K. İlhan İkeda

Boğaziçi University

September 26, 2020

Québec-Maine Number Theory Conference 2020 - A Zoom meeting -

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline of the talk.

Restricted free products of topological groups

Notation Universal mapping property of free products Definition of restricted free products of topological groups Universal mapping property of restricted free products Why restricted free products ?

Automorphic Langlands group L_K of a number field K

Notation

Local non-abelian reciprocity map of K_{ν} ($\nu \in \mathbf{h}_{K}$)

The local Langlands group $L_{K_{\nu}}$ of K_{ν} ($\nu \in \mathbf{h}_{K} \cup \mathbf{a}_{K}$)

Weil-Arthur idèles of K

Automorphic Langlands group L_K of K

Restricted free products of topological groups

Notation

Notation.

- {G_i}_{i∈I}: a collection of k_ω-topological groups, where the index set I is countable.
- ▶ For all but finitely many $i \in I$, let O_i be a fixed open subgroup of G_i .
- I_∞: the finite subset of *I* consisting of all *i* ∈ *I* for which O_i is not defined.

References.

[1] S. P. Franklin and B. V. S. Thomas, A survey of k_{ω} -spaces, Topology Proc. 2 (1977), no. 1, 111–124 (1978).

[2] H. Glöckner, R. Gramlich, and T. Hartnick, *Final group topologies, Kac-Moody groups and Pontryagin duality*, Israel J. Math.177 (2010), 49–101.

[3] M. I. Graev, On free products of topological groups, Izvestiya Akad. Nauk SSSR. Ser. Mat.14 (1950), 343–354.

[4] S. A. Morris, *Free products of topological groups*, Bull. Austral. Math. Soc.4 (1971),17–29.

[5] J. Neukirch, A. Schmidt, K. Wingberg, *Cohomology of Number Fields* (2nd ed.), Springer Verlag, 2013.

Restricted free products of topological groups

Universal mapping property of free products

Universal mapping property of free products.

Let *_{i∈I} G_i denote the free product of the collection {G_i}_{i∈I} together with the canonical embeddings

$$\iota_{i_o}:G_{i_o}\hookrightarrow \underset{i\in I}{*}G_i,$$

for each $i_o \in I$.

The universal mapping property of free products: Let *H* be a topological group s.t. ∀*i*_o ∈ *I*, ∃ a cont. homomorphism φ_{i_o} : G_{i_o} → *H*.
 THEN: ∃! cont. homomorphism φ : *_{i∈I} G_i → *H*, such that φ ∘ ι_{i_o} = φ_{i_o}, for every *i_o* ∈ *I*.

Restricted free products of topological groups

Definition of restricted free products of topological groups

Definition (Restricted free products of top. groups).

For every finite subset S of I satisfying I_∞ ⊆ S, define the topological group

$$G_{\mathcal{S}} := \underset{i \notin \mathcal{S}}{*} O_i * \left(\underset{i \in \mathcal{S}}{*} G_i \right)$$

as the free product of the topological groups O_i , for $i \in I - S$, and G_i , for $i \in S$.

- *G_S* exists in the category of topological groups.
- ▶ For finite subsets *S* and *T* of *I*, such that $I_{\infty} \subseteq S \subseteq T$, the continuous homomorphism

$$\tau_S^T: G_S \to G_T$$

for $S \subseteq T$ is defined naturally by the "universal mapping property of free products".

Restricted free products of topological groups

Definition of restricted free products of topological groups

► The restricted free product of the collection {G_i}_{i∈1} with respect to the collection {O_i}_{i∈1-1∞}, which is denoted by *'_{i∈1}(G_i : O_i), is defined by the injective limit

$$*_{i\in I}'(G_i:O_i):=\varinjlim_S G_S$$

of G_S over all possible such finite $S \subset I$ s.t. $I_{\infty} \subseteq S$, where the connecting morphism are

$$\tau_S^T: G_S \to G_T$$

for $S \subseteq T$.

The topology on *'_{i∈I}(G_i : O_i): defined by declaring X ⊆ *'_{i∈I}(G_i : O_i) to be open if X ∩ G_S is open in G_S for every S. So, endowed with this topology, *'_{i∈I}(G_i : O_i) is a topological group. This is the place where the assumption that I is countable and ∀i ∈ I, G_i is a k_ω-group is used.

Restricted free products of topological groups

Universal mapping property of restricted free products

Universal mapping property of restricted free products.

- Let *H* be a topological group.
- ▶ Assume: $\forall i \in I$, \exists a cont. homomorphism

$$\phi_i: G_i \to H.$$

THEN,

- ▶ \exists ! cont. homomorphism $\phi_S : G_S \to H$, \forall finite $S \underset{finite}{\subset} I$ s.t. $I_{\infty} \subseteq S$, and
- ► $\exists ! \text{ cont. homomorphism } \phi = \varinjlim_{S} \phi_{S} : *'_{i \in I}(G_{i} : O_{i}) \to H$ satisfying

$$\phi_{S} = \phi \circ c_{S} : G_{S} \xrightarrow{c_{S}} *'_{i \in I} (G_{i} : O_{i}) \xrightarrow{\phi} H,$$

where $c_S: G_S \to *'_{i \in I}(G_i: O_i)$ is the canonical hom., $\forall S$.

Restricted free products of topological groups

Why restricted free products ?

Why restricted free products ?

Because :

$$st_{i\in I}'(G_i:O_i) \xrightarrow{\mathrm{ab}} (st_{i\in I}'(G_i:O_i))^{\mathrm{ab}} \xrightarrow{\sim} \prod_{i\in I}'(G_i^{ab}:O_i^{ab}).$$

Here, $\prod_{i \in I}' (G_i^{ab} : O_i^{ab})$ is the restricted direct product of the collection $\{G_i^{ab}\}_{i \in I}$ w.r.t. the collection $\{O_i^{ab}\}_{i \in I-I_{\infty}}$.

- Choosing the index set *I* as the set of places of a global field *K*, the groups *G_i* for *i* ∈ *I*, and *O_i* for *i* ∈ *I* − *I*_∞ as certain "arithmetical objects attached to the global field *K*" in such a way that *G_i^{ab}* ≃ *K_i[×]* and *O_i^{ab}* ≃ *U_{K_i}* for places *i* of *K*, this group may be viewed as a non-commutative generalization of J_K, the idèle group of *K*.
- Such a non-abelian generalization of the idèle group J_K of K is only possible, if we have a reasonable local non-abelian class field theory over K_ν in the sense of Hasse, for finite places ν of K.

Automorphic Langlands group L_K of a number field K

- Notation

Notation.

- K := a number field (or more generally a global field).
- $\mathbf{h}_K = \mathbf{f}_K :=$ the set of all finite places of K.
- $\mathbf{a}_K = \infty_K :=$ the set of all infinite places of K.
- $K_{\nu} :=$ the ν -adic completion of K at a place ν of K.

References.

[1] J. Arthur, A note on the automorphic Langlands group, Canad. Math. Bull., 45(4), 2002, pp. 466-482.

[2] K.I.I., A note on Arthur's construction of the automorphic Langlands group, preprint.

[3] K.I.I., On a group closely related with the automorphic Langlands group, J. Korean Math. Soc. 2020 57 (1), 21–59.

[4] K.I.I., On the non-abelian global class field theory, Annales Math. Québec, 37(2), 2013, pp. 129-172.

- [5] K.I.I. and E. Serbest, Non-abelian local reciprocity law, Manuscripta Math. 132, 2010, pp. 19-49.
- [6] K.I.I. and E. Serbest, Ramification theory in non-abelian local class field theory, Acta Arithmetica, 144, 2010, pp.373-393.

[7] R.P. Langlands, *Beyond endoscopy*, Contributions to automorphic forms, geometry, and number theory, pp. 611–697, Johns Hopkins Univ. Press, Baltimore, MD, 2004.

[8] F. Laubie, Une théorie non abélienne du corps de classes local, Compositio Math., 143, 2007, pp. 339-362.

Automorphic Langlands group L_K of a number field K

Local non-abelian reciprocity map of K_{ν} ($\nu \in \mathbf{h}_{K}$)

Local non-abelian reciprocity map of K_{ν} ($\nu \in \mathbf{h}_{K}$) The groups $\nabla_{\kappa_{\nu}}^{(\varphi_{\kappa_{\nu}})}$ for $v \in \mathbf{h}_{K}$

The aim here is to review very briefly the references [5,8] .

- ► For $\nu \in \mathbf{f}_{\mathcal{K}}$, we fix a lifting (=a Lubin-Tate splitting) $\varphi_{\mathcal{K}_{\nu}}$ of the Frobenius automorphism $\operatorname{Frob}_{\mathcal{K}_{\nu}}$ of $\mathcal{K}_{\nu}^{\operatorname{pr}}$ to $\mathcal{K}_{\nu}^{\operatorname{sep}}$.
- There exists a topological group ∇^(φ_{K_v})_{K_v} depending on K_ν, whose construction uses the theory of APF-extensions and fields of norms of Fontaine-Wintenberger.
- ► The topological group ∇^(φ_{κ_v}) comes equipped with a topological isomorphism

$$\{\bullet, K_{\nu}\}_{\varphi_{\nu}}^{\text{Galois}}: \nabla_{K_{\upsilon}}^{(\varphi_{K_{\upsilon}})} \xrightarrow{\sim} G_{K_{\upsilon}},$$

we call the local non-abelian norm residue isomorphism of K_{ν} , because it very much behaves like local abelian norm residue map of K_{ν} .

In what follows, we shall consider the "Weil form" of the local non-abelian norm residue isomorphism

$$\{\bullet, K_{\nu}\}_{\varphi_{\nu}}^{\operatorname{Weil}} : {}_{\mathbb{Z}}\nabla_{K_{\upsilon}}^{(\varphi_{K_{\upsilon}})} \xrightarrow{\sim} W_{K_{\upsilon}},$$

of K_v .

Automorphic Langlands group L_K of a number field K

Local non-abelian reciprocity map of K_{ν} ($\nu \in \mathbf{h}_{K}$)

Local non-abelian reciprocity map of K_{ν} ($\nu \in \mathbf{h}_{K}$) Ramification filtration on $W_{\kappa_{\nu}}$ in upper numbering

There exists a subgroup _Z∇^{(φκ_v) <u>e</u>} of _Z∇^(φκ_v) so that the "Weil form" of the local non-abelian norm residue isomorphism {●, K_ν}^{Weil} of K_v induces an isomorphism

$$\{\bullet, K_{\nu}\}_{\varphi_{\nu}}^{\text{Weil}} : {}_{\mathbb{Z}}\nabla_{K_{\nu}}^{(\varphi_{K_{\nu}})^{\underline{o}}} \xrightarrow{\sim} W_{K_{\nu}}^{\underline{o}}$$

of topological groups (for details look at [6]).

The well-known "local abelian class field theory" and the "local non-abelian class field theory" can be summarized and associated via the following tables :

 \square Automorphic Langlands group L_K of a number field K

Local non-abelian reciprocity map of K_{ν} ($\nu \in \mathbf{h}_{K}$)

Local non-abelian reciprocity map of K_{ν} ($\nu \in \mathbf{h}_{K}$) Summary

Non-abelian local C.F.T. (φ_K fixed)		
$G_{K_{ u}}$	$ abla_{\mathcal{K}_{ u}}^{(arphi_{\mathcal{K}_{ u}})}$	
$W_{K_{ u}}$	$_{\mathbb{Z}} abla^{(arphi_{\kappa_{ u}})}_{\kappa_{ u}}$	
$W^0_{K_{\nu}}$	$_{1} abla_{\mathcal{K}_{ u}}^{(arphi_{\mathcal{K}_{ u}})\underline{0}}$	
$W^{\delta}_{K_{ u}}, \ \delta \in (i-1,i]$	$_{1} abla^{(arphi_{\kappa_{ u}})^{\underline{i}}}_{\kappa_{ u}}$	

and via abelianization:

Abelian local class fie	ld theory		
$G^{ab}_{K_ u}$	$\widehat{K_{\nu}^{ imes}}$		
$W^{ab}_{K_{ u}}$	$K_ u^ imes$		
$W^{ab0}_{K_{ u}}$	$U_{K_{ u}}$		
$W^{ab\delta}_{K_ u}, \; \delta \in (i-1,i]$	$U^i_{K_ u}$		
	4 □ ▶	(周) (ヨ) (ヨ)	1

Automorphic Langlands group L_K of a number field K

└─ The local Langlands group $L_{K_{\nu}}$ of K_{ν} ($\nu \in \mathbf{h}_{K} \cup \mathbf{a}_{K}$)

The local Langlands group $L_{K_{\nu}}$ of K_{ν} ($\nu \in \mathbf{h}_{K} \cup \mathbf{a}_{K}$)

► The absolute Langlands group L_{K_ν} of K_ν (which exists!) is defined by:

•
$$L_{K_{\nu}} := WA_{K_{\nu}} := W_{K_{\nu}} \times SU(2, \mathbb{R})$$
, if $\nu \in \mathbf{h}_{K}$;

• $L_{K_{\nu}} := W_{K_{\nu}}$, if $\nu \in \mathbf{a}_{K}$,

where $W_{K_{\nu}}$ denotes the Weil group of K_{ν} . Recall: $W_{\mathbb{C}} = \mathbb{C}^{\times}$ and $W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j\mathbb{C}^{\times}$.

▶ For $\nu \in \mathbf{h}_{K}$, fix a Lubin-Tate splitting $\varphi_{K_{\nu}}$. The local non-abelian norm residue isomorphism

$$\{\bullet, K_{\nu}\}_{\varphi_{\nu}}^{\mathrm{Weil}} : {}_{\mathbb{Z}} \nabla_{K_{\nu}}^{(\varphi_{K_{\nu}})} \xrightarrow{\sim} W_{K_{\nu}}$$

of K_{ν} in "Weil form" induces an isomorphism

$$\{\bullet, \mathcal{K}_{\nu}\}_{\varphi_{\nu}}^{\mathrm{Langlands}} : {}_{\mathbb{Z}}\nabla_{\mathcal{K}_{\nu}}^{(\varphi_{\mathcal{K}_{\nu}})} \times \mathrm{SU}(2, \mathbb{R}) \xrightarrow{\{\bullet, \mathcal{K}_{\nu}\}_{\varphi_{\mathcal{K}_{\nu}}}^{\mathrm{Weil}} \times \mathrm{id}_{\mathrm{SU}(2, \mathbb{R})}}{\sim} \mathcal{L}_{\mathcal{K}_{\nu}},$$

the local non-abelian norm residue isomorphism of K_{ν} in "Langlands form".

 \square Automorphic Langlands group L_K of a number field K

Weil-Arthur idèles of K

Weil-Arthur idèles of K

Fix
$$\underline{\varphi} = \{\varphi_{\mathcal{K}_{\nu}}\}_{\nu \in \mathbf{h}_{\mathcal{K}}}.$$

▶ Define an unconditional non-commutative topological group WA^𝒯_K depending only to the number field K, which we called the Weil-Arthur idèle group of K, by the restricted free product

$$egin{aligned} &\mathcal{WA}^{arphi}_{K} := \ &striangleup \ &striangleup \ &striangleup \ &\kappa_{
u} \in oldsymbol{h}_{K} & \left({}_{\mathbb{Z}}
abla^{(arphi \kappa_{
u})}_{\kappa_{
u}} imes \operatorname{SU}(2,\mathbb{R}) : {}_{1}
abla^{(arphi \kappa_{
u})}_{\kappa_{
u}} imes \operatorname{SU}(2,\mathbb{R})
ight) striangleup \ &\mathcal{W}^{*r_{1}}_{\mathbb{R}} st \mathcal{W}^{*r_{2}}_{\mathbb{C}} \end{aligned}$$

of the collection $\{\mathbb{Z}\nabla_{K_{\nu}}^{(\varphi_{K_{\nu}})} \times \mathrm{SU}(2,\mathbb{R})\}_{\nu \in h_{K}} \cup \{W_{K_{\nu}}\}_{\nu \in a_{K}}$ with respect to the collection $\{_{1}\nabla_{K_{\nu}}^{(\varphi_{K_{\nu}})\underline{0}} \times \mathrm{SU}(2,\mathbb{R})\}_{\nu \in h_{K}}$. Here, $r_{1} = \#(\mathbf{a}_{K,\mathbb{R}})$ and $2r_{2} = \#(\mathbf{a}_{K,\mathbb{C}})$.

The topological group WA^φ_K can be considered as a non-commutative generalization of the idèle group J_K of K, because WA^{φab}_K = J_K.

Automorphic Langlands group L_K of a number field K

 \square Automorphic Langlands group L_K of K

Automorphic Langlands group L_K of K

- Let L_K denote the hypothetical automorphic Langlands group L_K of the number field K.
 Assumption: Assume that L_K exists for now.
- It is expected that, an embedding e_ν : K^{sep} → K^{sep}_ν determines a homomorphism (unique up to L_K-conjugacy) e^{Langlands}_ν : L_{K_ν} → L_K.
- Therefore, for $\nu \in \mathbf{h}_{\mathcal{K}}$, there exists a morphism

$$_{\mathbb{Z}}\nabla^{(\varphi_{K_{\nu}})}_{\mathcal{K}_{\nu}}\times \mathrm{SU}(2,\mathbb{R})\xrightarrow[\sim]{\{\bullet,K_{\nu}\}_{\varphi_{K_{\nu}}}^{\mathrm{Langlands}}}L_{\mathcal{K}_{\nu}}\xrightarrow[\sim]{e_{\nu}^{\mathrm{Langlands}}}L_{\mathcal{K}}$$

(unique up to $L_{\mathcal{K}}$ -conjugacy).

So, by the universal mapping property of restricted free products, we state **the main result of our talk**:

Automorphic Langlands group L_K of a number field K

 \square Automorphic Langlands group L_K of K

Theorem (The global non-abelian norm residue map of K in "Langlands form")

The collection of arrows $\{e_{\nu}^{\text{Langlands}} \circ \{\bullet, K_{\nu}\}_{\varphi \kappa_{\nu}}^{\text{Langlands}}\}_{\nu \in \mathbf{h}_{\kappa}}$ defines a unique continuous homomorphism

$$\mathsf{NR}_{\overline{K}}^{\underline{\varphi}^{\mathrm{Langlands}}}: \mathcal{WA}_{\overline{K}}^{\underline{\varphi}} \to L_{K},$$

which is unique up to "local L_K -conjugation".

- Moreover, this result is compatible with Arthur's construction of L_K (look at [2]).
- The arrow $NR_{K}^{\underline{\varphi}^{Langlands}} : \mathcal{WA}_{K}^{\underline{\varphi}} \to L_{K}$ behaves like global abelian norm residue map of K (look at [3]).

We conclude our talk with the following conjecture:

Conjecture

The homomorphism $NR_{\overline{K}}^{\underline{\varphi}^{\text{Langlands}}} : \mathcal{WA}_{\overline{K}}^{\underline{\varphi}} \to L_{K}$ is open and surjective.

 \square Automorphic Langlands group L_K of a number field K

 \square Automorphic Langlands group L_K of K

THINKING NOW!

・ロト ・四ト ・ヨト ・ヨト 三日