullet}(X, F)$.

The heat equation method for Riemann-Roch

- X compact complex, F holomorphic vector bundle.
- $\left(\Omega^{0, \bullet}(X, F), \bar{\partial}^{X}\right)$ Dolbeault complex, cohomology $H^{\bullet}(X, F)$.
- $g^{T X}$ Kähler metric, $\bar{\partial}^{X *}$ adjoint of $\bar{\partial}^{X}, D^{X}=\bar{\partial}^{X}+\bar{\partial}^{X *}$ Dirac operator.

The heat equation method for Riemann-Roch

- X compact complex, F holomorphic vector bundle.
- $\left(\Omega^{0, \bullet}(X, F), \bar{\partial}^{X}\right)$ Dolbeault complex, cohomology $H^{\bullet}(X, F)$.
- $g^{T X}$ Kähler metric, $\bar{\partial}^{X *}$ adjoint of $\bar{\partial}^{X}, D^{X}=\bar{\partial}^{X}+\bar{\partial}^{X *}$ Dirac operator.
- $D^{X, 2}=\left[\bar{\partial}^{X}, \bar{\partial}^{X *}\right]$ Hodge Laplacian.

The heat equation method for Riemann-Roch

- X compact complex, F holomorphic vector bundle.
- $\left(\Omega^{0, \bullet}(X, F), \bar{\partial}^{X}\right)$ Dolbeault complex, cohomology $H^{\bullet}(X, F)$.
- $g^{T X}$ Kähler metric, $\bar{\partial}^{X *}$ adjoint of $\bar{\partial}^{X}, D^{X}=\bar{\partial}^{X}+\bar{\partial}^{X *}$ Dirac operator.
- $D^{X, 2}=\left[\bar{\partial}^{X}, \bar{\partial}^{X *}\right]$ Hodge Laplacian.
- McKean-Singer: For any $s>0$, $L(g)=\operatorname{Tr}_{\mathrm{s}}\left[g \exp \left(-s D^{X, 2}\right)\right]$.

The heat equation method for Riemann-Roch

- X compact complex, F holomorphic vector bundle.
- $\left(\Omega^{0, \bullet}(X, F), \bar{\partial}^{X}\right)$ Dolbeault complex, cohomology $H^{\bullet}(X, F)$.
- $g^{T X}$ Kähler metric, $\bar{\partial}^{X *}$ adjoint of $\bar{\partial}^{X}, D^{X}=\bar{\partial}^{X}+\bar{\partial}^{X *}$ Dirac operator.
- $D^{X, 2}=\left[\bar{\partial}^{X}, \bar{\partial}^{X *}\right]$ Hodge Laplacian.
- McKean-Singer: For any $s>0$,
$L(g)=\operatorname{Tr}_{\mathrm{s}}\left[g \exp \left(-s D^{X, 2}\right)\right]$.
$\operatorname{Tr}_{s}\left[g \exp \left(-s D^{X, 2}\right)\right] \mid s>0$
- $\left.\underbrace{\left.L(g)\right|_{s=+\infty}}_{\text {global }} \longrightarrow \underbrace{\text { Fixed point formula }}_{\text {local }}\right|_{s=0}$.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The heat operator of X

The heat operator of X

- X compact Riemannian manifold.

The heat operator of X

- X compact Riemannian manifold.
- Δ^{X} Laplacian on X.

The heat operator of X

- X compact Riemannian manifold.
- Δ^{X} Laplacian on X.
- For $t>0, g=\exp \left(t \Delta^{X} / 2\right)$ heat operator acting on $C^{\infty}(X, \mathbf{R})$.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

Is $\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}[g]$ an Euler characteristic?

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and 'physics'
References

Is $\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}[g]$ an Euler characteristic?

(1) Can I find a resolution $C^{\infty}(X, \mathbf{R})$ by a complex (R, d) ?

Is $\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}[g]$ an Euler characteristic?

(1) Can I find a resolution $C^{\infty}(X, \mathbf{R})$ by a complex (R, d) ?
(2 Does (R, d) have a Hodge theory?

Is $\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}[g]$ an Euler characteristic?

(1) Can I find a resolution $C^{\infty}(X, \mathbf{R})$ by a complex (R, d) ?
(2 Does (R, d) have a Hodge theory?

- Does the heat kernel g lift to (R, d) ?

Is $\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}[g]$ an Euler characteristic?

(1) Can I find a resolution $C^{\infty}(X, \mathbf{R})$ by a complex (R, d) ?
(2) Does (R, d) have a Hodge theory?

- Does the heat kernel g lift to (R, d) ?
(1) Can I write a formula of the type

Is $\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}[g]$ an Euler characteristic?

(1) Can I find a resolution $C^{\infty}(X, \mathbf{R})$ by a complex (R, d) ?
(2) Does (R, d) have a Hodge theory?
(0) Does the heat kernel g lift to (R, d) ?
(1) Can I write a formula of the type

$$
\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}[g]=\operatorname{Tr}_{\mathrm{s}}{ }^{R}\left[g \exp \left(-D_{R, b}^{2} / 2\right)\right] .
$$

Is $\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}[g]$ an Euler characteristic?

(1) Can I find a resolution $C^{\infty}(X, \mathbf{R})$ by a complex (R, d) ?
(2) Does (R, d) have a Hodge theory?
(0) Does the heat kernel g lift to (R, d) ?
(1) Can I write a formula of the type

$$
\operatorname{Tr}^{C \infty}(X, \mathbf{R})[g]=\operatorname{Tr}_{\mathrm{s}}{ }^{R}\left[g \exp \left(-D_{R, b}^{2} / 2\right)\right] .
$$

© By making $b \rightarrow+\infty$, do we obtain Selberg's trace formula?

Is $\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}[g]$ an Euler characteristic?

(1) Can I find a resolution $C^{\infty}(X, \mathbf{R})$ by a complex (R, d) ?
(2) Does (R, d) have a Hodge theory?

- Does the heat kernel g lift to (R, d) ?
(1) Can I write a formula of the type

$$
\operatorname{Tr}^{C \infty}(X, \mathbf{R})[g]=\operatorname{Tr}_{\mathrm{s}}{ }^{R}\left[g \exp \left(-D_{R, b}^{2} / 2\right)\right] .
$$

© By making $b \rightarrow+\infty$, do we obtain Selberg's trace formula?
© Is Selberg's trace formula a Lefschetz formula?

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The analogy

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The analogy

The analogy

1. Finding a resolution of $C^{\infty}(X, \mathbf{R})$

1. Finding a resolution of $C^{\infty}(X, \mathbf{R})$

- Is $C^{\infty}(X, \mathbf{R})$ the cohomology of 'some complex'?

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and 'physics'
References

1. Finding a resolution of $C^{\infty}(X, \mathbf{R})$

- Is $C^{\infty}(X, \mathbf{R})$ the cohomology of 'some complex'?
- E real vector bundle on X.

1. Finding a resolution of $C^{\infty}(X, \mathbf{R})$

- Is $C^{\infty}(X, \mathbf{R})$ the cohomology of 'some complex' ?
- E real vector bundle on X.
- $R=\left(\Omega^{\bullet}(E), d^{E}\right)$ fibrewise de Rham complex.

1. Finding a resolution of $C^{\infty}(X, \mathbf{R})$

- Is $C^{\infty}(X, \mathbf{R})$ the cohomology of 'some complex' ?
- E real vector bundle on X.
- $R=\left(\Omega^{\bullet}(E), d^{E}\right)$ fibrewise de Rham complex.
- By Poincaré lemma, cohomology is equal to $C^{\infty}(X, \mathbf{R})$.

2. Does the resolution have a Hodge theory?

2. Does the resolution have a Hodge theory?

- $\left(E, g^{E}\right)$ real Euclidean vector bundle.

2. Does the resolution have a Hodge theory?

- $\left(E, g^{E}\right)$ real Euclidean vector bundle.
- Standard Laplacian on fibers of E has continuous spectrum.

2. Does the resolution have a Hodge theory?

- $\left(E, g^{E}\right)$ real Euclidean vector bundle.
- Standard Laplacian on fibers of E has continuous spectrum.
- If Y tautological section of E on \mathcal{E}, use instead the volume $\exp \left(-|Y|^{2}\right) d Y$.

2. Does the resolution have a Hodge theory?

- $\left(E, g^{E}\right)$ real Euclidean vector bundle.
- Standard Laplacian on fibers of E has continuous spectrum.
- If Y tautological section of E on \mathcal{E}, use instead the volume $\exp \left(-|Y|^{2}\right) d Y$.
- The corresponding fiberwise Laplacian is a harmonic oscillator, has discrete spectrum, and Hodge theory holds.

2. Does the resolution have a Hodge theory?

- $\left(E, g^{E}\right)$ real Euclidean vector bundle.
- Standard Laplacian on fibers of E has continuous spectrum.
- If Y tautological section of E on \mathcal{E}, use instead the volume $\exp \left(-|Y|^{2}\right) d Y$.
- The corresponding fiberwise Laplacian is a harmonic oscillator, has discrete spectrum, and Hodge theory holds.
- The function 1 on E is L_{2} and fiberwise harmonic.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

3. Does g lift to a morphism of complexes?

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

3. Does g lift to a morphism of complexes?

- $\exp \left(t \Delta^{X} / 2\right)$ morphism of $\left(\Omega^{\bullet}(E, \mathbf{R}), d^{E}\right)$?

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals

3. Does g lift to a morphism of complexes?

- $\exp \left(t \Delta^{X} / 2\right)$ morphism of $\left(\Omega^{\bullet}(E, \mathbf{R}), d^{E}\right)$?
- Δ^{X} should lift and commute with d^{E}.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals

3. Does g lift to a morphism of complexes?

- $\exp \left(t \Delta^{X} / 2\right)$ morphism of $\left(\Omega^{\bullet}(E, \mathbf{R}), d^{E}\right)$?
- Δ^{X} should lift and commute with d^{E}.
- In general, the answer is no!

3. Does g lift to a morphism of complexes?

- $\exp \left(t \Delta^{X} / 2\right)$ morphism of $\left(\Omega^{\bullet}(E, \mathbf{R}), d^{E}\right)$?
- Δ^{X} should lift and commute with d^{E}.
- In general, the answer is no!
- On locally symmetric spaces, the Casimir restricts to Δ^{X}, lifts to everything, and commutes with everything.

3. Does g lift to a morphism of complexes?

- $\exp \left(t \Delta^{X} / 2\right)$ morphism of $\left(\Omega^{\bullet}(E, \mathbf{R}), d^{E}\right)$?
- Δ^{X} should lift and commute with d^{E}.
- In general, the answer is no!
- On locally symmetric spaces, the Casimir restricts to Δ^{X}, lifts to everything, and commutes with everything.
- E should be related to $T X \ldots$

3. Does g lift to a morphism of complexes?

- $\exp \left(t \Delta^{X} / 2\right)$ morphism of $\left(\Omega^{\bullet}(E, \mathbf{R}), d^{E}\right)$?
- Δ^{X} should lift and commute with d^{E}.
- In general, the answer is no!
- On locally symmetric spaces, the Casimir restricts to Δ^{X}, lifts to everything, and commutes with everything.
- E should be related to $T X \ldots$
- ...since we look for closed geodesics.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The case of symmetric spaces

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The case of symmetric spaces

- G reductive Lie group, K maximal compact.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and 'physics'
References

The case of symmetric spaces

- G reductive Lie group, K maximal compact.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ Cartan splitting of \mathfrak{g} equipped with bilinear form B...

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals

The case of symmetric spaces

- G reductive Lie group, K maximal compact.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ Cartan splitting of \mathfrak{g} equipped with bilinear form $B \ldots$
- $X=G / K$ symmetric space.

The case of symmetric spaces

- G reductive Lie group, K maximal compact.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ Cartan splitting of \mathfrak{g} equipped with bilinear form $B \ldots$
- $X=G / K$ symmetric space.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ descends to bundle of Lie algebras $T X \oplus N$.

One should expect $G \times \mathfrak{g}$ to play an important role in the construction.

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The algebraic de Rham complex on \mathfrak{g}

Euler characteristic and heat equation

The algebraic de Rham complex on \mathfrak{g}

- $\mathcal{A}\left(\mathfrak{g}^{*}\right)=\Lambda\left(\mathfrak{g}^{*}\right) \otimes S\left(\mathfrak{g}^{*}\right)$ polynomial forms on \mathfrak{g}.

The algebraic de Rham complex on \mathfrak{g}

- $\mathcal{A}\left(\mathfrak{g}^{*}\right)=\Lambda\left(\mathfrak{g}^{*}\right) \otimes S\left(\mathfrak{g}^{*}\right)$ polynomial forms on \mathfrak{g}.
- $\left(\mathcal{A}\left(\mathfrak{g}^{*}\right), d^{\mathfrak{g}}\right)$ de Rham complex, $d^{\mathfrak{g}}=\sum e^{i} \otimes \nabla_{e_{i}}$.

The algebraic de Rham complex on \mathfrak{g}

- $\mathcal{A}\left(\mathfrak{g}^{*}\right)=\Lambda\left(\mathfrak{g}^{*}\right) \otimes S\left(\mathfrak{g}^{*}\right)$ polynomial forms on \mathfrak{g}.
- $\left(\mathcal{A}\left(\mathfrak{g}^{*}\right), d^{\mathfrak{g}}\right)$ de Rham complex, $d^{\mathfrak{g}}=\sum e^{i} \otimes \nabla_{e_{i}}$.
- Y section of $\mathfrak{g}, i_{Y}=\sum i_{e_{i}} \otimes e^{i}$.

The algebraic de Rham complex on \mathfrak{g}

- $\mathcal{A}\left(\mathfrak{g}^{*}\right)=\Lambda\left(\mathfrak{g}^{*}\right) \otimes S\left(\mathfrak{g}^{*}\right)$ polynomial forms on \mathfrak{g}.
- $\left(\mathcal{A}\left(\mathfrak{g}^{*}\right), d^{\mathfrak{g}}\right)$ de Rham complex, $d^{\mathfrak{g}}=\sum e^{i} \otimes \nabla_{e_{i}}$.
- Y section of $\mathfrak{g}, i_{Y}=\sum i_{e_{i}} \otimes e^{i}$.
- For any nondegenerate symmetric form on $\mathfrak{g}, d^{\mathfrak{g}, *}=i_{Y}$.
- $\left[d^{\mathfrak{g}}, i_{Y}\right]=N^{\mathcal{A}\left(\mathfrak{g}^{*}\right)},\left(d^{\mathfrak{g}}+i_{Y}\right)^{2}=N^{\mathcal{A}\left(\mathfrak{g}^{*}\right)}$.

The algebraic de Rham complex on \mathfrak{g}

- $\mathcal{A}\left(\mathfrak{g}^{*}\right)=\Lambda\left(\mathfrak{g}^{*}\right) \otimes S\left(\mathfrak{g}^{*}\right)$ polynomial forms on \mathfrak{g}.
- $\left(\mathcal{A}\left(\mathfrak{g}^{*}\right), d^{\mathfrak{g}}\right)$ de Rham complex, $d^{\mathfrak{g}}=\sum e^{i} \otimes \nabla_{e_{i}}$.
- Y section of $\mathfrak{g}, i_{Y}=\sum i_{e_{i}} \otimes e^{i}$.
- For any nondegenerate symmetric form on $\mathfrak{g}, d^{\mathfrak{g}, *}=i_{Y}$.
- $\left[d^{\mathfrak{g}}, i_{Y}\right]=N^{\mathcal{A}\left(\mathfrak{g}^{*}\right)},\left(d^{\mathfrak{g}}+i_{Y}\right)^{2}=N^{\mathcal{A}\left(\mathfrak{g}^{*}\right)}$.
- $\left(\mathcal{A}\left(\mathfrak{g}^{*}\right), d^{\mathfrak{g}}\right)$ resolution of \mathbf{R} (algebraic Poincaré lemma).

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

Casimir and Kostant on G

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

Casimir and Kostant on G

- $C^{\mathfrak{g}}=-\sum e_{i}^{*} e_{i}$ Casimir (differential operator on G), positive on \mathfrak{p}, negative on \mathfrak{k}.

Euler characteristic and heat equation

Casimir and Kostant on G

- $C^{\mathfrak{g}}=-\sum e_{i}^{*} e_{i}$ Casimir (differential operator on G), positive on \mathfrak{p}, negative on \mathfrak{k}.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$ acts on $\Lambda\left(\mathfrak{g}^{*}\right)$.

Casimir and Kostant on G

- $C^{\mathfrak{g}}=-\sum e_{i}^{*} e_{i}$ Casimir (differential operator on G), positive on \mathfrak{p}, negative on \mathfrak{k}.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$ acts on $\Lambda\left(\mathfrak{g}^{*}\right)$.
- $U(\mathfrak{g})$ enveloping algebra (left-invariant differential operators on G).

Casimir and Kostant on G

- $C^{\mathfrak{g}}=-\sum e_{i}^{*} e_{i}$ Casimir (differential operator on G), positive on \mathfrak{p}, negative on \mathfrak{k}.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$ acts on $\Lambda\left(\mathfrak{g}^{*}\right)$.
- $U(\mathfrak{g})$ enveloping algebra (left-invariant differential operators on G).
- $\widehat{D}^{\mathrm{Ko}} \in \widehat{c}(\mathfrak{g}) \otimes U(\mathfrak{g})$ Dirac operator of Kostant.

Casimir and Kostant on G

- $C^{\mathfrak{g}}=-\sum e_{i}^{*} e_{i}$ Casimir (differential operator on G), positive on \mathfrak{p}, negative on \mathfrak{k}.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$ acts on $\Lambda\left(\mathfrak{g}^{*}\right)$.
- $U(\mathfrak{g})$ enveloping algebra (left-invariant differential operators on G).
- $\widehat{D}^{\mathrm{Ko}} \in \widehat{c}(\mathfrak{g}) \otimes U(\mathfrak{g})$ Dirac operator of Kostant.
- $\widehat{D}^{\mathrm{Ko}}=\widehat{c}\left(e_{i}^{*}\right) e_{i}+\frac{1}{2} \widehat{c}\left(-\kappa^{\mathfrak{g}}\right)$.

A formula of Kostant

A formula of Kostant

Theorem (Kostant)

$$
\widehat{D}^{\mathrm{Ko}, 2}=-C^{\mathfrak{g}}+B^{*}\left(\rho^{\mathfrak{g}}, \rho^{\mathfrak{g}}\right) .
$$

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

A formula of Kostant

Theorem (Kostant)

$$
\widehat{D}^{\mathrm{Ko}, 2}=-C^{\mathfrak{g}}+B^{*}\left(\rho^{\mathfrak{g}}, \rho^{\mathfrak{g}}\right)
$$

Remark

- $\widehat{D}^{\mathrm{Ko}}$ acts on $C^{\infty}(G, \mathbf{R}) \otimes \Lambda\left(\mathfrak{g}^{*}\right)$, while $C^{\mathfrak{g}}$ acts on $C^{\infty}(G, \mathbf{R})$.

A formula of Kostant

Theorem (Kostant)

$$
\widehat{D}^{\mathrm{Ko}, 2}=-C^{\mathfrak{g}}+B^{*}\left(\rho^{\mathfrak{g}}, \rho^{\mathfrak{g}}\right)
$$

Remark

- $\widehat{D}^{\mathrm{Ko}}$ acts on $C^{\infty}(G, \mathbf{R}) \otimes \Lambda\left(\mathfrak{g}^{*}\right)$, while $C^{\mathfrak{g}}$ acts on $C^{\infty}(G, \mathbf{R})$.
- Solution: tensor by $S\left(\mathfrak{g}^{*}\right)$, and use the fact that $\Lambda\left(\mathfrak{g}^{*}\right) \otimes S\left(\mathfrak{g}^{*}\right) \simeq \mathbf{R}$.

Reconciling G and \mathfrak{g}

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

Reconciling G and \mathfrak{g}

- $d^{\mathfrak{g}}+i_{Y}$ acts on $\Lambda\left(\mathfrak{g}^{*}\right) \otimes S\left(\mathfrak{g}^{*}\right)$.

Euler characteristic and heat equation

Reconciling G and \mathfrak{g}

- $d^{\mathfrak{g}}+i_{Y}$ acts on $\Lambda\left(\mathfrak{g}^{*}\right) \otimes S\left(\mathfrak{g}^{*}\right)$.
- $\widehat{D}^{\mathrm{Ko}}$ acts on $C^{\infty}(G, \mathbf{R}) \otimes \Lambda\left(\mathfrak{g}^{*}\right)$.

Reconciling G and \mathfrak{g}

- $d^{\mathfrak{g}}+i_{Y}$ acts on $\Lambda\left(\mathfrak{g}^{*}\right) \otimes S\left(\mathfrak{g}^{*}\right)$.
- $\widehat{D}^{\mathrm{Ko}}$ acts on $C^{\infty}(G, \mathbf{R}) \otimes \Lambda\left(\mathfrak{g}^{*}\right)$.
- For $b>0, \mathfrak{D}_{b}=\widehat{D}^{\text {Ko }}+\frac{1}{b}\left(d^{\mathfrak{g}}+i_{Y}\right)$ acts on $C^{\infty}(G, \mathbf{R}) \otimes S\left(\mathfrak{g}^{*}\right) \otimes \Lambda\left(\mathfrak{g}^{*}\right)$.

Reconciling G and \mathfrak{g}

- $d^{\mathfrak{g}}+i_{Y}$ acts on $\Lambda\left(\mathfrak{g}^{*}\right) \otimes S\left(\mathfrak{g}^{*}\right)$.
- $\widehat{D}^{\mathrm{Ko}}$ acts on $C^{\infty}(G, \mathbf{R}) \otimes \Lambda\left(\mathfrak{g}^{*}\right)$.
- For $b>0, \mathfrak{D}_{b}=\widehat{D}^{\mathrm{Ko}}+\frac{1}{b}\left(d^{\mathfrak{g}}+i_{Y}\right)$ acts on $C^{\infty}(G, \mathbf{R}) \otimes S\left(\mathfrak{g}^{*}\right) \otimes \Lambda\left(\mathfrak{g}^{*}\right)$.
- $C^{\infty}(G, \mathbf{R}) \otimes S\left(\mathfrak{g}^{*}\right) \otimes \Lambda\left(\mathfrak{g}^{*}\right) \subset C^{\infty}(G \times \mathfrak{g}, \mathbf{R}) \otimes \Lambda\left(\mathfrak{g}^{*}\right)$.

Descending the constructions to X

Descending the constructions to X

- The above objects are K-invariant.

Descending the constructions to X

- The above objects are K-invariant.
- \mathfrak{g} descend a flat bundle $T X \oplus N$ of Lie algebras on X.

Descending the constructions to X

- The above objects are K-invariant.
- \mathfrak{g} descend a flat bundle $T X \oplus N$ of Lie algebras on X.
- $S\left(\mathfrak{g}^{*}\right) \otimes \Lambda\left(\mathfrak{g}^{*}\right)$ descends to fiberwise polynomial forms on $T X \oplus N$.

Descending the constructions to X

- The above objects are K-invariant.
- \mathfrak{g} descend a flat bundle $T X \oplus N$ of Lie algebras on X.
- $S\left(\mathfrak{g}^{*}\right) \otimes \Lambda\left(\mathfrak{g}^{*}\right)$ descends to fiberwise polynomial forms on $T X \oplus N$.
- \mathfrak{D}_{b} descends to \mathfrak{D}_{b}^{X} acting on $C^{\infty}\left(X, S\left(T^{*} X \oplus N^{*}\right) \otimes \Lambda\left(T^{*} X \oplus N^{*}\right) \otimes F\right)$.

Descending the constructions to X

- The above objects are K-invariant.
- \mathfrak{g} descend a flat bundle $T X \oplus N$ of Lie algebras on X.
- $S\left(\mathfrak{g}^{*}\right) \otimes \Lambda\left(\mathfrak{g}^{*}\right)$ descends to fiberwise polynomial forms on $T X \oplus N$.
- \mathfrak{D}_{b} descends to \mathfrak{D}_{b}^{X} acting on $C^{\infty}\left(X, S\left(T^{*} X \oplus N^{*}\right) \otimes \Lambda\left(T^{*} X \oplus N^{*}\right) \otimes F\right)$.
- $S\left(T^{*} X \oplus N^{*}\right) \otimes \Lambda\left(T^{*} X \oplus N^{*}\right)$ infinite dimensional vector bundle on X.

Algebraic and smooth de Rham

Algebraic and smooth de Rham

- Using bilinear form B, the commutation relations of operators acting on $S\left(\mathfrak{g}^{*}\right)\left[\frac{\partial}{\partial Y^{i}}, Y^{j}\right]=\delta_{i j} \ldots$

Algebraic and smooth de Rham

- Using bilinear form B, the commutation relations of operators acting on $S\left(\mathfrak{g}^{*}\right)\left[\frac{\partial}{\partial Y^{i}}, Y^{j}\right]=\delta_{i j} \ldots$
- ... have representation in terms of operators acting on $L_{2}, \frac{\partial}{\partial Y^{i}} \rightarrow \frac{\partial}{\partial Y^{i}}, Y^{j} \rightarrow-\frac{\partial}{\partial Y^{j}}+Y^{j}$.

Algebraic and smooth de Rham

- Using bilinear form B, the commutation relations of operators acting on $S\left(\mathfrak{g}^{*}\right)\left[\frac{\partial}{\partial Y^{i}}, Y^{j}\right]=\delta_{i j} \ldots$
- ... have representation in terms of operators acting on $L_{2}, \frac{\partial}{\partial Y^{i}} \rightarrow \frac{\partial}{\partial Y^{i}}, Y^{j} \rightarrow-\frac{\partial}{\partial Y^{j}}+Y^{j}$.
- Bargmann isomorphism, $\left(A\left(\mathfrak{g}^{*}\right), d^{\mathfrak{g}}\right) \rightarrow\left(\Omega^{\bullet}(\mathfrak{g}, \mathbf{R}), d^{\mathfrak{g}}\right)$ L_{2} de Rham complex with volume $\exp \left(-|Y|^{2}\right) d Y$.

The operator \mathfrak{D}_{b}^{X}

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The operator \mathfrak{D}_{b}^{X}

- \mathcal{X} total space of $T X \oplus N$ over X.

Euler characteristic and heat equation

The operator \mathfrak{D}_{b}^{X}

- \mathcal{X} total space of $T X \oplus N$ over X.
- \mathfrak{D}_{b}^{X} acts on $C^{\infty}\left(\mathcal{X}, \pi^{*}\left(\Lambda\left(T^{*} X \oplus N^{*}\right) \otimes F\right)\right)$.

The operator \mathfrak{D}_{b}^{X}

- \mathcal{X} total space of $T X \oplus N$ over X.
- \mathfrak{D}_{b}^{X} acts on $C^{\infty}\left(\mathcal{X}, \pi^{*}\left(\Lambda\left(T^{*} X \oplus N^{*}\right) \otimes F\right)\right)$.
- $\mathfrak{D}_{b}^{X}=\underbrace{\widehat{D}^{\mathrm{Ko}, X}}+i c\left(\left[Y^{\mathfrak{k}}, Y^{\mathrm{p}}\right]\right)+$

Kostant

The operator \mathfrak{D}_{b}^{X}

- \mathcal{X} total space of $T X \oplus N$ over X.
- \mathfrak{D}_{b}^{X} acts on $C^{\infty}\left(\mathcal{X}, \pi^{*}\left(\Lambda\left(T^{*} X \oplus N^{*}\right) \otimes F\right)\right)$.
- $\mathfrak{D}_{b}^{X}=\underbrace{\widehat{D}^{\mathrm{Ko}, X}}_{\text {Kostant }}+i c\left(\left[Y^{\mathfrak{l}}, Y^{\natural}\right]\right)+$

$$
\frac{1}{b} \underbrace{\left(d^{T X \oplus N}+Y \wedge+d^{T X \oplus N *}+i_{Y} \cdots\right)}_{\text {de Rham-Witten }}
$$

- The quadratic term is related to the quotienting by K.

The hypoelliptic Laplacian

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The hypoelliptic Laplacian

- Set $\mathcal{L}_{b}^{X}=\frac{1}{2}\left(-\widehat{D}^{\mathrm{Ko}, 2}+\mathfrak{D}_{b}^{X, 2}\right)$.

Euler characteristic and heat equation

The hypoelliptic Laplacian

- Set $\mathcal{L}_{b}^{X}=\frac{1}{2}\left(-\widehat{D}^{\mathrm{Ko}, 2}+\mathfrak{D}_{b}^{X, 2}\right)$.
- $\mathcal{L}_{b}^{X}=\frac{1}{2}\left(-\widehat{D}^{\mathrm{Ko}, 2}+\mathfrak{D}_{b}^{X, 2}\right)$ acts on

$$
C^{\infty}\left(\mathcal{X}, \widehat{\pi}^{*} \Lambda\left(T^{*} X \oplus N^{*}\right) \otimes F\right) .
$$

The hypoelliptic Laplacian

- Set $\mathcal{L}_{b}^{X}=\frac{1}{2}\left(-\widehat{D}^{\mathrm{Ko}, 2}+\mathfrak{D}_{b}^{X, 2}\right)$.
- $\mathcal{L}_{b}^{X}=\frac{1}{2}\left(-\widehat{D}^{\mathrm{Ko}, 2}+\mathfrak{D}_{b}^{X, 2}\right)$ acts on

$$
C^{\infty}\left(\mathcal{X}, \widehat{\pi}^{*} \Lambda\left(T^{*} X \oplus N^{*}\right) \otimes F\right) .
$$

Remark

Using the fiberwise Bargmann isomorphism, \mathcal{L}_{b}^{X} acts on

$$
C^{\infty}\left(X, S\left(T^{*} X \oplus N^{*}\right) \otimes \Lambda\left(T^{*} X \oplus N^{*}\right) \otimes F\right) .
$$

The hypoelliptic Laplacian as a deformation

The hypoelliptic Laplacian as a deformation

$$
\mathcal{L}_{b}^{X}=\frac{1}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\underbrace{\frac{1}{2 b^{2}}\left(-\Delta^{T X \oplus N}+|Y|^{2}-n\right)}_{\text {Harmonic oscillator of } T X \oplus N}+\frac{N^{\Lambda\left(T^{*} X \oplus N^{*}\right)}}{b^{2}}
$$

$$
+\frac{1}{b}(\underbrace{\nabla_{Y^{T X}}}_{\text {geodesic flow }}+\widehat{c}\left(\operatorname{ad}\left(Y^{T X}\right)\right)-c\left(\operatorname{ad}\left(Y^{T X}\right)+i \theta \operatorname{ad}\left(Y^{N}\right)\right))
$$

The hypoelliptic Laplacian as a deformation

$$
\mathcal{L}_{b}^{X}=\frac{1}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\underbrace{\frac{1}{2 b^{2}}\left(-\Delta^{T X \oplus N}+|Y|^{2}-n\right)}_{\text {Harmonic oscillator of } T X \oplus N}+\frac{N^{\Lambda\left(T^{*} X \oplus N^{*}\right)}}{b^{2}}
$$

$$
+\frac{1}{b}(\underbrace{\nabla_{Y^{T X}}}_{\text {geodesic flow }}+\widehat{c}\left(\operatorname{ad}\left(Y^{T X}\right)\right)-c\left(\operatorname{ad}\left(Y^{T X}\right)+i \theta \operatorname{ad}\left(Y^{N}\right)\right))
$$

Remark

\mathcal{L}_{b}^{X} not self-adjoint, not elliptic, hypoelliptic (has heat kernel).

Three fundamental properties of the hypoelliptic Laplacian (B. 2011)

Three fundamental properties of the hypoelliptic Laplacian (B. 2011)

- • $b \rightarrow 0, \mathcal{L}_{b}^{X} \rightarrow \frac{1}{2}\left(C^{\mathrm{g}, X}-c\right): \mathcal{X}$ collapses to X (B. 2011).

Three fundamental properties of the hypoelliptic Laplacian (B. 2011)

(1) - $b \rightarrow 0, \mathcal{L}_{b}^{X} \rightarrow \frac{1}{2}\left(C^{\mathfrak{g}, X}-c\right): \mathcal{X}$ collapses to $X(B$. 2011).
(2) - $b \rightarrow+\infty$, geodesic f. $\nabla_{Y^{T X}}$ dominates \Rightarrow closed geodesics.

Three fundamental properties of the hypoelliptic

 Laplacian (B. 2011)(1) - $b \rightarrow 0, \mathcal{L}_{b}^{X} \rightarrow \frac{1}{2}\left(C^{\mathfrak{g}, X}-c\right): \mathcal{X}$ collapses to $X(\mathrm{~B}$. 2011).
(- $b \rightarrow+\infty$, geodesic f. $\nabla_{Y^{T X}}$ dominates \Rightarrow closed geodesics.
(3) If $\gamma \in G$ semisimple, for $b>0, t>0$,

$$
\operatorname{Tr}^{[\gamma]}\left[\exp \left(-t\left(C^{\mathrm{g}, X}-c\right) / 2\right)\right]=\operatorname{Tr}_{\mathrm{s}}^{[\gamma]}\left[\exp \left(-t \mathcal{L}_{b}^{X}\right)\right] .
$$

Three fundamental properties of the hypoelliptic

 Laplacian (B. 2011)(1) - $b \rightarrow 0, \mathcal{L}_{b}^{X} \rightarrow \frac{1}{2}\left(C^{\mathfrak{g}, X}-c\right): \mathcal{X}$ collapses to $X(B$. 2011).
(2) - $b \rightarrow+\infty$, geodesic f. $\nabla_{Y^{T X}}$ dominates \Rightarrow closed geodesics.
(3) If $\gamma \in G$ semisimple, for $b>0, t>0$,

$$
\operatorname{Tr}^{[\gamma]}\left[\exp \left(-t\left(C^{\mathfrak{g}, X}-c\right) / 2\right)\right]=\operatorname{Tr}_{\mathrm{s}}{ }^{[\gamma]}\left[\exp \left(-t \mathcal{L}_{b}^{X}\right)\right] .
$$

$\operatorname{Tr}^{[\gamma]}\left[\exp \left(-t C^{\mathfrak{g}, X} / 2\right)\right]$

$$
=\operatorname{Tr}_{\mathrm{s}}{ }^{[\gamma]}\left[\exp \left(-t C^{\mathfrak{g}, X} / 2\right) \exp \left(-\mathfrak{D}_{b}^{X, 2} / 2\right)\right] .
$$

The limit as $b \rightarrow+\infty$

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The limit as $b \rightarrow+\infty$

- As $b \rightarrow+\infty$,

$$
\mathcal{L}_{b}^{X}=\frac{b^{4}}{2}\left|\left[Y^{T X}, Y^{N}\right]\right|^{2}+b \nabla^{Y^{T X}}+\ldots
$$

The limit as $b \rightarrow+\infty$

- As $b \rightarrow+\infty$,

$$
\mathcal{L}_{b}^{X}=\frac{b^{4}}{2}\left|\left[Y^{T X}, Y^{N}\right]\right|^{2}+b \nabla^{Y^{T X}}+\ldots
$$

- $\nabla^{Y^{T X}}$ generator of geodesic flow ultimately dominates.

The limit as $b \rightarrow+\infty$

- As $b \rightarrow+\infty$,

$$
\mathcal{L}_{b}^{X}=\frac{b^{4}}{2}\left|\left[Y^{T X}, Y^{N}\right]\right|^{2}+b \nabla^{Y^{T X}}+\ldots
$$

- $\nabla^{Y^{T X}}$ generator of geodesic flow ultimately dominates.
- Forces orbital integral to localize on geodesics.

The limit as $b \rightarrow+\infty$

- As $b \rightarrow+\infty$,

$$
\mathcal{L}_{b}^{X}=\frac{b^{4}}{2}\left|\left[Y^{T X}, Y^{N}\right]\right|^{2}+b \nabla^{Y^{T X}}+\ldots
$$

- $\nabla^{Y^{T X}}$ generator of geodesic flow ultimately dominates.
- Forces orbital integral to localize on geodesics.
- Gives explicit formula for orbital integrals.

An interpolation property

An interpolation property

- $\mathcal{L}_{b}^{X}=\frac{1}{2 b^{2}}\left(-\Delta^{V}+|Y|^{2}-n\right)-\frac{\nabla_{Y T X}}{b}+\ldots$.

An interpolation property

- $\mathcal{L}_{b}^{X}=\frac{1}{2 b^{2}}\left(-\Delta^{V}+|Y|^{2}-n\right)-\frac{\nabla_{Y T X}}{b}+\ldots$.
- Interpolation by operators

An interpolation property

- $\mathcal{L}_{b}^{X}=\frac{1}{2 b^{2}}\left(-\Delta^{V}+|Y|^{2}-n\right)-\frac{\nabla_{Y T X}}{b}+\ldots$.
- Interpolation by operators

$$
-\Delta^{X} /\left.\left.2\right|_{b=0} \xrightarrow{\left.\mathcal{L}_{b}^{X}\right|_{b>0}} \nabla_{Y^{T X}}\right|_{b=+\infty}
$$

An interpolation property

- $\mathcal{L}_{b}^{X}=\frac{1}{2 b^{2}}\left(-\Delta^{V}+|Y|^{2}-n\right)-\frac{\nabla_{Y T X}}{b}+\ldots$.
- Interpolation by operators

$$
-\Delta^{X} /\left.\left.2\right|_{b=0} \xrightarrow{\left.\mathcal{L}_{b}^{X}\right|_{b>0}} \nabla_{Y^{T X}}\right|_{b=+\infty}
$$

- Interpolation by dynamical systems

An interpolation property

- $\mathcal{L}_{b}^{X}=\frac{1}{2 b^{2}}\left(-\Delta^{V}+|Y|^{2}-n\right)-\frac{\nabla_{Y T X}}{b}+\ldots$.
- Interpolation by operators

$$
-\Delta^{X} /\left.\left.2\right|_{b=0} \xrightarrow{\left.\mathcal{L}_{b}^{X}\right|_{b>0}} \nabla_{Y^{T X}}\right|_{b=+\infty}
$$

- Interpolation by dynamical systems

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics'

References

The Langevin equation

Euler characteristic and heat equation

The Langevin equation

- In 1908 , on \mathbf{R}^{3}, Langevin introduced the Langevin equation $m \ddot{x}=-\dot{x}+\dot{w} \ldots$

The Langevin equation

- In 1908 , on \mathbf{R}^{3}, Langevin introduced the Langevin equation $m \ddot{x}=-\dot{x}+\dot{w} \ldots$
- ...to reconcile Brownian motion $\dot{x}=\dot{w}$ and classical mechanics: $\ddot{x}=0$.

The Langevin equation

- In 1908 , on \mathbf{R}^{3}, Langevin introduced the Langevin equation $m \ddot{x}=-\dot{x}+\dot{w} \ldots$
- ...to reconcile Brownian motion $\dot{x}=\dot{w}$ and classical mechanics: $\ddot{x}=0$.
- In the theory of the hypoelliptic Laplacian, $m=b^{2}$ is a mass.

The Langevin equation

- In 1908 , on \mathbf{R}^{3}, Langevin introduced the Langevin equation $m \ddot{x}=-\dot{x}+\dot{w} \ldots$
- ...to reconcile Brownian motion $\dot{x}=\dot{w}$ and classical mechanics: $\ddot{x}=0$.
- In the theory of the hypoelliptic Laplacian, $m=b^{2}$ is a mass.
- Welcome to Hodge theory with mass!

Langevin (C.R. de l'Académie des Sciences 1908)

Langevin (C.R. de l'Académie des Sciences 1908)

Une particule comme celle que nous considérons, grande par rapport à la distance moyenne des molécules du liquide, et se mouvant par rapport à celui-ci avec la vitesse ξ subit une résistance visqueuse égale à $-6 \pi \mu, a \xi$ d'après la formule de Stokes. En réalité, celte valeur n'est qu'une moyenne, et en raison de l'irrégularité des chocs des molécules environnantes, l'action du fluide sur ja particule oscille autour de la valeur précédente, de sorte que l'équation du mouvement est, dans la direction x,

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=-6 \pi \mu a \frac{d x}{d t}+\mathrm{X} \tag{3}
\end{equation*}
$$

Sur la force complémentaire X nous savons qu'elle est indifféremment positive et négative, et sa grandeur est telle qu'elle maintient l'agitation de la particule que, sans elle, la résistance visqueuse finirait par arrêter.

囯 P．Langevin，Sur la théorie du mouvement brownien，C． R．Acad．Sci．Paris 146 （1908），530－533．
目 J．－M．Bismut，Hypoelliptic Laplacian and orbital integrals，Annals of Mathematics Studies，vol．177， Princeton University Press，Princeton，NJ，2011．MR 2828080
园 J．－M．Bismut and S．Shen，Geometric orbital integrals and the center of the enveloping algebra，arXiv 1910.11731 （2019）．

Euler characteristic and heat equation
Explicit formulas for semisimple orbital integrals Hypoelliptic Laplacian and orbital integrals Hypoelliptic Laplacian, math, and 'physics' References

Merci!

