Formal Summation of Divergent Series

Grant Molnar

Dartmouth College
September 26, 2020

Joint Work with Dr. Robert Dawson

What is a Summation?

Consider the series

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots
$$

What is the sum of this series?

What is a Summation?

Consider the series

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots
$$

What is the sum of this series?

Write

$$
S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots
$$

What is a Summation?

Consider the series

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots
$$

What is the sum of this series?

Write

$$
\begin{aligned}
& S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \\
& S=1+\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right)
\end{aligned}
$$

What is a Summation?

Consider the series

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots
$$

What is the sum of this series?

Write

$$
\begin{aligned}
& S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \\
& S=1+\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right) \\
& S=1+\frac{1}{2} S, \text { then }
\end{aligned}
$$

What is a Summation?

Consider the series

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots
$$

What is the sum of this series?

Write

$$
\begin{aligned}
& S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \\
& S=1+\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right) \\
& S=1+\frac{1}{2} S, \text { then } \\
& S=2
\end{aligned}
$$

What is a Summation?

Let $\mathrm{D} \subseteq \mathbb{C}^{\mathbb{N}}$ be a set of complex sequences, and write $a_{0}+a_{1}+\ldots$ for $\left(a_{n}\right)_{n \geq 0} \in \mathrm{D}$

What is a Summation?

Let $\mathrm{D} \subseteq \mathbb{C}^{\mathbb{N}}$ be a set of complex sequences, and write $a_{0}+a_{1}+\ldots$ for $\left(a_{n}\right)_{n \geq 0} \in \mathrm{D}$

Hardy's Axioms (1949)

A summation is a function $\mathfrak{S}: D \rightarrow \mathbb{C}$ such that

What is a Summation?

Let $\mathrm{D} \subseteq \mathbb{C}^{\mathbb{N}}$ be a set of complex sequences, and write $a_{0}+a_{1}+\ldots$ for $\left(a_{n}\right)_{n \geq 0} \in \mathrm{D}$

Hardy's Axioms (1949)

A summation is a function $\mathfrak{S}: \mathrm{D} \rightarrow \mathbb{C}$ such that

- If $\mathfrak{S}\left(a_{0}+a_{1}+\ldots\right)=A$, then $\mathfrak{S}\left(\alpha a_{0}+\alpha a_{1}+\ldots\right)=\alpha A$;

What is a Summation?

Let $\mathrm{D} \subseteq \mathbb{C}^{\mathbb{N}}$ be a set of complex sequences, and write $a_{0}+a_{1}+\ldots$ for $\left(a_{n}\right)_{n \geq 0} \in \mathrm{D}$

Hardy's Axioms (1949)

A summation is a function $\mathfrak{S}: \mathrm{D} \rightarrow \mathbb{C}$ such that

- If $\mathfrak{S}\left(a_{0}+a_{1}+\ldots\right)=A$, then $\mathfrak{S}\left(\alpha a_{0}+\alpha a_{1}+\ldots\right)=\alpha A$;
- If $\mathfrak{S}\left(a_{0}+a_{1}+\ldots\right)=A$ and $\mathfrak{S}\left(b_{0}+b_{1}+\ldots\right)=B$, then $\mathfrak{S}\left(\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right)+\ldots\right)=A+B ;$

What is a Summation?

Let $\mathrm{D} \subseteq \mathbb{C}^{\mathbb{N}}$ be a set of complex sequences, and write $a_{0}+a_{1}+\ldots$ for $\left(a_{n}\right)_{n \geq 0} \in \mathrm{D}$

Hardy's Axioms (1949)

A summation is a function $\mathfrak{S}: \mathrm{D} \rightarrow \mathbb{C}$ such that

- If $\mathfrak{S}\left(a_{0}+a_{1}+\ldots\right)=A$, then $\mathfrak{S}\left(\alpha a_{0}+\alpha a_{1}+\ldots\right)=\alpha A$;
- If $\mathfrak{S}\left(a_{0}+a_{1}+\ldots\right)=A$ and $\mathfrak{S}\left(b_{0}+b_{1}+\ldots\right)=B$, then $\mathfrak{S}\left(\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right)+\ldots\right)=A+B ;$
- If $\mathfrak{S}\left(a_{0}+a_{1}+\ldots\right)=A$, then $\mathfrak{S}\left(a_{1}+a_{2}+\ldots\right)=A-a_{0}$, and conversely.

What is a Summation?

Let R be an integral domain. A (formal) series over R is an element $a_{0}+a_{1}+\ldots=\sum_{n} a_{n} \sigma^{n} \in \mathrm{R}[[\sigma]]$

What is a Summation?

Let R be an integral domain. A (formal) series over R is an element $a_{0}+a_{1}+\ldots=\sum_{n} a_{n} \sigma^{n} \in \mathrm{R}[[\sigma]]$

Let E be the algebraic closure of the field of fractions of R

What is a Summation?

Let R be an integral domain. A (formal) series over R is an element $a_{0}+a_{1}+\ldots=\sum_{n} a_{n} \sigma^{n} \in \mathrm{R}[[\sigma]]$

Let E be the algebraic closure of the field of fractions of R
Let D be an R -module with $\mathrm{R}[\sigma] \subseteq \mathrm{D} \subseteq \mathrm{R}[[\sigma]]$, such that $X \in \mathrm{D}$ if and only if $\sigma X \in \mathrm{D}$

What is a Summation?

Let R be an integral domain. A (formal) series over R is an element $a_{0}+a_{1}+\ldots=\sum_{n} a_{n} \sigma^{n} \in \mathrm{R}[[\sigma]]$

Let E be the algebraic closure of the field of fractions of R
Let D be an R -module with $\mathrm{R}[\sigma] \subseteq \mathrm{D} \subseteq \mathrm{R}[[\sigma]]$, such that $X \in \mathrm{D}$ if and only if $\sigma X \in \mathrm{D}$

Hardy's Axioms (redux)

A summation from R to E (on D) is an R -module homomorphism
$\mathfrak{S}: \mathrm{D} \rightarrow \mathrm{E}$, such that $\mathfrak{S}(B)=B(1)$ for every $B \in \mathrm{R}[\sigma]$, and
$\mathfrak{S}(X)=\mathfrak{S}(\sigma X)$ for each $X \in \mathrm{D}$.

What is a Summation?

Equivalently, a summation is an R-module homomorphism $\mathfrak{S}: \mathrm{D} \rightarrow \mathrm{E}$ which factors through $\mathrm{D} /(1-\sigma)$ and sends 1 to 1

What is a Summation?

Equivalently, a summation is an R -module homomorphism $\mathfrak{S}: \mathrm{D} \rightarrow \mathrm{E}$ which factors through $\mathrm{D} /(1-\sigma)$ and sends 1 to 1

What is a Summation?

Equivalently, a summation is an R-module homomorphism $\mathfrak{S}: \mathrm{D} \rightarrow \mathrm{E}$ which factors through $\mathrm{D} /(1-\sigma)$ and sends 1 to 1

Write \mathfrak{S} or (D, \mathfrak{S}) for the summation (R, $D, E, \mathfrak{S})$

What is a Summation?

Equivalently, a summation is an R-module homomorphism $\mathfrak{S}: \mathrm{D} \rightarrow \mathrm{E}$ which factors through $\mathrm{D} /(1-\sigma)$ and sends 1 to 1

Write \mathfrak{S} or $(\mathrm{D}, \mathfrak{S})$ for the summation (R, D, E, \mathfrak{S})
Write $\mathbf{S}(R, E)$ for the set of all summations (D, S) from R to E

What is a Summation?

Equivalently, a summation is an R-module homomorphism $\mathfrak{S}: \mathrm{D} \rightarrow \mathrm{E}$ which factors through $\mathrm{D} /(1-\sigma)$ and sends 1 to 1

Note D cannot be R[[$\sigma]$]

What is a Summation?

Equivalently, a summation is an R-module homomorphism $\mathfrak{S}: \mathrm{D} \rightarrow \mathrm{E}$ which factors through $\mathrm{D} /(1-\sigma)$ and sends 1 to 1

Note D cannot be R[[$\sigma]$]
Indeed, if $\frac{1}{1-\sigma}=1+1+1+\ldots \in \mathrm{D}$ then $0=1 \in \mathrm{E}$, an absurdity

Examples

- $\mathfrak{S}_{c} \in \mathbf{S}(\mathbb{C}, \mathbb{C})$ defined by $\mathfrak{S}_{c}\left(\sum_{n} a_{n} \sigma^{n}\right):=\lim _{N \rightarrow \infty} \sum_{n \leq N} a_{n}$

Examples

- $\mathfrak{S}_{c} \in \mathbf{S}(\mathbb{C}, \mathbb{C})$ defined by $\mathfrak{S}_{c}\left(\sum_{n} a_{n} \sigma^{n}\right):=\lim _{N \rightarrow \infty} \sum_{n \leq N} a_{n}$
- $\mathfrak{A} \in \mathbf{S}(\mathrm{R}, \mathrm{E})$ defined by $\mathfrak{A}\left(\sum_{n} a_{n} \sigma^{n}\right):=\sum_{n} a_{n}$ for $\sum_{n} a_{n} \sigma^{n}$ finitely supported

Examples

- $\mathfrak{S}_{c} \in \mathbf{S}(\mathbb{C}, \mathbb{C})$ defined by $\mathfrak{S}_{c}\left(\sum_{n} a_{n} \sigma^{n}\right):=\lim _{N \rightarrow \infty} \sum_{n \leq N} a_{n}$
- $\mathfrak{A} \in \mathbf{S}(\mathrm{R}, \mathrm{E})$ defined by $\mathfrak{A}\left(\sum_{n} a_{n} \sigma^{n}\right):=\sum_{n} a_{n}$ for $\sum_{n} a_{n} \sigma^{n}$ finitely supported
- $\mathfrak{S}_{\mathbb{A}} \in \mathbf{S}(\mathbb{C}, \mathbb{C})$ defined by $\mathfrak{S}_{\mathbb{A}}\left(\sum_{n} a_{n} \sigma^{n}\right):=\lim _{x \neq 1} \sum_{n} a_{n} x^{n}$

Extending Summations

Fix a summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$

Extending Summations

Fix a summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$

Definition

We say $\left(\mathrm{D}^{\prime}, \mathfrak{S}^{\prime}\right) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$ extends $(\mathrm{D}, \mathfrak{S})$ if $\mathrm{D} \subseteq \mathrm{D}^{\prime}$ and $\mathfrak{S}^{\prime}(X)=\mathfrak{S}(X)$ for each $X \in \mathrm{D}$.

Extending Summations

Fix a summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$

Definition

We say $\left(\mathrm{D}^{\prime}, \mathfrak{S}^{\prime}\right) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$ extends $(\mathrm{D}, \mathfrak{S})$ if $\mathrm{D} \subseteq \mathrm{D}^{\prime}$ and $\mathfrak{S}^{\prime}(X)=\mathfrak{S}(X)$ for each $X \in \mathrm{D}$.

We write $\mathfrak{S}^{\prime} \supseteq \mathfrak{S}$ if \mathfrak{S}^{\prime} extends \mathfrak{S}. This is an inductive ordering.

Extending Summations

Fix a summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$

Definition

We say $\left(\mathrm{D}^{\prime}, \mathfrak{S}^{\prime}\right) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$ extends $(\mathrm{D}, \mathfrak{S})$ if $\mathrm{D} \subseteq \mathrm{D}^{\prime}$ and $\mathfrak{S}^{\prime}(X)=\mathfrak{S}(X)$ for each $X \in \mathrm{D}$.

We write $\mathfrak{S}^{\prime} \supseteq \mathfrak{S}$ if \mathfrak{S}^{\prime} extends \mathfrak{S}. This is an inductive ordering.

Is there a "best" extension of \mathfrak{S} ?

Extending Summations

Fix a summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$

Definition

We say \mathfrak{S}^{\prime} canonically extends \mathfrak{S} if for every $\mathfrak{S}^{\prime \prime}$ extending \mathfrak{S}, the summations \mathfrak{S}^{\prime} and $\mathfrak{S}^{\prime \prime}$ have a common extension $\widehat{\mathfrak{S}}$.

Extending Summations

Fix a summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$

Definition

We say \mathfrak{S}^{\prime} canonically extends \mathfrak{S} if for every $\mathfrak{S}^{\prime \prime}$ extending \mathfrak{S}, the summations \mathfrak{S}^{\prime} and $\mathfrak{S}^{\prime \prime}$ have a common extension $\widehat{\mathfrak{S}}$.

We say $\overline{\mathfrak{S}}$ is the fulfillment of \mathfrak{S} if $\overline{\mathfrak{S}}$ extends every canonical extension of \mathfrak{S}.

Extending Summations

Fix a summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$

Definition

We say \mathfrak{S}^{\prime} canonically extends \mathfrak{S} if for every $\mathfrak{S}^{\prime \prime}$ extending \mathfrak{S}, the summations \mathfrak{S}^{\prime} and $\mathfrak{S}^{\prime \prime}$ have a common extension $\widehat{\mathfrak{S}}$.

We say $\overline{\mathfrak{S}}$ is the fulfillment of \mathfrak{S} if $\overline{\mathfrak{S}}$ extends every canonical extension of \mathfrak{S}.

Extending Summations

Fix a summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$

Definition

The telescopic extension of $(\mathrm{D}, \mathfrak{S})$ is given by

Extending Summations

Fix a summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$

Definition

The telescopic extension of $(\mathrm{D}, \mathfrak{S})$ is given by

$$
\mathcal{T D}:=\{X \mid A=B \cdot X \text { for } A \in \mathrm{D}, B \in \mathrm{R}[\sigma] \text { with } \mathfrak{S}(B) \neq 0\}
$$

Extending Summations

Fix a summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$

Definition

The telescopic extension of $(\mathrm{D}, \mathfrak{S})$ is given by

$$
\begin{aligned}
& \mathcal{T D}:=\{X \mid A=B \cdot X \text { for } A \in \mathrm{D}, B \in \mathrm{R}[\sigma] \text { with } \mathfrak{S}(B) \neq 0\}, \\
& \mathcal{T S}: X \mapsto \mathfrak{S}(A) / \mathfrak{S}(B)
\end{aligned}
$$

Extending Summations

Fix a summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$

Definition

The telescopic extension of $(\mathrm{D}, \mathfrak{S})$ is given by

$$
\begin{aligned}
& \mathcal{T D}:=\{X \mid A=B \cdot X \text { for } A \in \mathrm{D}, B \in \mathrm{R}[\sigma] \text { with } \mathfrak{S}(B) \neq 0\}, \\
& \mathcal{T S}: X \mapsto \mathfrak{S}(A) / \mathfrak{S}(B)
\end{aligned}
$$

Extending Summations

Fix a summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$

Definition

The telescopic extension of $(\mathrm{D}, \mathfrak{S})$ is given by

$$
\begin{aligned}
& \mathcal{T D}:=\{X \mid A=B \cdot X \text { for } A \in \mathrm{D}, B \in \mathrm{R}[\sigma] \text { with } \mathfrak{S}(B) \neq 0\} \\
& \mathcal{T} \mathfrak{S}: X \mapsto \mathfrak{S}(A) / \mathfrak{S}(B)
\end{aligned}
$$

Theorem (Dawson, 1997)

The summation ($\mathcal{T D}, \mathcal{T} \mathfrak{S}$) is the fulfillment of $(\mathrm{D}, \mathfrak{S})$.

What does $\mathcal{T} \mathfrak{S}_{c}$ look like?

Example

$$
\text { Let } T=\frac{1}{1-2 \sigma}=1+2+4+8+16+32+64+128+256+\ldots
$$

What does $\mathcal{T} \mathfrak{S}_{c}$ look like?

Example

Let $T=\frac{1}{1-2 \sigma}=1+2+4+8+16+32+64+128+256+\ldots$
Let $F=1-2 \sigma=1-2$

What does $\mathcal{T} \mathfrak{S}_{c}$ look like?

Example

Let $T=\frac{1}{1-2 \sigma}=1+2+4+8+16+32+64+128+256+\ldots$
Let $F=1-2 \sigma=1-2$

We see $F \cdot T=1$ and $\mathfrak{S}_{c}(F)=-1$

What does $\mathcal{T} \mathfrak{S}_{c}$ look like?

Example

Let $T=\frac{1}{1-2 \sigma}=1+2+4+8+16+32+64+128+256+\ldots$
Let $F=1-2 \sigma=1-2$

We see $F \cdot T=1$ and $\mathfrak{S}_{c}(F)=-1$
Then $\mathcal{T S}(T)=\frac{1}{-1}=-1$

What does $\mathcal{T} \mathfrak{S}_{c}$ look like?

Example

Let $T=\frac{1}{1-2 \sigma}=1+2+4+8+16+32+64+128+256+\ldots$
Let $F=1-2 \sigma=1-2$

We see $F \cdot T=1$ and $\mathfrak{S}_{c}(F)=-1$
Then $\mathcal{T} \mathfrak{S}_{c}(T)=\frac{1}{-1}=-1$

Thus $\mathcal{T} \mathfrak{S}_{c} \neq \mathfrak{S}_{c}$

What is a Multiplicative Summation?

Definition

A summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$ is multiplicative if for all $X, Y \in \mathrm{D}$, we have $X Y \in \mathrm{D}$ and $\mathfrak{S}(X Y)=\mathfrak{S}(X) \mathfrak{S}(Y)$.

What is a Multiplicative Summation?

Definition

A summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$ is multiplicative if for all $X, Y \in \mathrm{D}$, we have $X Y \in \mathrm{D}$ and $\mathfrak{S}(X Y)=\mathfrak{S}(X) \mathfrak{S}(Y)$.

A summation $(D, \mathscr{S}) \in \mathbf{S}(R, E)$ is weakly multiplicative if it has a multiplicative extension.

What is a Multiplicative Summation?

Definition

A summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$ is multiplicative if for all $X, Y \in \mathrm{D}$, we have $X Y \in \mathrm{D}$ and $\mathfrak{S}(X Y)=\mathfrak{S}(X) \mathfrak{S}(Y)$.

A summation $(D, \mathfrak{S}) \in \mathbf{S}(R, E)$ is weakly multiplicative if it has a multiplicative extension.

Write MS (R, E) for the set of all multiplicative summations (D, \mathfrak{S}) from R to E

What is a Multiplicative Summation?

Definition

A summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$ is multiplicative if for all $X, Y \in \mathrm{D}$, we have $X Y \in \mathrm{D}$ and $\mathfrak{S}(X Y)=\mathfrak{S}(X) \mathfrak{S}(Y)$.

A summation $(D, \mathfrak{S}) \in \mathbf{S}(R, E)$ is weakly multiplicative if it has a multiplicative extension.

Write MS (R, E) for the set of all multiplicative summations (D, \mathfrak{S}) from R to E

Write wMS (R, E) for the set of all weakly multiplicative summations (D, \mathfrak{S}) from R to E

What is a Multiplicative Summation?

Definition

A summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{S}(\mathrm{R}, \mathrm{E})$ is multiplicative if for all $X, Y \in \mathrm{D}$, we have $X Y \in \mathrm{D}$ and $\mathfrak{S}(X Y)=\mathfrak{S}(X) \mathfrak{S}(Y)$.

A summation $(D, \mathfrak{S}) \in \mathbf{S}(R, E)$ is weakly multiplicative if it has a multiplicative extension.

Write MS (R, E) for the set of all multiplicative summations (D, \mathfrak{S}) from R to E

Write wMS (R, E) for the set of all weakly multiplicative summations (D, \mathfrak{S}) from R to E

Clearly $\mathbf{M S}(R, E) \subseteq \mathbf{w} \mathbf{M S}(R, E) \subseteq \mathbf{S}(R, E)$

What is a Multiplicative Summation?

Equivalently (D, \mathfrak{S}) is multiplicative if D is an R-algebra and $\mathfrak{S}: \mathrm{D} \rightarrow \mathrm{E}$ is an R-algebra morphism which factors through $\mathrm{D} /(1-\sigma)$ and sends 1 to 1

What is a Multiplicative Summation?

Equivalently (D, \mathfrak{S}) is multiplicative if D is an R-algebra and $\mathfrak{S}: \mathrm{D} \rightarrow \mathrm{E}$ is an R-algebra morphism which factors through $\mathrm{D} /(1-\sigma)$ and sends 1 to 1

What is a Multiplicative Summation?

Equivalently (D, \mathfrak{S}) is multiplicative if D is an R-algebra and $\mathfrak{S}: \mathrm{D} \rightarrow \mathrm{E}$ is an R-algebra morphism which factors through $\mathrm{D} /(1-\sigma)$ and sends 1 to 1

Proposition (2020, Dawson-M.)

Every weakly multiplicative summation \mathfrak{S} has a unique minimal multiplicative extension.

Examples

- \mathfrak{S}_{c} defined by $\mathfrak{S}_{c}\left(\sum_{n} a_{n} \sigma^{n}\right):=\lim _{N \rightarrow \infty} \sum_{n \leq N} a_{n}$ is weakly multiplicative, but not multiplicative

Examples

- \mathfrak{S}_{c} defined by $\mathfrak{S}_{c}\left(\sum_{n} a_{n} \sigma^{n}\right):=\lim _{N \rightarrow \infty} \sum_{n \leq N} a_{n}$ is weakly multiplicative, but not multiplicative
- \mathfrak{A} defined by $\mathfrak{A}\left(\sum_{n} a_{n} \sigma^{n}\right):=\sum_{n} a_{n}$ is multiplicative

Examples

- \mathfrak{S}_{c} defined by $\mathfrak{S}_{c}\left(\sum_{n} a_{n} \sigma^{n}\right):=\lim _{N \rightarrow \infty} \sum_{n \leq N} a_{n}$ is weakly multiplicative, but not multiplicative
- \mathfrak{A} defined by $\mathfrak{A}\left(\sum_{n} a_{n} \sigma^{n}\right):=\sum_{n} a_{n}$ is multiplicative
- $\mathfrak{S}_{\mathbb{A}}$ defined by $\mathfrak{S}_{\mathbb{A}}\left(\sum_{n} a_{n} \sigma^{n}\right):=\lim _{x \not 11} \sum_{n} a_{n} x^{n}$ is multiplicative

How do $\mathrm{S}(\mathbb{C}, \mathbb{C})$ and wMS (\mathbb{C}, \mathbb{C}) compare?

Example

Let $\mathfrak{A}: \mathbb{C}[\sigma] \rightarrow \mathbb{C}$ be as above

How do $\mathrm{S}(\mathbb{C}, \mathbb{C})$ and wMS (\mathbb{C}, \mathbb{C}) compare?

Example

Let $\mathfrak{A}: \mathbb{C}[\sigma] \rightarrow \mathbb{C}$ be as above
Let $W:=\exp (\sigma)=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\ldots$

How do $\mathrm{S}(\mathbb{C}, \mathbb{C})$ and wMS (\mathbb{C}, \mathbb{C}) compare?

Example

Let $\mathfrak{A}: \mathbb{C}[\sigma] \rightarrow \mathbb{C}$ be as above
Let $W:=\exp (\sigma)=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\ldots$
So $W^{-1}:=\exp (-\sigma)=1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\frac{1}{120}+\frac{1}{720}+\ldots$

How do $\mathbf{S}(\mathbb{C}, \mathbb{C})$ and wMS (\mathbb{C}, \mathbb{C}) compare?

Example

Let $\mathfrak{A}: \mathbb{C}[\sigma] \rightarrow \mathbb{C}$ be as above
Let $W:=\exp (\sigma)=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\ldots$
So $W^{-1}:=\exp (-\sigma)=1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\frac{1}{120}+\frac{1}{720}+\ldots$
Define $\mathfrak{S}: \mathbb{C}[\sigma] \oplus \mathbb{C}[\sigma] W \oplus \mathbb{C}[\sigma] W^{-1} \rightarrow \mathbb{C}$ by

$$
\mathfrak{S}\left(B_{0}+B_{1} W+B_{2} W^{-1}\right):=\mathfrak{A}\left(B_{0}\right)
$$

How do $\mathrm{S}(\mathbb{C}, \mathbb{C})$ and wMS (\mathbb{C}, \mathbb{C}) compare?

Example

Let $\mathfrak{A}: \mathbb{C}[\sigma] \rightarrow \mathbb{C}$ be as above
Let $W:=\exp (\sigma)=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\ldots$
So $W^{-1}:=\exp (-\sigma)=1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\frac{1}{120}+\frac{1}{720}+\ldots$
Define $\mathfrak{S}: \mathbb{C}[\sigma] \oplus \mathbb{C}[\sigma] W \oplus \mathbb{C}[\sigma] W^{-1} \rightarrow \mathbb{C}$ by

$$
\mathfrak{S}\left(B_{0}+B_{1} W+B_{2} W^{-1}\right):=\mathfrak{A}\left(B_{0}\right)
$$

If \mathfrak{S} had a multiplicative summation \mathfrak{S}^{\prime}, then

How do $\mathbf{S}(\mathbb{C}, \mathbb{C})$ and wMS (\mathbb{C}, \mathbb{C}) compare?

Example

Let $\mathfrak{A}: \mathbb{C}[\sigma] \rightarrow \mathbb{C}$ be as above
Let $W:=\exp (\sigma)=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\ldots$
So $W^{-1}:=\exp (-\sigma)=1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\frac{1}{120}+\frac{1}{720}+\ldots$
Define $\mathfrak{S}: \mathbb{C}[\sigma] \oplus \mathbb{C}[\sigma] W \oplus \mathbb{C}[\sigma] W^{-1} \rightarrow \mathbb{C}$ by

$$
\mathfrak{S}\left(B_{0}+B_{1} W+B_{2} W^{-1}\right):=\mathfrak{A}\left(B_{0}\right)
$$

If \mathfrak{S} had a multiplicative summation \mathfrak{S}^{\prime}, then

$$
1=\mathfrak{S}^{\prime}(1)=\mathfrak{S}^{\prime}\left(W \cdot W^{-1}\right)=\mathfrak{S}^{\prime}(W) \mathfrak{S}^{\prime}\left(W^{-1}\right)=0 \cdot 0=0
$$

an absurdity

Extending Multiplicative Summations

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$

Extending Multiplicative Summations

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$

Definition

We say $\left(D^{\prime}, \mathfrak{S}^{\prime}\right) \in \operatorname{MS}(R, E)$ multiplicatively extends (D, \mathfrak{S}) if $\mathrm{D} \subseteq \mathrm{D}^{\prime}$ and $\mathfrak{S}^{\prime}(X)=\mathfrak{S}(X)$ for each $X \in \mathrm{D}$.

Extending Multiplicative Summations

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$

Definition

We say $\left(D^{\prime}, \mathfrak{S}^{\prime}\right) \in \operatorname{MS}(R, E)$ multiplicatively extends (D, \mathfrak{S}) if $\mathrm{D} \subseteq \mathrm{D}^{\prime}$ and $\mathfrak{S}^{\prime}(X)=\mathfrak{S}(X)$ for each $X \in \mathrm{D}$.

We write $\mathfrak{S}^{\prime} \supseteq \mathfrak{S}$ if \mathfrak{S}^{\prime} multiplicatively extends \mathfrak{S}. This is an inductive ordering.

Extending Multiplicative Summations

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$

Definition

We say \mathfrak{S}^{\prime} canonically multiplicatively extends \mathfrak{S} if for every $\mathfrak{S}^{\prime \prime}$ multiplicatively extending \mathfrak{S}, the summations \mathfrak{S}^{\prime} and $\mathfrak{S}^{\prime \prime}$ have a common multiplicative extension $\widehat{\mathfrak{S}}$.

Extending Multiplicative Summations

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$

Definition

We say \mathfrak{S}^{\prime} canonically multiplicatively extends \mathfrak{S} if for every $\mathfrak{S}^{\prime \prime}$ multiplicatively extending \mathfrak{S}, the summations \mathfrak{S}^{\prime} and $\mathfrak{S}^{\prime \prime}$ have a common multiplicative extension $\widehat{\mathfrak{S}}$.

We say $\overline{\mathfrak{S}}$ is the multiplicative fulfillment of \mathfrak{S} if $\overline{\mathfrak{S}}$ extends every multiplicative canonical extension of \mathfrak{S}.

Extending Multiplicative Summations

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$

Definition

We say \mathfrak{S}^{\prime} canonically multiplicatively extends \mathfrak{S} if for every $\mathfrak{S}^{\prime \prime}$ multiplicatively extending \mathfrak{S}, the summations \mathfrak{S}^{\prime} and $\mathfrak{S}^{\prime \prime}$ have a common multiplicative extension $\widehat{\mathfrak{S}}$.

We say $\overline{\mathfrak{S}}$ is the multiplicative fulfillment of \mathfrak{S} if $\overline{\mathfrak{S}}$ extends every multiplicative canonical extension of \mathfrak{S}.

So what's the multiplicative fulfilment of $\mathfrak{\subseteq}$?

The Scalar Polynomial

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$

The Scalar Polynomial

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$
For $P(t)=\sum_{k=0}^{n} P_{k} t^{k} \in \mathrm{D}[t]$, write
$\mathfrak{S}(P)(t)=\sum_{k=0}^{n} \mathfrak{S}\left(P_{k}\right) t^{k} \in \mathrm{E}[t]$

The Scalar Polynomial

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$
For $P(t)=\sum_{k=0}^{n} P_{k} t^{k} \in \mathrm{D}[t]$, write
$\mathfrak{S}(P)(t)=\sum_{k=0}^{n} \mathfrak{S}\left(P_{k}\right) t^{k} \in \mathrm{E}[t]$

Definition

We say $P(t) \in \mathrm{D}[t]$ is a S-minimal polynomial for X if $P(X)=0$, and $\operatorname{deg} \mathfrak{S}(P) \leq \operatorname{deg} \mathfrak{S}(Q)$ for all $Q(t) \in \mathrm{D}[t]$ with $Q(X)=0$

The Scalar Polynomial

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$
For $P(t)=\sum_{k=0}^{n} P_{k} t^{k} \in \mathrm{D}[t]$, write
$\mathfrak{S}(P)(t)=\sum_{k=0}^{n} \mathfrak{S}\left(P_{k}\right) t^{k} \in \mathbb{E}[t]$

Definition

We say $P(t) \in \mathrm{D}[t]$ is a \mathfrak{S}-minimal polynomial for X if $P(X)=0$, and $\operatorname{deg} \mathfrak{S}(P) \leq \operatorname{deg} \mathfrak{S}(Q)$ for all $Q(t) \in \mathrm{D}[t]$ with $Q(X)=0$

We define the scalar polynomial $s_{X}(t)$ for X to be 0 if $\mathfrak{S}(P)(t)=0$, and to be the unique monic scalar multiple of $\mathfrak{S}(P)(t)$ otherwise

The Scalar Polynomial

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$

The Scalar Polynomial

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $X:=\frac{1+\sqrt{1-4 \sigma+4 \sigma^{3}}}{2-2 \sigma}$

$$
=1-1-2-5-13-36-104-311-955+\ldots
$$

The Scalar Polynomial

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $X:=\frac{1+\sqrt{1-4 \sigma+4 \sigma^{3}}}{2-2 \sigma}$

$$
=1-1-2-5-13-36-104-311-955+\ldots
$$

Then $P(t)=(1-\sigma) t^{2}-t+\left(\sigma+\sigma^{2}\right)$ is an \mathfrak{A}-minimal polynomial for X

The Scalar Polynomial

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $X:=\frac{1+\sqrt{1-4 \sigma+4 \sigma^{3}}}{2-2 \sigma}$

$$
=1-1-2-5-13-36-104-311-955+\ldots
$$

Then $P(t)=(1-\sigma) t^{2}-t+\left(\sigma+\sigma^{2}\right)$ is an \mathfrak{A}-minimal polynomial for X

We compute $\mathfrak{S}(P)(t)=-t+2$

The Scalar Polynomial

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $X:=\frac{1+\sqrt{1-4 \sigma+4 \sigma^{3}}}{2-2 \sigma}$

$$
=1-1-2-5-13-36-104-311-955+\ldots
$$

Then $P(t)=(1-\sigma) t^{2}-t+\left(\sigma+\sigma^{2}\right)$ is an \mathfrak{A}-minimal polynomial for X

We compute $\mathfrak{S}(P)(t)=-t+2$
Then $s_{X}(t)=t-2$

The Scalar Polynomial

Proposition (Dawson-M., 2020)

Let X be a series, and let $x \in \mathrm{E}$. The following are equivalent:

The Scalar Polynomial

Proposition (Dawson-M., 2020)

Let X be a series, and let $x \in \mathrm{E}$. The following are equivalent:

- \mathfrak{S} has a multiplicative extension which sums X to x

The Scalar Polynomial

Proposition (Dawson-M., 2020)

Let X be a series, and let $x \in \mathrm{E}$. The following are equivalent:

- \mathfrak{S} has a multiplicative extension which sums X to x
- $s_{X}(x)=0$

The Scalar Polynomial

Proposition (Dawson-M., 2020)

Let X be a series, and let $x \in \mathrm{E}$. The following are equivalent:

- \mathfrak{S} has a multiplicative extension which sums X to x
- $s_{X}(x)=0$

Definition

We say a series X is \mathfrak{S}-algebraic if $s_{X}(t)$ is nonconstant

The Scalar Polynomial

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$

The Scalar Polynomial

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $X_{+}:=\frac{1+\sqrt{1-4 \sigma+4 \sigma^{3}}}{2-2 \sigma}$

$$
=1-1-2-5-13-36-104-311-955+\ldots
$$

The Scalar Polynomial

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $X_{+}:=\frac{1+\sqrt{1-4 \sigma+4 \sigma^{3}}}{2-2 \sigma}$

$$
=1-1-2-5-13-36-104-311-955+\ldots
$$

Set $X_{-}:=\frac{1-\sqrt{1-4 \sigma+\sigma^{3}}}{2-2 \sigma}$

$$
=0+2+3+6+14+37+105+312+956+\ldots
$$

The Scalar Polynomial

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $X_{+}:=\frac{1+\sqrt{1-4 \sigma+4 \sigma^{3}}}{2-2 \sigma}$

$$
=1-1-2-5-13-36-104-311-955+\ldots
$$

Set $X_{-}:=\frac{1-\sqrt{1-4 \sigma+\sigma^{3}}}{2-2 \sigma}$

$$
=0+2+3+6+14+37+105+312+956+\ldots
$$

Then $s_{X_{+}}(t)=s_{X_{-}}(t)=t-2$

The Scalar Polynomial

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $X_{+}:=\frac{1+\sqrt{1-4 \sigma+4 \sigma^{3}}}{2-2 \sigma}$

$$
=1-1-2-5-13-36-104-311-955+\ldots
$$

Set $X_{-}:=\frac{1-\sqrt{1-4 \sigma+\sigma^{3}}}{2-2 \sigma}$

$$
=0+2+3+6+14+37+105+312+956+\ldots
$$

Then $s_{X_{+}}(t)=s_{X_{-}}(t)=t-2$
Let $\left(\mathrm{D}^{\prime}, \mathfrak{A}^{\prime}\right)$ be any extension of $(\mathbb{C}[t], \mathfrak{A})$

The Scalar Polynomial

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $X_{+}:=\frac{1+\sqrt{1-4 \sigma+4 \sigma^{3}}}{2-2 \sigma}$

$$
=1-1-2-5-13-36-104-311-955+\ldots
$$

Set $X_{-}:=\frac{1-\sqrt{1-4 \sigma+\sigma^{3}}}{2-2 \sigma}$

$$
=0+2+3+6+14+37+105+312+956+\ldots
$$

Then $s_{X_{+}}(t)=s_{X_{-}}(t)=t-2$
Let $\left(\mathrm{D}^{\prime}, \mathfrak{A}^{\prime}\right)$ be any extension of $(\mathbb{C}[t], \mathfrak{A})$
If $X_{+}, X_{-} \in \mathrm{D}^{\prime}$, then $X_{+}+X_{-}=\frac{1}{1-\sigma} \in \mathrm{D}^{\prime}$, an absurdity

Absolutely \mathfrak{S}-Algebraic Series

Definition

A series X is absolutely \mathfrak{S}-algebraic if X is \mathfrak{S}^{\prime}-algebraic for every multiplicative summation \mathfrak{S}^{\prime} extending \mathfrak{S}

Absolutely \mathfrak{S}-Algebraic Series

Definition

A series X is absolutely \mathfrak{S}-algebraic if X is \mathfrak{S}^{\prime}-algebraic for every multiplicative summation \mathfrak{S}^{\prime} extending \mathfrak{S}

Equivalently, a \mathfrak{S}-algebraic series X is absolutely \mathfrak{S}-algebraic if every extension of \mathfrak{S} has an extension which sums X

Absolutely \mathfrak{S}-Algebraic Series

Definition

A series X is absolutely \mathfrak{S}-algebraic if X is \mathfrak{S}^{\prime}-algebraic for every multiplicative summation \mathfrak{S}^{\prime} extending \mathfrak{S}

Equivalently, a \mathfrak{S}-algebraic series X is absolutely \mathfrak{S}-algebraic if every extension of \mathfrak{S} has an extension which sums X

Proposition (Dawson-M., 2020)

Let $P(t)$ be a S-minimal polynomial for X
If $\operatorname{deg} P(t)=\operatorname{deg} s_{X}(t)<\infty$, then X is absolutely \mathfrak{S}-algebraic

Absolutely \mathfrak{S}-Algebraic Series

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$

Absolutely \mathfrak{S}-Algebraic Series

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $Y:=\frac{-1+\sigma+\sqrt{1+6 \sigma+\sigma^{2}-4 \sigma^{3}}}{4-2 \sigma^{2}}$
$=0+1-1+3-10+40-171+767-3556+\ldots$

Absolutely \mathfrak{S}-Algebraic Series

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $Y:=\frac{-1+\sigma+\sqrt{1+6 \sigma+\sigma^{2}-4 \sigma^{3}}}{4-2 \sigma^{2}}$

$$
=0+1-1+3-10+40-171+767-3556+\ldots
$$

Then $P(t)=\left(2-\sigma^{2}\right) t^{2}+(1-\sigma) t-\sigma$ is an \mathfrak{A}-minimal polynomial for Y

Absolutely \mathfrak{S}-Algebraic Series

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $Y:=\frac{-1+\sigma+\sqrt{1+6 \sigma+\sigma^{2}-4 \sigma^{3}}}{4-2 \sigma^{2}}$

$$
=0+1-1+3-10+40-171+767-3556+\ldots
$$

Then $P(t)=\left(2-\sigma^{2}\right) t^{2}+(1-\sigma) t-\sigma$ is an \mathfrak{A}-minimal polynomial for Y

We compute $\mathfrak{S}(P)(t)=t^{2}-1$, so $s_{Y}(t)=(t-1)(t+1)$.

Absolutely \mathfrak{S}-Algebraic Series

Example

Let $\mathfrak{S}=\mathfrak{A} \in \mathbf{M S}(\mathbb{C}, \mathbb{C})$
Set $Y:=\frac{-1+\sigma+\sqrt{1+6 \sigma+\sigma^{2}-4 \sigma^{3}}}{4-2 \sigma^{2}}$

$$
=0+1-1+3-10+40-171+767-3556+\ldots
$$

Then $P(t)=\left(2-\sigma^{2}\right) t^{2}+(1-\sigma) t-\sigma$ is an \mathfrak{A}-minimal polynomial for Y

We compute $\mathfrak{S}(P)(t)=t^{2}-1$, so $s_{Y}(t)=(t-1)(t+1)$.
As $\operatorname{deg} P(t)=\operatorname{deg} s_{Y}(t)=2<\infty$, we see Y is absolutely \mathfrak{A}-algebraic

Absolutely \mathfrak{S}-Univalent Series

Definition

A series X is \mathfrak{S}-univalent (with root ρ_{X}) if X is \mathfrak{S}-algebraic and $s_{X}(t)=\left(t-\rho_{X}\right)^{m}$ for some $m \in \mathbb{N}$

Absolutely \mathfrak{S}-Univalent Series

Definition

A series X is \mathfrak{S}-univalent (with root ρ_{X}) if X is \mathfrak{S}-algebraic and $s_{X}(t)=\left(t-\rho_{X}\right)^{m}$ for some $m \in \mathbb{N}$

Essentially, a series X is \mathfrak{S}-univalent (with root ρ_{X}) if X can only be summed to ρ_{X} by multiplicative extensions of \mathfrak{S}

Absolutely \mathfrak{S}-Univalent Series

Definition

A series X is \mathfrak{S}-univalent (with root ρ_{X}) if X is \mathfrak{S}-algebraic and $s_{X}(t)=\left(t-\rho_{X}\right)^{m}$ for some $m \in \mathbb{N}$

Essentially, a series X is \mathfrak{S}-univalent (with root ρ_{X}) if X can only be summed to ρ_{X} by multiplicative extensions of \mathfrak{S}

Definition

If a series X is \mathfrak{S}-univalent and absolutely \mathfrak{S}-algebraic, we say X is absolutely \mathfrak{S}-univalent

Extending Weakly Multiplicative Summations

Definition
The univalent extension of $(\mathrm{D}, \mathfrak{S})$ is given by

Extending Weakly Multiplicative Summations

Definition

The univalent extension of $(\mathrm{D}, \mathfrak{S})$ is given by
$\mathcal{U D}:=\left\{X \mid X\right.$ is absolutely \mathfrak{S}-univalent with root $\left.\rho_{X}\right\}$,

Extending Weakly Multiplicative Summations

Definition

The univalent extension of $(\mathrm{D}, \mathfrak{S})$ is given by
$\mathcal{U D}:=\left\{X \mid X\right.$ is absolutely \mathfrak{S}-univalent with root $\left.\rho_{X}\right\}$, $\mathcal{U S}: X \mapsto \rho_{X}$.

Extending Weakly Multiplicative Summations

Definition

The univalent extension of $(\mathrm{D}, \mathfrak{S})$ is given by
$\mathcal{U D}:=\left\{X \mid X\right.$ is absolutely \mathfrak{S}-univalent with root $\left.\rho_{X}\right\}$, $\mathcal{U S}: X \mapsto \rho_{X}$.

Extending Weakly Multiplicative Summations

Definition

The univalent extension of $(\mathrm{D}, \mathfrak{S})$ is given by
$\mathcal{U D}:=\left\{X \mid X\right.$ is absolutely \mathfrak{S}-univalent with root $\left.\rho_{X}\right\}$, $\mathcal{U S}: X \mapsto \rho_{X}$.

Theorem (Dawson-M., 2020)

The summation $(\mathcal{U D}, \mathcal{U S})$ is the multiplicative fulfillment of (D, S).

Extending Weakly Multiplicative Summations

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$

Proof Sketch

Clearly $\mathcal{U} \mathfrak{S}$ is a multiplicatively canonical extension of \mathfrak{S}

Extending Weakly Multiplicative Summations

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$

Proof Sketch

Clearly $\mathcal{U} \mathfrak{S}$ is a multiplicatively canonical extension of \mathfrak{S}

Suppose $X \notin \mathcal{U D}$. We have three cases:

Extending Weakly Multiplicative Summations

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$

Proof Sketch

Clearly $\mathcal{U} \mathfrak{S}$ is a multiplicatively canonical extension of \mathfrak{S}

Suppose $X \notin \mathcal{U}$ D. We have three cases:

- Suppose $s_{X}(t)$ has multiple roots. Then there are extensions of \mathfrak{S} which sum X to different values, so X is not in the domain of the multiplicative fulfillment of \mathfrak{S}

Extending Weakly Multiplicative Summations

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$

Proof Sketch

Clearly $\mathcal{U S}$ is a multiplicatively canonical extension of \mathfrak{S}
Suppose $X \notin \mathcal{U D}$. We have three cases:

- Suppose $s_{X}(t)$ has multiple roots. Then there are extensions of \mathfrak{S} which sum X to different values, so X is not in the domain of the multiplicative fulfillment of \mathfrak{S}
- Suppose $s_{X}(t)$ has no roots (so $s_{X}(t)=1$). Then X cannot be summed in any extension of \mathfrak{S}, so X is not in the domain of the multiplicative fulfillment of \mathfrak{S}

Extending Weakly Multiplicative Summations

Fix a multiplicative summation $(\mathrm{D}, \mathfrak{S}) \in \mathbf{M S}(\mathrm{R}, \mathrm{E})$

Proof Sketch

Clearly $\mathcal{U S}$ is a multiplicatively canonical extension of \mathfrak{S}
Suppose $X \notin \mathcal{U D}$. We have three cases:

- Suppose $s_{X}(t)$ has multiple roots. Then there are extensions of \mathfrak{S} which sum X to different values, so X is not in the domain of the multiplicative fulfillment of \mathfrak{S}
- Suppose $s_{X}(t)$ has no roots (so $s_{X}(t)=1$). Then X cannot be summed in any extension of \mathfrak{S}, so X is not in the domain of the multiplicative fulfillment of \mathfrak{S}
- Suppose X is \mathfrak{S}-univalent but not absolutely \mathfrak{S}-univalent. Then there exists an extension \mathfrak{S}^{\prime} of \mathfrak{S} for which $s_{X}(t)=1$, and we reduce to the previous case

What does $\mathcal{U} \mathfrak{S}_{c}$ look like?

Example

Set $Z:=\frac{3-\sigma+\sqrt{1-6 \sigma+5 \sigma^{2}}}{2}=2-2-3-10-36-137-543+\ldots$

What does $\mathcal{U} \mathfrak{S}_{c}$ look like?

Example

Set $Z:=\frac{3-\sigma+\sqrt{1-6 \sigma+5 \sigma^{2}}}{2}=2-2-3-10-36-137-543+\ldots$
Then $P(t)=t^{2}-(3-\sigma) t+\left(2-\sigma^{2}\right)$ is an \mathfrak{S}_{c}-minimal polynomial for Z

What does $\mathcal{U} \mathfrak{S}_{c}$ look like?

Example

Set $Z:=\frac{3-\sigma+\sqrt{1-6 \sigma+5 \sigma^{2}}}{2}=2-2-3-10-36-137-543+\ldots$
Then $P(t)=t^{2}-(3-\sigma) t+\left(2-\sigma^{2}\right)$ is an \mathfrak{S}_{c}-minimal polynomial for Z

We compute $\mathfrak{S}_{c}(P)(t)=t^{2}-2 t+1$, so $s_{Z}(t)=(t-1)^{2}$.

What does $\mathcal{U} \mathfrak{S}_{c}$ look like?

Example

Set $Z:=\frac{3-\sigma+\sqrt{1-6 \sigma+5 \sigma^{2}}}{2}=2-2-3-10-36-137-543+\ldots$
Then $P(t)=t^{2}-(3-\sigma) t+\left(2-\sigma^{2}\right)$ is an \mathfrak{S}_{c}-minimal polynomial for Z

We compute $\mathfrak{S}_{c}(P)(t)=t^{2}-2 t+1$, so $s_{Z}(t)=(t-1)^{2}$.
Then Z is absolutely \mathfrak{S}_{c}-univalent, and $\mathcal{U} \mathfrak{S}(Z)=1$.

What does $\mathcal{U} \mathfrak{S}_{c}$ look like?

Example

Set $Z:=\frac{3-\sigma+\sqrt{1-6 \sigma+5 \sigma^{2}}}{2}=2-2-3-10-36-137-543+\ldots$
Then $P(t)=t^{2}-(3-\sigma) t+\left(2-\sigma^{2}\right)$ is an \mathfrak{S}_{c}-minimal polynomial for Z

We compute $\mathfrak{S}_{c}(P)(t)=t^{2}-2 t+1$, so $s_{Z}(t)=(t-1)^{2}$.
Then Z is absolutely \mathfrak{S}_{c}-univalent, and $\mathcal{U} \mathfrak{S}(Z)=1$.

Thus $\mathcal{U S}_{c} \neq \mathcal{T} \mathfrak{S}_{c}$

Further Questions

What if E is not algebraically closed? What if E is not a field?

Further Questions

What if E is not algebraically closed? What if E is not a field?

What other conditions can we naturally impose on our summations?

Further Questions

What if E is not algebraically closed? What if E is not a field?
What other conditions can we naturally impose on our summations?

What happens if we extend our indices from $\mathbb{N} \subseteq \mathbb{Z}$ to a submonoid of another abelian group?

Further Questions

What if E is not algebraically closed? What if E is not a field?

What other conditions can we naturally impose on our summations?

What happens if we extend our indices from $\mathbb{N} \subseteq \mathbb{Z}$ to a submonoid of another abelian group?

Is there a fruitful algebraic-geometric perspective on all of this?

Thank you for your attention!

