Geometric Quadratic Chabauty over Number Fields

joint with Pavel Čoupek, Luciena X. Xiao and Zijian Yao

David Lilienfeldt

McGill University

Québec-Maine Number Theory Conference September 26, 2020

Preprint available at https://www.math.mcgill.ca/lilien/

Motivation

Problem 17 Book VI of Diophantus' Arithmetica

Find three squares which when added give a square, and such that the first one is the square-root of the second, and the second is the square-root of the third: $y^{2}=x^{8}+x^{4}+x^{2} \quad \sim$ Wetherell (1997)

Serre's uniformity question

Does there exist a constant N such that, for any prime $\ell \geq N$ and non-CM elliptic curve E over \mathbb{Q}, the residual Galois representation $\bar{\rho}_{E, \ell}$ of E at ℓ is surjective? $\quad \sim$ BDMTV (2019), still open

Both questions can be formulated as asking for solutions to Diophantine equations.

Diophantine Geometry

Let C_{K} denote a smooth projective curve of genus g defined over a number field K.

Let us assume $C_{K}(K) \neq \emptyset$.
Diophantine geometry: the study of $C_{K}(K)$.

- $g=0$: Hilbert-Hurwitz (1890) $\sim\left|C_{K}(K)\right|=\infty$.
- $g=1$: Mordell-Weil (1929) $\leadsto C_{K}(K)=C_{K}(K)_{\text {tors }} \oplus \mathbb{Z}^{r}$.
- $g \geq 2$: Mordell's conjecture (1922), Faltings' theorem (1983), Vojta (1991), Lawrence-Venkatesh (2018) $\rightarrow\left|C_{K}(K)\right|<\infty$.

Question

When $g \geq 2$, how does one determine the finite set $C_{K}(K)$?

Problem: The proofs of Mordell's conjecture are not effective.

Chabauty-Coleman

Chabauty (1941): $\left|C_{K}(K)\right|<\infty \quad$ if $\quad r:=\operatorname{rank}_{\mathbb{Z}} J_{K}(K)<g$.

$$
\begin{aligned}
& C_{K}(K) \hookrightarrow \\
& \quad C_{K}\left(K_{\mathfrak{p}}\right) \\
& J_{K}(K) \hookrightarrow \overline{J_{K}(K)} \hookrightarrow J_{K}\left(K_{\mathfrak{p}}\right) \xrightarrow{\text { log }} H^{p-\text { adic integral }}{ }^{0}\left(J_{K_{\mathfrak{p}}}, \Omega^{1}\right)^{\vee} .
\end{aligned}
$$

Idea: bound $\overline{J_{K}(K)} \cap C_{K}\left(K_{\mathfrak{p}}\right)$ inside \mathfrak{p}-adic Lie group $J_{K}\left(K_{\mathfrak{p}}\right)$.

Coleman (1985): $\left|C_{K}(K)\right| \leq N(\mathfrak{p})+2 g(\sqrt{N(\mathfrak{p})}+1)-1$
when $r<g, p>2 g$ and $\mathfrak{p} \mid p$ is good, unramified.
Improvements by Stoll (2006), Katz-Zureick-Brown (2013).

Chabauty-Kim

Non-abelian Chabauty

Kim (00 's): relax the condition " $r<g$ " by taking non-abelian unipotent quotients of the fundamental group.

Quadratic Chabauty

Balakrishnan et al. (2018): method made effective over \mathbb{Q} for curves satisfying $r<g+\rho-1$, where $\rho=\operatorname{rank}_{\mathbb{Z}} \mathrm{NS}_{\mathcal{Q}_{\mathbb{Q}} / \mathbb{Q}}(\mathbb{Q})$.

Geometric quadratic Chabauty

Edixhoven-Lido (2019): new effective approach to Kim's quadratic Chabauty method over \mathbb{Q}.

Back to motivation

Problem 17 Book VI of Diophantus' Arithmetica

Wetherell (1997): the only positive rational solution to $y^{2}=x^{8}+x^{4}+x^{2}$ is the one given by Diophantus: $(1 / 2,9 / 16)$. Method: Chabauty-Coleman (by covering) on the curve $y^{2}=x^{6}+x^{2}+1$ with $(r=g=2)$.
Bianchi (2019): same result using quadratic Chabauty.

Serre's uniformity question $\quad \sim N=37$ (common belief)
Serre (1972), Mazur (1978), Bilu-Parent-Rebolledo (2013). BDMTV (2019): only rational points on $X_{s}(13)$ are CM or cusps. Method: quadratic Chabauty for $X_{s}(13)(r=g=3)$.
Non-split case still open.

Generalisation to arbitrary degree d number fields

Siksek ('13): effective Chabauty-Coleman $\leadsto r \leq d(g-1)$ BBBM ('19): eff. quadratic Chabauty $\leadsto r \leq d(g-1)+r_{2}+1$ Dogra ('19): quad. Chabauty $\leadsto r \leq d(g-1)+(\rho-1)\left(r_{2}+1\right)$ CLXY ('20): geom. quad. Ch. $\leadsto r \leq d(g-1)+(\rho-1)\left(r_{2}+1\right)$

Theorem (Čoupek, L., Xiao, Yao (2020))

Suppose that $r \leq d(g-1)+(\rho-1)\left(r_{2}+1\right)$. Let $\delta:=r_{1}+r_{2}-1$ and $A:=\mathbb{Z}_{p}\left\langle z_{1}, \ldots, z_{\delta(\rho-1)+r}\right\rangle$. There exists an ideal I of A, such that if $\bar{A}:=A / I \otimes \mathbb{F}_{p}$ is a finite dimensional \mathbb{F}_{p}-vector space, then $\left|C_{K}(K)\right| \leq \operatorname{dim}_{\mathbb{F}_{p}} \bar{A}$.

Note: the statement is simplified for the sake of exposition.

Thank you for your attention!

Appendix: Simplified strategy

Idea: replace the Jacobian in Chabauty by something bigger.
What: a certain $\mathbb{G}_{m}^{\rho-1}$-torsor T_{K} over J_{K}.

Construction

- T_{K} arises as a certain pull-back of the ($\rho-1$)-fold self-product of the Poincaré torsor over $J_{K} \times J_{K}^{\vee}$.
- It comes equipped with a lift $C_{K} \hookrightarrow T_{K}$ of the Abel-Jacobi map.

Let $K_{p}:=K \otimes_{\mathbb{Q}} \mathbb{Q}_{p}$ and $Y_{K}:={\overline{T_{K}(K)}}^{p}$.

Goal: bound and compute $C_{K}\left(K_{p}\right) \cap Y_{K}$.

