Geometric Quadratic Chabauty over Number Fields joint with Pavel Čoupek, Luciena X. Xiao and Zijian Yao

David Lilienfeldt

McGill University

Québec-Maine Number Theory Conference September 26, 2020

Preprint available at https://www.math.mcgill.ca/lilien/

David Lilienfeldt (McGill University) Geometric Quadratic Chabauty over Number Fields

< ロ > < 同 > < 回 > < 回 >

Problem 17 Book VI of Diophantus' Arithmetica

Find three squares which when added give a square, and such that the first one is the square-root of the second, and the second is the square-root of the third: $y^2 = x^8 + x^4 + x^2 \quad \rightsquigarrow$ Wetherell (1997)

Serre's uniformity question

Does there exist a constant N such that, for any prime $\ell \ge N$ and non-CM elliptic curve E over \mathbb{Q} , the residual Galois representation $\bar{\rho}_{E,\ell}$ of E at ℓ is surjective? \longrightarrow BDMTV (2019), still open

Both questions can be formulated as asking for solutions to Diophantine equations.

・ロト ・日ト ・ヨト ・ヨト ・ヨ

Let C_K denote a smooth projective curve of genus g defined over a number field K.

Let us assume $C_{\mathcal{K}}(\mathcal{K}) \neq \emptyset$.

Diophantine geometry: the study of $C_{\mathcal{K}}(\mathcal{K})$.

- g = 0: Hilbert-Hurwitz (1890) $\rightsquigarrow |C_{\mathcal{K}}(\mathcal{K})| = \infty$.
- g = 1: Mordell-Weil (1929) $\rightsquigarrow C_{\mathcal{K}}(\mathcal{K}) = C_{\mathcal{K}}(\mathcal{K})_{\text{tors}} \oplus \mathbb{Z}^r$.
- g ≥ 2: Mordell's conjecture (1922), Faltings' theorem (1983), Vojta (1991), Lawrence-Venkatesh (2018) → |C_K(K)| < ∞.

Question

When $g \ge 2$, how does one determine the finite set $C_{\mathcal{K}}(\mathcal{K})$?

Problem: The proofs of Mordell's conjecture are not effective.

イロト 不得 トイヨト イヨト ニヨー

nac

Chabauty (1941): $|C_{\mathcal{K}}(\mathcal{K})| < \infty$ if $r := \operatorname{rank}_{\mathbb{Z}} J_{\mathcal{K}}(\mathcal{K}) < g$.

Idea: bound $\overline{J_{\mathcal{K}}(\mathcal{K})} \cap C_{\mathcal{K}}(\mathcal{K}_{\mathfrak{p}})$ inside \mathfrak{p} -adic Lie group $J_{\mathcal{K}}(\mathcal{K}_{\mathfrak{p}})$.

Coleman (1985): $|C_{\mathcal{K}}(\mathcal{K})| \leq N(\mathfrak{p}) + 2g(\sqrt{N(\mathfrak{p})} + 1) - 1$ when r < g, p > 2g and $\mathfrak{p}|p$ is good, unramified.

Improvements by Stoll (2006), Katz–Zureick-Brown (2013).

イロト 不得 トイヨト イヨト 二日

Non-abelian Chabauty

Kim (00's): relax the condition "r < g" by taking non-abelian unipotent quotients of the fundamental group.

Quadratic Chabauty

Balakrishnan *et al.* (2018): method made effective over \mathbb{Q} for curves satisfying $r < g + \rho - 1$, where $\rho = \operatorname{rank}_{\mathbb{Z}} \operatorname{NS}_{J_{\mathbb{Q}}/\mathbb{Q}}(\mathbb{Q})$.

Geometric quadratic Chabauty

Edixhoven-Lido (2019): new effective approach to Kim's quadratic Chabauty method over $\mathbb{Q}.$

イロト イボト イヨト イヨト

Problem 17 Book VI of Diophantus' Arithmetica

Wetherell (1997): the only positive rational solution to $y^2 = x^8 + x^4 + x^2$ is the one given by Diophantus: (1/2, 9/16). Method: Chabauty-Coleman (by covering) on the curve $y^2 = x^6 + x^2 + 1$ with (r = g = 2). Bianchi (2019): same result using quadratic Chabauty.

Serre's uniformity question $\rightarrow N = 37$ (common belief) Serre (1972), Mazur (1978), Bilu-Parent-Rebolledo (2013). BDMTV (2019): only rational points on $X_s(13)$ are CM or cusps. Method: quadratic Chabauty for $X_s(13)$ (r = g = 3). Non-split case still open.

イロト イヨト イヨト

Generalisation to arbitrary degree *d* number fields

Siksek ('13): effective Chabauty-Coleman $\rightsquigarrow r \leq d(g-1)$ BBBM ('19): eff. quadratic Chabauty $\rightsquigarrow r \leq d(g-1) + r_2 + 1$ Dogra ('19): quad. Chabauty $\rightsquigarrow r \leq d(g-1) + (\rho-1)(r_2+1)$ CLXY ('20): geom. quad. Ch. $\rightsquigarrow r \leq d(g-1) + (\rho-1)(r_2+1)$

Theorem (Čoupek, L., Xiao, Yao (2020))

Suppose that $r \leq d(g-1) + (\rho-1)(r_2+1)$. Let $\delta := r_1 + r_2 - 1$ and $A := \mathbb{Z}_p \langle z_1, ..., z_{\delta(\rho-1)+r} \rangle$. There exists an ideal I of A, such that if $\overline{A} := A/I \otimes \mathbb{F}_p$ is a finite dimensional \mathbb{F}_p -vector space, then $|C_K(K)| \leq \dim_{\mathbb{F}_p} \overline{A}$.

Note: the statement is simplified for the sake of exposition.

Thank you for your attention !

イロト イポト イヨト イヨト 二日

SQA

Appendix: Simplified strategy

Idea: replace the Jacobian in Chabauty by something bigger. What: a certain $\mathbb{G}_m^{\rho-1}$ -torsor T_K over J_K .

Construction

- T_K arises as a certain pull-back of the $(\rho 1)$ -fold self-product of the Poincaré torsor over $J_K \times J_K^{\vee}$.
- It comes equipped with a lift $C_K \hookrightarrow T_K$ of the Abel-Jacobi map.

Let
$$K_p := K \otimes_{\mathbb{Q}} \mathbb{Q}_p$$
 and $Y_K := \overline{T_K(K)}^p$.

Goal: bound and compute $C_{\mathcal{K}}(\mathcal{K}_p) \cap \mathcal{Y}_{\mathcal{K}}$.

イロト イポト イヨト イヨト 三日