Formal Summation of Divergent Series

Grant Molnar

Dartmouth College

September 26, 2020

Joint Work with Dr. Robert Dawson

Consider the series

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

What is the sum of this series?

Consider the series

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

What is the sum of this series?

$$S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

Consider the series

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

What is the sum of this series?

$$S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

$$S = 1 + \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \right)$$

Consider the series

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

What is the sum of this series?

$$S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

$$S = 1 + \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \right)$$

$$S = 1 + \frac{1}{2}S, \text{ then}$$

Consider the series

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

What is the sum of this series?

$$S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

$$S = 1 + \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \right)$$

$$S = 1 + \frac{1}{2}S, \text{ then}$$

$$S = 2$$

Let $D \subseteq \mathbb{C}^{\mathbb{N}}$ be a set of complex sequences, and write $a_0 + a_1 + \dots$ for $(a_n)_{n \geq 0} \in D$ Let $D \subseteq \mathbb{C}^{\mathbb{N}}$ be a set of complex sequences, and write $a_0 + a_1 + \dots$ for $(a_n)_{n \geq 0} \in D$

Hardy's Axioms (1949)

Let $D \subseteq \mathbb{C}^{\mathbb{N}}$ be a set of complex sequences, and write $a_0 + a_1 + \dots$ for $(a_n)_{n \geq 0} \in D$

Hardy's Axioms (1949)

• If
$$\mathfrak{S}(a_0 + a_1 + \ldots) = A$$
, then $\mathfrak{S}(\alpha a_0 + \alpha a_1 + \ldots) = \alpha A$;

Let $D \subseteq \mathbb{C}^{\mathbb{N}}$ be a set of complex sequences, and write $a_0 + a_1 + \dots$ for $(a_n)_{n \geq 0} \in D$

Hardy's Axioms (1949)

- If $\mathfrak{S}(a_0 + a_1 + \ldots) = A$, then $\mathfrak{S}(\alpha a_0 + \alpha a_1 + \ldots) = \alpha A$;
- If $\mathfrak{S}(a_0 + a_1 + ...) = A$ and $\mathfrak{S}(b_0 + b_1 + ...) = B$, then $\mathfrak{S}((a_0 + b_0) + (a_1 + b_1) + ...) = A + B$;

Let $D \subseteq \mathbb{C}^{\mathbb{N}}$ be a set of complex sequences, and write $a_0 + a_1 + \dots$ for $(a_n)_{n \geq 0} \in D$

Hardy's Axioms (1949)

- If $\mathfrak{S}(a_0 + a_1 + \ldots) = A$, then $\mathfrak{S}(\alpha a_0 + \alpha a_1 + \ldots) = \alpha A$;
- If $\mathfrak{S}(a_0 + a_1 + ...) = A$ and $\mathfrak{S}(b_0 + b_1 + ...) = B$, then $\mathfrak{S}((a_0 + b_0) + (a_1 + b_1) + ...) = A + B$;
- If 𝔅 (a₀ + a₁ + ...) = A, then 𝔅 (a₁ + a₂ + ...) = A − a₀, and conversely.

Summations The Scalar Polynomial Univalent Extension **Concluding Remarks** What is a Summation?

Let R be an integral domain. A (formal) series over R is an element $a_0 + a_1 + \ldots = \sum_n a_n \sigma^n \in \mathsf{R}[[\sigma]]$

Let R be an integral domain. A *(formal) series over* R is an element $a_0 + a_1 + \ldots = \sum_n a_n \sigma^n \in \mathsf{R}[[\sigma]]$

Let E be the algebraic closure of the field of fractions of R

Let R be an integral domain. A *(formal) series over* R is an element $a_0 + a_1 + \ldots = \sum_n a_n \sigma^n \in \mathsf{R}[[\sigma]]$

Let E be the algebraic closure of the field of fractions of R

Let D be an R-module with $R[\sigma] \subseteq D \subseteq R[[\sigma]]$, such that $X \in D$ if and only if $\sigma X \in D$

Let R be an integral domain. A *(formal) series over* R is an element $a_0 + a_1 + \ldots = \sum_n a_n \sigma^n \in \mathsf{R}[[\sigma]]$

Let E be the algebraic closure of the field of fractions of R

Let D be an R-module with $R[\sigma] \subseteq D \subseteq R[[\sigma]]$, such that $X \in D$ if and only if $\sigma X \in D$

Hardy's Axioms (redux)

A summation from R to E (on D) is an R-module homomorphism $\mathfrak{S} : D \to E$, such that $\mathfrak{S}(B) = B(1)$ for every $B \in \mathbb{R}[\sigma]$, and $\mathfrak{S}(X) = \mathfrak{S}(\sigma X)$ for each $X \in D$.

Equivalently, a summation is an R-module homomorphism $\mathfrak{S}: \mathsf{D} \to \mathsf{E}$ which factors through $\mathsf{D}/(1-\sigma)$ and sends 1 to 1

Write \mathfrak{S} or (D, \mathfrak{S}) for the summation (R, D, E, \mathfrak{S})

Write \mathfrak{S} or (D, \mathfrak{S}) for the summation (R, D, E, \mathfrak{S})

Write **S**(R, E) for the set of all summations (D, \mathfrak{S}) from R to E

Note D cannot be $R[[\sigma]]$

Note D cannot be $R[[\sigma]]$

Indeed, if $\frac{1}{1-\sigma} = 1 + 1 + 1 + \ldots \in D$ then $0 = 1 \in E$, an absurdity

Examples

•
$$\mathfrak{S}_{c} \in \mathbf{S}(\mathbb{C},\mathbb{C})$$
 defined by $\mathfrak{S}_{c}\left(\sum_{n}a_{n}\sigma^{n}\right) \coloneqq \lim_{N \to \infty}\sum_{n \leq N}a_{n}$

Examples

- $\mathfrak{S}_{c} \in \mathbf{S}(\mathbb{C},\mathbb{C})$ defined by $\mathfrak{S}_{c}\left(\sum_{n}a_{n}\sigma^{n}\right) \coloneqq \lim_{N \to \infty} \sum_{n < N}a_{n}$
- $\mathfrak{A} \in \mathbf{S}(\mathsf{R},\mathsf{E})$ defined by $\mathfrak{A}\left(\sum_{n} a_{n}\sigma^{n}\right) \coloneqq \sum_{n} a_{n}$ for $\sum_{n} a_{n}\sigma^{n}$ finitely supported

Examples

- $\mathfrak{S}_{c} \in \mathbf{S}(\mathbb{C},\mathbb{C})$ defined by $\mathfrak{S}_{c}\left(\sum_{n}a_{n}\sigma^{n}\right) \coloneqq \lim_{N \to \infty}\sum_{n \leq N}a_{n}$
- $\mathfrak{A} \in \mathbf{S}(\mathsf{R},\mathsf{E})$ defined by $\mathfrak{A}\left(\sum_{n} a_{n}\sigma^{n}\right) \coloneqq \sum_{n} a_{n}$ for $\sum_{n} a_{n}\sigma^{n}$ finitely supported

•
$$\mathfrak{S}_{\mathbb{A}} \in \mathbf{S}(\mathbb{C}, \mathbb{C})$$
 defined by $\mathfrak{S}_{\mathbb{A}}\left(\sum_{n} a_{n} \sigma^{n}\right) \coloneqq \lim_{x \nearrow 1} \sum_{n} a_{n} x^{n}$

Extending Summations

Fix a summation $(D,\mathfrak{S}) \in \boldsymbol{S}(R,E)$

We say $(D', \mathfrak{S}') \in \mathbf{S}(\mathsf{R}, \mathsf{E})$ extends $(\mathsf{D}, \mathfrak{S})$ if $\mathsf{D} \subseteq \mathsf{D}'$ and $\mathfrak{S}'(X) = \mathfrak{S}(X)$ for each $X \in \mathsf{D}$.

Fix a summation $(D, \mathfrak{S}) \in \boldsymbol{S}(R, E)$

Definition

We say $(D', \mathfrak{S}') \in \mathbf{S}(\mathsf{R}, \mathsf{E})$ extends $(\mathsf{D}, \mathfrak{S})$ if $\mathsf{D} \subseteq \mathsf{D}'$ and $\mathfrak{S}'(X) = \mathfrak{S}(X)$ for each $X \in \mathsf{D}$.

We write $\mathfrak{S}' \supseteq \mathfrak{S}$ if \mathfrak{S}' extends \mathfrak{S} . This is an inductive ordering.

Fix a summation
$$(D, \mathfrak{S}) \in \mathbf{S}(\mathsf{R}, \mathsf{E})$$

We say $(D', \mathfrak{S}') \in \mathbf{S}(\mathsf{R}, \mathsf{E})$ extends $(\mathsf{D}, \mathfrak{S})$ if $\mathsf{D} \subseteq \mathsf{D}'$ and $\mathfrak{S}'(X) = \mathfrak{S}(X)$ for each $X \in D$.

We write $\mathfrak{S}' \supset \mathfrak{S}$ if \mathfrak{S}' extends \mathfrak{S} . This is an inductive ordering.

Is there a "best" extension of \mathfrak{S} ?

extension of \mathfrak{S} .

Fix a summation
$$(D, \mathfrak{S}) \in \mathbf{S}(\mathsf{R}, \mathsf{E})$$

The *telescopic extension* of (D, \mathfrak{S}) is given by

Fix a summation
$$(D, \mathfrak{S}) \in \mathbf{S}(\mathsf{R}, \mathsf{E})$$

The *telescopic extension* of (D, \mathfrak{S}) is given by

 $\mathcal{T}\mathsf{D} := \{ X \mid A = B \cdot X \text{ for } A \in \mathsf{D}, B \in \mathsf{R}[\sigma] \text{ with } \mathfrak{S}(B) \neq 0 \},\$

Fix a summation
$$(D, \mathfrak{S}) \in \mathbf{S}(\mathsf{R}, \mathsf{E})$$

The *telescopic extension* of (D, \mathfrak{S}) is given by

 $\mathcal{T}\mathsf{D} := \{ X \mid A = B \cdot X \text{ for } A \in \mathsf{D}, \ B \in \mathsf{R}[\sigma] \text{ with } \mathfrak{S}(B) \neq 0 \},\$ $\mathcal{T}\mathfrak{S} : X \mapsto \mathfrak{S}(A) / \mathfrak{S}(B).$

Fix a summation
$$(D, \mathfrak{S}) \in \mathbf{S}(\mathsf{R}, \mathsf{E})$$

The *telescopic extension* of (D, \mathfrak{S}) is given by

 $\mathcal{T}\mathsf{D} := \{ X \mid A = B \cdot X \text{ for } A \in \mathsf{D}, \ B \in \mathsf{R}[\sigma] \text{ with } \mathfrak{S}(B) \neq 0 \},\$ $\mathcal{T}\mathfrak{S} : X \mapsto \mathfrak{S}(A) / \mathfrak{S}(B).$

Fix a summation
$$(D, \mathfrak{S}) \in \mathbf{S}(\mathsf{R}, \mathsf{E})$$

The *telescopic extension* of (D, \mathfrak{S}) is given by

 $\mathcal{T}\mathsf{D} := \{ X \mid A = B \cdot X \text{ for } A \in \mathsf{D}, \ B \in \mathsf{R}[\sigma] \text{ with } \mathfrak{S}(B) \neq 0 \},\$ $\mathcal{T}\mathfrak{S} : X \mapsto \mathfrak{S}(A) / \mathfrak{S}(B).$

Theorem (Dawson, 1997)

The summation $(TD, T\mathfrak{S})$ is the fulfillment of (D, \mathfrak{S}) .

Let $T = \frac{1}{1-2\sigma} = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + \dots$

Let
$$T = \frac{1}{1-2\sigma} = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + \dots$$

Let $F = 1 - 2\sigma = 1 - 2$

Let
$$T = \frac{1}{1-2\sigma} = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + \dots$$

Let
$$F = 1 - 2\sigma = 1 - 2$$

We see $F \cdot T = 1$ and $\mathfrak{S}_c(F) = -1$

Let
$$T = \frac{1}{1-2\sigma} = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + \dots$$

Let
$$F = 1 - 2\sigma = 1 - 2$$

We see
$$F \cdot T = 1$$
 and $\mathfrak{S}_{c}(F) = -1$

```
Then \mathcal{T}\mathfrak{S}_{c}(T) = \frac{1}{-1} = -1
```

Let
$$T = \frac{1}{1-2\sigma} = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + \dots$$

Let
$$F = 1 - 2\sigma = 1 - 2$$

We see
$$F \cdot T = 1$$
 and $\mathfrak{S}_c(F) = -1$

Then
$$\mathcal{T}\mathfrak{S}_{c}(T) = \frac{1}{-1} = -1$$

Thus $\mathcal{T}\mathfrak{S}_c \neq \mathfrak{S}_c$

A summation $(D, \mathfrak{S}) \in \mathbf{S}(\mathsf{R}, \mathsf{E})$ is *multiplicative* if for all $X, Y \in \mathsf{D}$, we have $XY \in \mathsf{D}$ and $\mathfrak{S}(XY) = \mathfrak{S}(X)\mathfrak{S}(Y)$.

A summation $(D, \mathfrak{S}) \in \mathbf{S}(\mathsf{R}, \mathsf{E})$ is *multiplicative* if for all $X, Y \in \mathsf{D}$, we have $XY \in \mathsf{D}$ and $\mathfrak{S}(XY) = \mathfrak{S}(X)\mathfrak{S}(Y)$.

A summation $(D, \mathfrak{S}) \in \mathbf{S}(R, E)$ is weakly multiplicative if it has a multiplicative extension.

A summation $(D, \mathfrak{S}) \in \mathbf{S}(\mathsf{R}, \mathsf{E})$ is *multiplicative* if for all $X, Y \in \mathsf{D}$, we have $XY \in \mathsf{D}$ and $\mathfrak{S}(XY) = \mathfrak{S}(X)\mathfrak{S}(Y)$.

A summation $(D, \mathfrak{S}) \in \mathbf{S}(R, E)$ is *weakly multiplicative* if it has a multiplicative extension.

Write $\textbf{MS}\left(R,E\right)$ for the set of all multiplicative summations $\left(D,\mathfrak{S}\right)$ from R to E

A summation $(D, \mathfrak{S}) \in \mathbf{S}(\mathsf{R}, \mathsf{E})$ is *multiplicative* if for all $X, Y \in \mathsf{D}$, we have $XY \in \mathsf{D}$ and $\mathfrak{S}(XY) = \mathfrak{S}(X)\mathfrak{S}(Y)$.

A summation $(D, \mathfrak{S}) \in \mathbf{S}(R, E)$ is *weakly multiplicative* if it has a multiplicative extension.

Write $\textbf{MS}\left(R,E\right)$ for the set of all multiplicative summations $\left(D,\mathfrak{S}\right)$ from R to E

Write **wMS** (R, E) for the set of all weakly multiplicative summations (D, \mathfrak{S}) from R to E

A summation $(D, \mathfrak{S}) \in \mathbf{S}(\mathsf{R}, \mathsf{E})$ is *multiplicative* if for all $X, Y \in \mathsf{D}$, we have $XY \in \mathsf{D}$ and $\mathfrak{S}(XY) = \mathfrak{S}(X)\mathfrak{S}(Y)$.

A summation $(D, \mathfrak{S}) \in \mathbf{S}(R, E)$ is *weakly multiplicative* if it has a multiplicative extension.

Write $\textbf{MS}\left(R,E\right)$ for the set of all multiplicative summations $\left(D,\mathfrak{S}\right)$ from R to E

Write **wMS** (R, E) for the set of all weakly multiplicative summations (D, \mathfrak{S}) from R to E

Clearly $MS(R, E) \subseteq wMS(R, E) \subseteq S(R, E)$

What is a Multiplicative Summation?

Equivalently (D, \mathfrak{S}) is multiplicative if D is an R-algebra and $\mathfrak{S}: \mathsf{D} \to \mathsf{E}$ is an R-algebra morphism which factors through $\mathsf{D}/(1-\sigma)$ and sends 1 to 1

What is a Multiplicative Summation?

Equivalently (D, \mathfrak{S}) is multiplicative if D is an R-algebra and $\mathfrak{S}: \mathsf{D} \to \mathsf{E}$ is an R-algebra morphism which factors through $\mathsf{D}/(1-\sigma)$ and sends 1 to 1

What is a Multiplicative Summation?

Equivalently (D, \mathfrak{S}) is multiplicative if D is an R-algebra and $\mathfrak{S}: \mathsf{D} \to \mathsf{E}$ is an R-algebra morphism which factors through $\mathsf{D}/(1-\sigma)$ and sends 1 to 1

Proposition (2020, Dawson-M.)

Every weakly multiplicative summation \mathfrak{S} has a unique minimal multiplicative extension.

•
$$\mathfrak{S}_c$$
 defined by $\mathfrak{S}_c\left(\sum_n a_n \sigma^n\right) \coloneqq \lim_{N \to \infty} \sum_{n \le N} a_n$ is weakly

multiplicative, but not multiplicative

•
$$\mathfrak{S}_c$$
 defined by $\mathfrak{S}_c\left(\sum_n a_n \sigma^n\right) := \lim_{N \to \infty} \sum_{n \le N} a_n$ is weakly

multiplicative, but not multiplicative

•
$$\mathfrak{A}$$
 defined by $\mathfrak{A}\left(\sum_{n}a_{n}\sigma^{n}\right) := \sum_{n}a_{n}$ is multiplicative

• \mathfrak{S}_c defined by $\mathfrak{S}_c\left(\sum_n a_n \sigma^n\right) := \lim_{N \to \infty} \sum_{n \le N} a_n$ is weakly

multiplicative, but not multiplicative

A defined by A (∑_n a_nσⁿ) := ∑_n a_n is multiplicative
S_A defined by S_A (∑_n a_nσⁿ) := lim_{x ≥1} ∑_n a_nxⁿ is multiplicative

How do S (\mathbb{C} , \mathbb{C}) and wMS (\mathbb{C} , \mathbb{C}) compare?

Example

Let $\mathfrak{A}:\mathbb{C}[\sigma]\rightarrow\mathbb{C}$ be as above

How do $S(\mathbb{C},\mathbb{C})$ and wMS (\mathbb{C},\mathbb{C}) compare?

Example

Let $\mathfrak{A}:\mathbb{C}[\sigma]\rightarrow\mathbb{C}$ be as above

Let $W := \exp(\sigma) = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \dots$

How do S (\mathbb{C},\mathbb{C}) and wMS (\mathbb{C},\mathbb{C}) compare?

Example

Let $\mathfrak{A}:\mathbb{C}[\sigma]\to\mathbb{C}$ be as above

Let
$$W := \exp(\sigma) = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \dots$$

So $W^{-1} := \exp(-\sigma) = 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} + \dots$

How do $S(\mathbb{C},\mathbb{C})$ and wMS (\mathbb{C},\mathbb{C}) compare?

Example

Let $\mathfrak{A}:\mathbb{C}[\sigma]\to\mathbb{C}$ be as above

Let
$$W := \exp(\sigma) = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \dots$$

So
$$W^{-1} \coloneqq \exp(-\sigma) = 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} + \dots$$

Define $\mathfrak{S} : \mathbb{C}[\sigma] \oplus \mathbb{C}[\sigma] W \oplus \mathbb{C}[\sigma] W^{-1} \to \mathbb{C}$ by

$$\mathfrak{S}\left(B_0+B_1W+B_2W^{-1}\right):=\mathfrak{A}\left(B_0\right)$$

How do $S(\mathbb{C},\mathbb{C})$ and wMS (\mathbb{C},\mathbb{C}) compare?

Example

Let $\mathfrak{A}: \mathbb{C}[\sigma] \to \mathbb{C}$ be as above

Let
$$W := \exp(\sigma) = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \dots$$

So
$$W^{-1} \coloneqq \exp(-\sigma) = 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} + \dots$$

Define $\mathfrak{S} : \mathbb{C}[\sigma] \oplus \mathbb{C}[\sigma] W \oplus \mathbb{C}[\sigma] W^{-1} \to \mathbb{C}$ by

$$\mathfrak{S}\left(B_{0}+B_{1}W+B_{2}W^{-1}\right)\coloneqq\mathfrak{A}\left(B_{0}\right)$$

If \mathfrak{S} had a multiplicative summation \mathfrak{S}' , then

How do S (\mathbb{C} , \mathbb{C}) and wMS (\mathbb{C} , \mathbb{C}) compare?

Example

Let $\mathfrak{A}: \mathbb{C}[\sigma] \to \mathbb{C}$ be as above

Let
$$W := \exp(\sigma) = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \dots$$

So
$$W^{-1} \coloneqq \exp(-\sigma) = 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} + \dots$$

Define $\mathfrak{S} : \mathbb{C}[\sigma] \oplus \mathbb{C}[\sigma] W \oplus \mathbb{C}[\sigma] W^{-1} \to \mathbb{C}$ by

$$\mathfrak{S}\left(B_{0}+B_{1}W+B_{2}W^{-1}
ight)\coloneqq\mathfrak{A}\left(B_{0}
ight)$$

If \mathfrak{S} had a multiplicative summation \mathfrak{S}' , then

$$\mathbb{1}=\mathfrak{S}'\left(\mathbb{1}
ight)=\mathfrak{S}'\left(\mathcal{W}\cdot\mathcal{W}^{-1}
ight)=\mathfrak{S}'\left(\mathcal{W}
ight)\mathfrak{S}'\left(\mathcal{W}^{-1}
ight)=\mathfrak{0}\cdot\mathfrak{0}=\mathfrak{0},$$

an absurdity

Fix a multiplicative summation $\left(\mathsf{D},\mathfrak{S}\right)\in\textbf{MS}\left(\mathsf{R},\mathsf{E}\right)$

Fix a multiplicative summation $(D, \mathfrak{S}) \in MS(R, E)$

Definition

We say $(D', \mathfrak{S}') \in \mathbf{MS}(\mathsf{R}, \mathsf{E})$ multiplicatively extends $(\mathsf{D}, \mathfrak{S})$ if $\mathsf{D} \subseteq \mathsf{D}'$ and $\mathfrak{S}'(X) = \mathfrak{S}(X)$ for each $X \in \mathsf{D}$.

Fix a multiplicative summation $(\mathsf{D},\mathfrak{S})\in \textbf{MS}\left(\mathsf{R},\mathsf{E}
ight)$

Definition

We say $(D', \mathfrak{S}') \in \mathbf{MS}(\mathsf{R}, \mathsf{E})$ multiplicatively extends $(\mathsf{D}, \mathfrak{S})$ if $\mathsf{D} \subseteq \mathsf{D}'$ and $\mathfrak{S}'(X) = \mathfrak{S}(X)$ for each $X \in \mathsf{D}$.

We write $\mathfrak{S}' \supseteq \mathfrak{S}$ if \mathfrak{S}' multiplicatively extends \mathfrak{S} . This is an inductive ordering.

Fix a multiplicative summation $(D, \mathfrak{S}) \in MS(R, E)$

Definition

We say \mathfrak{S}' canonically multiplicatively extends \mathfrak{S} if for every \mathfrak{S}'' multiplicatively extending \mathfrak{S} , the summations \mathfrak{S}' and \mathfrak{S}'' have a common multiplicative extension $\widehat{\mathfrak{S}}$.

Fix a multiplicative summation $(D, \mathfrak{S}) \in MS(R, E)$

Definition

We say \mathfrak{S}' canonically multiplicatively extends \mathfrak{S} if for every \mathfrak{S}'' multiplicatively extending \mathfrak{S} , the summations \mathfrak{S}' and \mathfrak{S}'' have a common multiplicative extension \mathfrak{S} .

We say $\overline{\mathfrak{S}}$ is the *multiplicative fulfillment* of \mathfrak{S} if $\overline{\mathfrak{S}}$ extends every multiplicative canonical extension of \mathfrak{S} .

Fix a multiplicative summation $(D, \mathfrak{S}) \in MS(R, E)$

Definition

We say \mathfrak{S}' canonically multiplicatively extends \mathfrak{S} if for every \mathfrak{S}'' multiplicatively extending \mathfrak{S} , the summations \mathfrak{S}' and \mathfrak{S}'' have a common multiplicative extension \mathfrak{S} .

We say $\overline{\mathfrak{S}}$ is the *multiplicative fulfillment* of \mathfrak{S} if $\overline{\mathfrak{S}}$ extends every multiplicative canonical extension of \mathfrak{S} .

So what's the multiplicative fulfillment of \mathfrak{S} ?

Fix a multiplicative summation $(\mathsf{D},\mathfrak{S})\in \textbf{MS}\left(\mathsf{R},\mathsf{E}\right)$

Fix a multiplicative summation $(D, \mathfrak{S}) \in MS(R, E)$

For
$$P(t) = \sum_{k=0}^{n} P_k t^k \in D[t]$$
, write
 $\mathfrak{S}(P)(t) = \sum_{k=0}^{n} \mathfrak{S}(P_k) t^k \in E[t]$

Fix a multiplicative summation $(\mathsf{D},\mathfrak{S})\in \textbf{MS}\left(\mathsf{R},\mathsf{E}\right)$

For
$$P(t) = \sum_{k=0}^{n} P_k t^k \in D[t]$$
, write
 $\mathfrak{S}(P)(t) = \sum_{k=0}^{n} \mathfrak{S}(P_k) t^k \in E[t]$

Definition

We say $P(t) \in D[t]$ is a \mathfrak{S} -minimal polynomial for X if P(X) = 0, and deg $\mathfrak{S}(P) \leq \deg \mathfrak{S}(Q)$ for all $Q(t) \in D[t]$ with Q(X) = 0 Fix a multiplicative summation $(\mathsf{D},\mathfrak{S})\in \textbf{MS}\left(\mathsf{R},\mathsf{E}\right)$

For
$$P(t) = \sum_{k=0}^{n} P_k t^k \in \mathsf{D}[t]$$
, write
 $\mathfrak{S}(P)(t) = \sum_{k=0}^{n} \mathfrak{S}(P_k) t^k \in \mathsf{E}[t]$

Definition

We say $P(t) \in D[t]$ is a \mathfrak{S} -minimal polynomial for X if P(X) = 0, and deg $\mathfrak{S}(P) \leq \deg \mathfrak{S}(Q)$ for all $Q(t) \in D[t]$ with Q(X) = 0

We define the scalar polynomial $s_X(t)$ for X to be 0 if $\mathfrak{S}(P)(t) = 0$, and to be the unique monic scalar multiple of $\mathfrak{S}(P)(t)$ otherwise

The Scalar Polynomial

Example

Let $\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}(\mathbb{C},\mathbb{C})$

The Scalar Polynomial

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}(\mathbb{C},\mathbb{C})$$

Set
$$X := \frac{1 + \sqrt{1 - 4\sigma + 4\sigma^3}}{2 - 2\sigma}$$

= 1 - 1 - 2 - 5 - 13 - 36 - 104 - 311 - 955 + ...

The Scalar Polynomial

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}\left(\mathbb{C}, \mathbb{C}\right)$$

Set
$$X := \frac{1 + \sqrt{1 - 4\sigma + 4\sigma^3}}{2 - 2\sigma}$$

= 1 - 1 - 2 - 5 - 13 - 36 - 104 - 311 - 955 + ...

Then $P(t) = (1 - \sigma)t^2 - t + (\sigma + \sigma^2)$ is an \mathfrak{A} -minimal polynomial for X

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}\left(\mathbb{C}, \mathbb{C}\right)$$

Set
$$X := \frac{1 + \sqrt{1 - 4\sigma + 4\sigma^3}}{2 - 2\sigma}$$

= 1 - 1 - 2 - 5 - 13 - 36 - 104 - 311 - 955 + ...

Then $P(t) = (1 - \sigma)t^2 - t + (\sigma + \sigma^2)$ is an \mathfrak{A} -minimal polynomial for X

We compute $\mathfrak{S}(P)(t) = -t + 2$

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}(\mathbb{C},\mathbb{C})$$

Set
$$X := \frac{1 + \sqrt{1 - 4\sigma + 4\sigma^3}}{2 - 2\sigma}$$

= 1 - 1 - 2 - 5 - 13 - 36 - 104 - 311 - 955 + ...

Then $P(t) = (1 - \sigma)t^2 - t + (\sigma + \sigma^2)$ is an \mathfrak{A} -minimal polynomial for X

We compute $\mathfrak{S}(P)(t) = -t + 2$

Then $s_X(t) = t - 2$

Proposition (Dawson-M., 2020)

Let X be a series, and let $x \in E$. The following are equivalent:

Proposition (Dawson-M., 2020)

Let X be a series, and let $x \in E$. The following are equivalent:

• \mathfrak{S} has a multiplicative extension which sums X to x

Proposition (Dawson-M., 2020)

Let X be a series, and let $x \in E$. The following are equivalent:

• \mathfrak{S} has a multiplicative extension which sums X to x

•
$$s_X(x) = 0$$

Proposition (Dawson-M., 2020)

Let X be a series, and let $x \in E$. The following are equivalent:

- \mathfrak{S} has a multiplicative extension which sums X to x
- $s_X(x) = 0$

Definition

We say a series X is \mathfrak{S} -algebraic if $s_X(t)$ is nonconstant

Example

Let $\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}(\mathbb{C},\mathbb{C})$

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}(\mathbb{C},\mathbb{C})$$

Set
$$X_+ := \frac{1 + \sqrt{1 - 4\sigma + 4\sigma^3}}{2 - 2\sigma}$$

= 1 - 1 - 2 - 5 - 13 - 36 - 104 - 311 - 955 + ...

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}(\mathbb{C},\mathbb{C})$$

Set
$$X_+ := \frac{1 + \sqrt{1 - 4\sigma + 4\sigma^3}}{2 - 2\sigma}$$

= 1 - 1 - 2 - 5 - 13 - 36 - 104 - 311 - 955 + ...

Set
$$X_{-} := \frac{1 - \sqrt{1 - 4\sigma + \sigma^3}}{2 - 2\sigma}$$

= 0 + 2 + 3 + 6 + 14 + 37 + 105 + 312 + 956 + ...

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}(\mathbb{C},\mathbb{C})$$

Set
$$X_+ := \frac{1 + \sqrt{1 - 4\sigma + 4\sigma^3}}{2 - 2\sigma}$$

= 1 - 1 - 2 - 5 - 13 - 36 - 104 - 311 - 955 + ...

Set
$$X_{-} := \frac{1 - \sqrt{1 - 4\sigma + \sigma^3}}{2 - 2\sigma}$$

= 0 + 2 + 3 + 6 + 14 + 37 + 105 + 312 + 956 + ...

Then $s_{X_+}(t) = s_{X_-}(t) = t - 2$

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}\left(\mathbb{C}, \mathbb{C}\right)$$

Set
$$X_+ := \frac{1 + \sqrt{1 - 4\sigma + 4\sigma^3}}{2 - 2\sigma}$$

= 1 - 1 - 2 - 5 - 13 - 36 - 104 - 311 - 955 + ...

Set
$$X_{-} := \frac{1 - \sqrt{1 - 4\sigma + \sigma^3}}{2 - 2\sigma}$$

= 0 + 2 + 3 + 6 + 14 + 37 + 105 + 312 + 956 + ...

Then
$$s_{X_+}(t) = s_{X_-}(t) = t - 2$$

Let $(\mathsf{D}',\mathfrak{A}')$ be any extension of $(\mathbb{C}[t],\mathfrak{A})$

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}\left(\mathbb{C}, \mathbb{C}\right)$$

Set
$$X_+ := \frac{1 + \sqrt{1 - 4\sigma + 4\sigma^3}}{2 - 2\sigma}$$

= 1 - 1 - 2 - 5 - 13 - 36 - 104 - 311 - 955 + ...

Set
$$X_{-} := \frac{1 - \sqrt{1 - 4\sigma + \sigma^3}}{2 - 2\sigma}$$

= 0 + 2 + 3 + 6 + 14 + 37 + 105 + 312 + 956 + ...

Then
$$s_{X_+}(t) = s_{X_-}(t) = t - 2$$

Let $(\mathsf{D}',\mathfrak{A}')$ be any extension of $(\mathbb{C}[t],\mathfrak{A})$

If $X_+,\ X_-\in \mathsf{D}'$, then $X_++X_-=rac{1}{1-\sigma}\in \mathsf{D}'$, an absurdity

Definition

A series X is absolutely \mathfrak{S} -algebraic if X is \mathfrak{S}' -algebraic for every multiplicative summation \mathfrak{S}' extending \mathfrak{S}

Definition

A series X is absolutely \mathfrak{S} -algebraic if X is \mathfrak{S}' -algebraic for every multiplicative summation \mathfrak{S}' extending \mathfrak{S}

Equivalently, a \mathfrak{S} -algebraic series X is absolutely \mathfrak{S} -algebraic if every extension of \mathfrak{S} has an extension which sums X

Definition

A series X is absolutely \mathfrak{S} -algebraic if X is \mathfrak{S}' -algebraic for every multiplicative summation \mathfrak{S}' extending \mathfrak{S}

Equivalently, a \mathfrak{S} -algebraic series X is absolutely \mathfrak{S} -algebraic if every extension of \mathfrak{S} has an extension which sums X

Proposition (Dawson-M., 2020)

Let P(t) be a \mathfrak{S} -minimal polynomial for X

If deg $P(t) = \deg s_X(t) < \infty$, then X is absolutely \mathfrak{S} -algebraic

Univalent Extension

Concluding Remarks

Absolutely G-Algebraic Series

Example

Let $\mathfrak{S}=\mathfrak{A}\in \textbf{MS}\left(\mathbb{C},\mathbb{C}\right)$

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}(\mathbb{C},\mathbb{C})$$

Set
$$Y := \frac{-1 + \sigma + \sqrt{1 + 6\sigma + \sigma^2 - 4\sigma^3}}{4 - 2\sigma^2}$$

= 0 + 1 - 1 + 3 - 10 + 40 - 171 + 767 - 3556 + ...

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}\left(\mathbb{C}, \mathbb{C}\right)$$

Set
$$Y := \frac{-1+\sigma+\sqrt{1+6\sigma+\sigma^2-4\sigma^3}}{4-2\sigma^2}$$

= 0 + 1 - 1 + 3 - 10 + 40 - 171 + 767 - 3556 + ...

Then $P(t) = (2 - \sigma^2) t^2 + (1 - \sigma) t - \sigma$ is an \mathfrak{A} -minimal polynomial for Y

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}(\mathbb{C},\mathbb{C})$$

Set
$$Y := \frac{-1+\sigma+\sqrt{1+6\sigma+\sigma^2-4\sigma^3}}{4-2\sigma^2}$$

= 0 + 1 - 1 + 3 - 10 + 40 - 171 + 767 - 3556 + ...

Then $P(t) = (2 - \sigma^2) t^2 + (1 - \sigma) t - \sigma$ is an \mathfrak{A} -minimal polynomial for Y

We compute $\mathfrak{S}(P)(t) = t^2 - 1$, so $s_Y(t) = (t - 1)(t + 1)$.

Example

Let
$$\mathfrak{S} = \mathfrak{A} \in \mathsf{MS}(\mathbb{C},\mathbb{C})$$

Set
$$Y := \frac{-1+\sigma+\sqrt{1+6\sigma+\sigma^2-4\sigma^3}}{4-2\sigma^2}$$

= 0 + 1 - 1 + 3 - 10 + 40 - 171 + 767 - 3556 + ...

Then $P(t) = (2 - \sigma^2) t^2 + (1 - \sigma) t - \sigma$ is an \mathfrak{A} -minimal polynomial for Y

We compute $\mathfrak{S}(P)(t) = t^2 - 1$, so $s_Y(t) = (t - 1)(t + 1)$.

As deg $P(t) = \deg s_Y(t) = 2 < \infty$, we see Y is absolutely \mathfrak{A} -algebraic

Absolutely S-Univalent Series

Definition

A series X is \mathfrak{S} -univalent (with root ρ_X) if X is \mathfrak{S} -algebraic and $s_X(t) = (t - \rho_X)^m$ for some $m \in \mathbb{N}$

Absolutely G-Univalent Series

Definition

A series X is \mathfrak{S} -univalent (with root ρ_X) if X is \mathfrak{S} -algebraic and $s_X(t) = (t - \rho_X)^m$ for some $m \in \mathbb{N}$

Essentially, a series X is \mathfrak{S} -univalent (with root ρ_X) if X can only be summed to ρ_X by multiplicative extensions of \mathfrak{S}

Absolutely G-Univalent Series

Definition

A series X is \mathfrak{S} -univalent (with root ρ_X) if X is \mathfrak{S} -algebraic and $s_X(t) = (t - \rho_X)^m$ for some $m \in \mathbb{N}$

Essentially, a series X is \mathfrak{S} -univalent (with root ρ_X) if X can only be summed to ρ_X by multiplicative extensions of \mathfrak{S}

Definition

If a series X is \mathfrak{S} -univalent and absolutely \mathfrak{S} -algebraic, we say X is absolutely \mathfrak{S} -univalent

Definition

The univalent extension of (D, \mathfrak{S}) is given by

Definition

The *univalent extension* of (D, \mathfrak{S}) is given by

 $\mathcal{U}\mathsf{D} \coloneqq \{X \mid X \text{ is absolutely } \mathfrak{S}\text{-univalent with root } \rho_X \},\$

Definition

The *univalent extension* of (D, \mathfrak{S}) is given by

 $\mathcal{U}\mathsf{D} \coloneqq \{X \mid X \text{ is absolutely } \mathfrak{S}\text{-univalent with root } \rho_X \},\$ $\mathcal{U}\mathfrak{S}: X \mapsto \rho_X.$

Definition

The *univalent extension* of (D, \mathfrak{S}) is given by

 $\mathcal{U}\mathsf{D} \coloneqq \{X \mid X \text{ is absolutely } \mathfrak{S}\text{-univalent with root } \rho_X \},\$ $\mathcal{U}\mathfrak{S}: X \mapsto \rho_X.$

Definition

The univalent extension of (D, \mathfrak{S}) is given by

 $\begin{aligned} \mathcal{U}\mathsf{D} &:= \left\{ X \mid X \text{ is absolutely } \mathfrak{S}\text{-univalent with root } \rho_X \right\}, \\ \mathcal{U}\mathfrak{S} &: X \mapsto \rho_X. \end{aligned}$

Theorem (Dawson-M., 2020)

The summation $(\mathcal{U}D,\mathcal{U}\mathfrak{S})$ is the multiplicative fulfillment of (D,\mathfrak{S}) .

Fix a multiplicative summation $(\mathsf{D},\mathfrak{S})\in \textbf{MS}\left(\mathsf{R},\mathsf{E}\right)$

Proof Sketch

Clearly $\mathcal{U}\mathfrak{S}$ is a multiplicatively canonical extension of \mathfrak{S}

Fix a multiplicative summation $(D,\mathfrak{S}) \in \textbf{MS}(R,E)$

Proof Sketch

Clearly $\mathcal{U}\mathfrak{S}$ is a multiplicatively canonical extension of \mathfrak{S}

Suppose $X \notin UD$. We have three cases:

Fix a multiplicative summation $(\mathsf{D},\mathfrak{S})\in \textbf{MS}\left(\mathsf{R},\mathsf{E}\right)$

Proof Sketch

Clearly $\mathcal{U}\mathfrak{S}$ is a multiplicatively canonical extension of \mathfrak{S}

Suppose $X \notin \mathcal{U}D$. We have three cases:

 Suppose s_X(t) has multiple roots. Then there are extensions of S which sum X to different values, so X is not in the domain of the multiplicative fulfillment of S

Fix a multiplicative summation $(\mathsf{D},\mathfrak{S})\in \textbf{MS}\left(\mathsf{R},\mathsf{E}\right)$

Proof Sketch

Clearly $\mathcal{U}\mathfrak{S}$ is a multiplicatively canonical extension of \mathfrak{S}

Suppose $X \notin UD$. We have three cases:

- Suppose s_X(t) has multiple roots. Then there are extensions of S which sum X to different values, so X is not in the domain of the multiplicative fulfillment of S
- Suppose s_X(t) has no roots (so s_X(t) = 1). Then X cannot be summed in any extension of G, so X is not in the domain of the multiplicative fulfillment of G

Fix a multiplicative summation $(\mathsf{D},\mathfrak{S})\in \textbf{MS}\left(\mathsf{R},\mathsf{E}\right)$

Proof Sketch

Clearly $\mathcal{U}\mathfrak{S}$ is a multiplicatively canonical extension of \mathfrak{S}

Suppose $X \notin \mathcal{U}D$. We have three cases:

- Suppose s_X(t) has multiple roots. Then there are extensions of G which sum X to different values, so X is not in the domain of the multiplicative fulfillment of G
- Suppose s_X(t) has no roots (so s_X(t) = 1). Then X cannot be summed in any extension of G, so X is not in the domain of the multiplicative fulfillment of G
- Suppose X is \mathfrak{S} -univalent but not absolutely \mathfrak{S} -univalent. Then there exists an extension \mathfrak{S}' of \mathfrak{S} for which $s_X(t) = 1$, and we reduce to the previous case

Example

Set
$$Z := \frac{3-\sigma+\sqrt{1-6\sigma+5\sigma^2}}{2} = 2-2-3-10-36-137-543+\dots$$

Example

Set
$$Z := \frac{3-\sigma+\sqrt{1-6\sigma+5\sigma^2}}{2} = 2-2-3-10-36-137-543+\dots$$

Then $P(t) = t^2 - (3 - \sigma)t + (2 - \sigma^2)$ is an \mathfrak{S}_c -minimal polynomial for Z

What does \mathcal{US}_c look like?

Example

Set
$$Z := \frac{3-\sigma+\sqrt{1-6\sigma+5\sigma^2}}{2} = 2-2-3-10-36-137-543+\dots$$

Then
$$P(t) = t^2 - (3 - \sigma)t + (2 - \sigma^2)$$
 is an \mathfrak{S}_c -minimal polynomial for Z

We compute
$$\mathfrak{S}_{c}(P)(t) = t^{2} - 2t + 1$$
, so $s_{Z}(t) = (t - 1)^{2}$.

Example

Set
$$Z := \frac{3-\sigma+\sqrt{1-6\sigma+5\sigma^2}}{2} = 2-2-3-10-36-137-543+\dots$$

Then $P(t) = t^2 - (3 - \sigma)t + (2 - \sigma^2)$ is an \mathfrak{S}_c -minimal polynomial for Z

We compute
$$\mathfrak{S}_{c}(P)(t) = t^{2} - 2t + 1$$
, so $s_{Z}(t) = (t - 1)^{2}$.

Then Z is absolutely \mathfrak{S}_c -univalent, and $\mathcal{U}\mathfrak{S}(Z) = 1$.

Example

Set
$$Z := \frac{3-\sigma+\sqrt{1-6\sigma+5\sigma^2}}{2} = 2-2-3-10-36-137-543+\dots$$

Then $P(t) = t^2 - (3 - \sigma)t + (2 - \sigma^2)$ is an \mathfrak{S}_c -minimal polynomial for Z

We compute
$$\mathfrak{S}_{c}(P)(t) = t^{2} - 2t + 1$$
, so $s_{Z}(t) = (t - 1)^{2}$.

Then Z is absolutely \mathfrak{S}_c -univalent, and $\mathcal{U}\mathfrak{S}(Z) = 1$.

Thus $\mathcal{U}\mathfrak{S}_c \neq \mathcal{T}\mathfrak{S}_c$

What if E is not algebraically closed? What if E is not a field?

What if E is not algebraically closed? What if E is not a field?

What other conditions can we naturally impose on our summations?

What if E is not algebraically closed? What if E is not a field?

What other conditions can we naturally impose on our summations?

What happens if we extend our indices from $\mathbb{N} \subseteq \mathbb{Z}$ to a submonoid of another abelian group?

What if E is not algebraically closed? What if E is not a field?

What other conditions can we naturally impose on our summations?

What happens if we extend our indices from $\mathbb{N} \subseteq \mathbb{Z}$ to a submonoid of another abelian group?

Is there a fruitful algebraic-geometric perspective on all of this?

Thank you for your attention!