Computing with (indefinite) quadratic forms and quaternion algebras in PARI/GP

James Rickards
McGill University
james.rickards@mail.mcgill.ca

September $27^{\text {th }} 2020$

Introduction

- 「 is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.

Introduction

- 「 is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.
- Equip $\Gamma \backslash \mathbb{H}$ with the usual hyperbolic metric.

Introduction

- Γ is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.
- Equip $\Gamma \backslash \mathbb{H}$ with the usual hyperbolic metric.
- Geodesics on $\Gamma \backslash \mathbb{H}$ are the images of hyperbolic geodesics in \mathbb{H}, i.e. vertical lines and semi-circles centred on the real axis.

Introduction

- Γ is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.
- Equip $\Gamma \backslash \mathbb{H}$ with the usual hyperbolic metric.
- Geodesics on $\Gamma \backslash \mathbb{H}$ are the images of hyperbolic geodesics in \mathbb{H}, i.e. vertical lines and semi-circles centred on the real axis.
- If $\gamma \in \Gamma$ is primitive and hyperbolic, its root geodesic is the upper half plane geodesic connecting the two (real) roots.

Introduction

- Γ is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.
- Equip $\Gamma \backslash \mathbb{H}$ with the usual hyperbolic metric.
- Geodesics on $\Gamma \backslash \mathbb{H}$ are the images of hyperbolic geodesics in \mathbb{H}, i.e. vertical lines and semi-circles centred on the real axis.
- If $\gamma \in \Gamma$ is primitive and hyperbolic, its root geodesic is the upper half plane geodesic connecting the two (real) roots.
- This descends to a closed geodesic in $\Gamma \backslash \mathbb{H}$, and all closed geodesics arise in this fashion.

My research

- I am studying the intersections of pairs of closed geodesics.

My research

- I am studying the intersections of pairs of closed geodesics.
- The discrete groups I consider are $\operatorname{PSL}(2, \mathbb{Z})$, and unit groups of Eichler orders in indefinite quaternion algebras over \mathbb{Q} (i.e. Shimura curves).

My research

- I am studying the intersections of pairs of closed geodesics.
- The discrete groups I consider are $\operatorname{PSL}(2, \mathbb{Z})$, and unit groups of Eichler orders in indefinite quaternion algebras over \mathbb{Q} (i.e. Shimura curves).
- The case of $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$ relates to the work of Duke, Imamoḡlu, and Tóth on linking numbers of modular knots in $\operatorname{SL}(2, \mathbb{R}) / \mathrm{SL}(2, \mathbb{Z})$ ([DIT17]).

My research

- I am studying the intersections of pairs of closed geodesics.
- The discrete groups I consider are $\operatorname{PSL}(2, \mathbb{Z})$, and unit groups of Eichler orders in indefinite quaternion algebras over \mathbb{Q} (i.e. Shimura curves).
- The case of $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$ relates to the work of Duke, Imamoḡlu, and Tóth on linking numbers of modular knots in $\operatorname{SL}(2, \mathbb{R}) / \mathrm{SL}(2, \mathbb{Z})$ ([DIT17]).
- The Shimura curve case (conjecturally) relates to the work of Darmon and Vonk on real quadratic analogues of the j-function ([DV17]).

My research

- I am studying the intersections of pairs of closed geodesics.
- The discrete groups I consider are $\operatorname{PSL}(2, \mathbb{Z})$, and unit groups of Eichler orders in indefinite quaternion algebras over \mathbb{Q} (i.e. Shimura curves).
- The case of $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$ relates to the work of Duke, Imamoḡlu, and Tóth on linking numbers of modular knots in $\operatorname{SL}(2, \mathbb{R}) / \mathrm{SL}(2, \mathbb{Z})$ ([DIT17]).
- The Shimura curve case (conjecturally) relates to the work of Darmon and Vonk on real quadratic analogues of the j-function ([DV17]).
- There are lots of parallels to the work of Gross and Zagier on the factorization of the difference of j-values ([GZ85]).

The setup for $\operatorname{PSL}(2, \mathbb{Z})$

- Let $q(x, y)$ be a primitive indefinite binary quadratic form (PIBQF), let γ_{q} be its automorph, and let ℓ_{q} be the geodesic connecting the roots of q.

The setup for $\operatorname{PSL}(2, \mathbb{Z})$

- Let $q(x, y)$ be a primitive indefinite binary quadratic form (PIBQF), let γ_{q} be its automorph, and let ℓ_{q} be the geodesic connecting the roots of q.
- This translates the inputs into pairs of PIBQFs, which come equipped with discriminants.

The setup for $\operatorname{PSL}(2, \mathbb{Z})$

- Let $q(x, y)$ be a primitive indefinite binary quadratic form (PIBQF), let γ_{q} be its automorph, and let ℓ_{q} be the geodesic connecting the roots of q.
- This translates the inputs into pairs of PIBQFs, which come equipped with discriminants.
- In fact, we can descend to equivalence classes of PIBQFs, since the root geodesic in $\Gamma \backslash \mathbb{H}$ does not depend on the representative.

The setup for Shimura curves

- Let B be an indefinite quaternion algebra over \mathbb{Q}, \mathbb{O} an Eichler order in B, and $\iota: B \rightarrow \operatorname{Mat}_{2}(\mathbb{R})$ an embedding.

The setup for Shimura curves

- Let B be an indefinite quaternion algebra over \mathbb{Q}, \mathbb{O} an Eichler order in B, and $\iota: B \rightarrow \operatorname{Mat}_{2}(\mathbb{R})$ an embedding.
- For D a discriminant, let \mathcal{O}_{D} be the unique quadratic order of discriminant D, lying in $\mathbb{Q}(\sqrt{D})$. Let ϵ_{D} be the fundamental unit of \mathcal{O}_{D}.

The setup for Shimura curves

- Let B be an indefinite quaternion algebra over \mathbb{Q}, \mathbb{O} an Eichler order in B, and $\iota: B \rightarrow \operatorname{Mat}_{2}(\mathbb{R})$ an embedding.
- For D a discriminant, let \mathcal{O}_{D} be the unique quadratic order of discriminant D, lying in $\mathbb{Q}(\sqrt{D})$. Let ϵ_{D} be the fundamental unit of \mathcal{O}_{D}.
- An optimal embedding of \mathcal{O}_{D} into \mathbb{O} is a ring homomorphism $\phi: \mathcal{O}_{D} \rightarrow \mathbb{O}$ that does not extend to an embedding of a larger order.

The setup for Shimura curves

- Let B be an indefinite quaternion algebra over \mathbb{Q}, \mathbb{O} an Eichler order in B, and $\iota: B \rightarrow \operatorname{Mat}_{2}(\mathbb{R})$ an embedding.
- For D a discriminant, let \mathcal{O}_{D} be the unique quadratic order of discriminant D, lying in $\mathbb{Q}(\sqrt{D})$. Let ϵ_{D} be the fundamental unit of \mathcal{O}_{D}.
- An optimal embedding of \mathcal{O}_{D} into \mathbb{O} is a ring homomorphism $\phi: \mathcal{O}_{D} \rightarrow \mathbb{O}$ that does not extend to an embedding of a larger order.
- Two optimal embeddings ϕ_{1}, ϕ_{2} are equivalent if there exists an $r \in \mathbb{O}$ of norm 1 with $r \phi_{1} r^{-1}=\phi_{2}$.

The setup for Shimura curves

- Let B be an indefinite quaternion algebra over \mathbb{Q}, \mathbb{O} an Eichler order in B, and $\iota: B \rightarrow \operatorname{Mat}_{2}(\mathbb{R})$ an embedding.
- For D a discriminant, let \mathcal{O}_{D} be the unique quadratic order of discriminant D, lying in $\mathbb{Q}(\sqrt{D})$. Let ϵ_{D} be the fundamental unit of \mathcal{O}_{D}.
- An optimal embedding of \mathcal{O}_{D} into \mathbb{O} is a ring homomorphism $\phi: \mathcal{O}_{D} \rightarrow \mathbb{O}$ that does not extend to an embedding of a larger order.
- Two optimal embeddings ϕ_{1}, ϕ_{2} are equivalent if there exists an $r \in \mathbb{O}$ of norm 1 with $r \phi_{1} r^{-1}=\phi_{2}$.
- Then $\iota\left(\phi\left(\epsilon_{D}\right)\right) \in \Gamma$ is a hyperbolic element.

The setup for Shimura curves

- Let B be an indefinite quaternion algebra over \mathbb{Q}, \mathbb{O} an Eichler order in B, and $\iota: B \rightarrow \operatorname{Mat}_{2}(\mathbb{R})$ an embedding.
- For D a discriminant, let \mathcal{O}_{D} be the unique quadratic order of discriminant D, lying in $\mathbb{Q}(\sqrt{D})$. Let ϵ_{D} be the fundamental unit of \mathcal{O}_{D}.
- An optimal embedding of \mathcal{O}_{D} into \mathbb{O} is a ring homomorphism $\phi: \mathcal{O}_{D} \rightarrow \mathbb{O}$ that does not extend to an embedding of a larger order.
- Two optimal embeddings ϕ_{1}, ϕ_{2} are equivalent if there exists an $r \in \mathbb{O}$ of norm 1 with $r \phi_{1} r^{-1}=\phi_{2}$.
- Then $\iota\left(\phi\left(\epsilon_{D}\right)\right) \in \Gamma$ is a hyperbolic element.
- Thus we take the inputs to be pairs of (equivalence classes of) optimal embeddings, which again come equipped with discriminants.

Where to start?

- Write programs to compute intersection numbers, and study the output!

Where to start?

- Write programs to compute intersection numbers, and study the output!
- I chose to work with PARI/GP (other good options include Sage and Magma).

Where to start?

- Write programs to compute intersection numbers, and study the output!
- I chose to work with PARI/GP (other good options include Sage and Magma).
- PARI: a C library with an extensive amount of number theoretic tools.

Where to start?

- Write programs to compute intersection numbers, and study the output!
- I chose to work with PARI/GP (other good options include Sage and Magma).
- PARI: a C library with an extensive amount of number theoretic tools.
- GP: a scripting language that allows "on the go" access to the tools in PARI.

Where to start?

- Write programs to compute intersection numbers, and study the output!
- I chose to work with PARI/GP (other good options include Sage and Magma).
- PARI: a C library with an extensive amount of number theoretic tools.
- GP: a scripting language that allows "on the go" access to the tools in PARI.
- Initially, I was working exclusively in GP.

Finding interesting examples

Question

Given positive discriminants D_{1}, D_{2}, which quaternion algebras admit optimal embeddings into a maximal order that have non-trivial intersections?

Finding interesting examples

Question

Given positive discriminants D_{1}, D_{2}, which quaternion algebras admit optimal embeddings into a maximal order that have non-trivial intersections?

- Ran a bunch of computations on quaternion algebras ramifying at $\{p, q\}$, and produced a finite list of such pairs for each pair of discriminants.

Finding interesting examples

Question

Given positive discriminants D_{1}, D_{2}, which quaternion algebras admit optimal embeddings into a maximal order that have non-trivial intersections?

- Ran a bunch of computations on quaternion algebras ramifying at $\{p, q\}$, and produced a finite list of such pairs for each pair of discriminants.
- Possible ramifying primes were always "small", and missing certain primes, even when the discriminants grew.

Finding interesting examples

Question

Given positive discriminants D_{1}, D_{2}, which quaternion algebras admit optimal embeddings into a maximal order that have non-trivial intersections?

- Turned this data into the conjecture

$$
p q \left\lvert\, \frac{D_{1} D_{2}-x^{2}}{4}\right.
$$

for some integer x with $x \equiv D_{1} D_{2}(\bmod 2)$ and $|x|<\sqrt{D_{1} D_{2}}$.

Finding interesting examples

Question

Given positive discriminants D_{1}, D_{2}, which quaternion algebras admit optimal embeddings into a maximal order that have non-trivial intersections?

- Turned this data into the conjecture

$$
p q \left\lvert\, \frac{D_{1} D_{2}-x^{2}}{4}\right.
$$

for some integer x with $x \equiv D_{1} D_{2}(\bmod 2)$ and $|x|<\sqrt{D_{1} D_{2}}$.

- This was later refined into a more precise necessary and sufficient condition, which was proven.

Finding interesting examples

Question

Given positive discriminants D_{1}, D_{2}, which quaternion algebras admit optimal embeddings into a maximal order that have non-trivial intersections?

- Turned this data into the conjecture

$$
p q \left\lvert\, \frac{D_{1} D_{2}-x^{2}}{4}\right.
$$

for some integer x with $x \equiv D_{1} D_{2}(\bmod 2)$ and $|x|<\sqrt{D_{1} D_{2}}$.

- This was later refined into a more precise necessary and sufficient condition, which was proven.
- Computations were valuable to help verify the more precise conjecture in some of the messier cases.

Connection with Darmon-Vonk

- Darmon and Vonk ([DV17]) provided a recipe to produce a real quadratic analogue to $j\left(\tau_{1}\right)-j\left(\tau_{2}\right)$ (lies in the correct ring class field, has a structured factorization).

Connection with Darmon-Vonk

- Darmon and Vonk ([DV17]) provided a recipe to produce a real quadratic analogue to $j\left(\tau_{1}\right)-j\left(\tau_{2}\right)$ (lies in the correct ring class field, has a structured factorization).
- The exponents of primes in the factorization should correspond to intersection numbers in a very concrete way.

Connection with Darmon-Vonk

- Darmon and Vonk ([DV17]) provided a recipe to produce a real quadratic analogue to $j\left(\tau_{1}\right)-j\left(\tau_{2}\right)$ (lies in the correct ring class field, has a structured factorization).
- The exponents of primes in the factorization should correspond to intersection numbers in a very concrete way.
- To test, I created a 587 page document detailing every " p-weighted" intersection number for $D_{1}=5,13$ and $D_{2} \leq 1000$. Compiling these computations took about a week.

Connection with Darmon-Vonk

- Darmon and Vonk ([DV17]) provided a recipe to produce a real quadratic analogue to $j\left(\tau_{1}\right)-j\left(\tau_{2}\right)$ (lies in the correct ring class field, has a structured factorization).
- The exponents of primes in the factorization should correspond to intersection numbers in a very concrete way.
- To test, I created a 587 page document detailing every " p-weighted" intersection number for $D_{1}=5,13$ and $D_{2} \leq 1000$. Compiling these computations took about a week.
- The data matched perfectly!

Q-Quadratic Package

- Since April I have been rewriting everything in PARI, which has increased the efficiency of various algorithms anywhere from 3 to 100 times.

Q-Quadratic Package

- Since April I have been rewriting everything in PARI, which has increased the efficiency of various algorithms anywhere from 3 to 100 times.
- In addition, there are two users manuals: one for PARI and one for GP (currently they are 58 and 26 pages long respectively).

Q-Quadratic Package

- Since April I have been rewriting everything in PARI, which has increased the efficiency of various algorithms anywhere from 3 to 100 times.
- In addition, there are two users manuals: one for PARI and one for GP (currently they are 58 and 26 pages long respectively).
- I am uploading the package to my Github (live version is 0.3): https://github.com/JamesRickards-Canada/Q-Quadratic

Documentation excerpt

3.1 Discriminant methods

These methods deal with discriminant operations that do not involve quadratic forms.

Name:	GEN disclist
Input:	GEN D1, GEN D2, int fund, GEN cop
Input format:	Integers D1, D2, fund $=0,1$, cop an integer
Output format:	Vector
Description:	Returns the set of discriminants (non-square integers equivalent to 0,1 modulo 4) between D1 and D2 inclusive. If fund=1, only returns fundamental discriminants, and if cop $\neq 0$, only returns discriminants coprime to cop.

Name:	GEN discprimeindex
Input:	GEN D, GEN facs
Input format:	Discriminant D, facs $=0$ or the factorization of D (the output of Z_factor)
Output format:	Vector
Description:	Returns the set of primes p for which D / p^{2} is a discriminant.

Name:	GEN discprimeindex_typecheck
Input:	GEN D
Input format:	Discriminant D
Output format:	Vector
Description:	Checks that D is a discriminant, and returns discprimeindex (D, gen_0).

Name:	GEN fdisc
Input:	GEN D
Input format:	Discriminant D
Output format:	Integer
Description:	Returns the fundamental discriminant associated to D.

Implemented algorithms

- Computing the narrow class group associated to a discriminant D in terms of BQFs (PARI/GP has implementations for the full class group, as well as the narrow class group for fundamental discriminants).

Implemented algorithms

- Computing the narrow class group associated to a discriminant D in terms of BQFs (PARI/GP has implementations for the full class group, as well as the narrow class group for fundamental discriminants).
- Computing the Conway rivers associated to a PIBQF, as well as left/right neighbours of reduced forms.

Implemented algorithms

- Computing the narrow class group associated to a discriminant D in terms of BQFs (PARI/GP has implementations for the full class group, as well as the narrow class group for fundamental discriminants).
- Computing the Conway rivers associated to a PIBQF, as well as left/right neighbours of reduced forms.
- Finding the general integer solution set to the equation

$$
A x^{2}+B x y+C y^{2}+D x+E y=n
$$

as well as the simultaneous equations

$$
A X^{2}+B Y^{2}+C Z^{2}+D X Y+E X Z+F Y Z=n_{1}, \quad G X+H Y+I Z=n_{2}
$$

Implemented algorithms

- Initializing quaternion algebras, maximal orders, and doing all the basic operations.

Implemented algorithms

- Initializing quaternion algebras, maximal orders, and doing all the basic operations.
- Computing all optimal embeddings, and sorting them by orientation and the class group action.

Implemented algorithms

- Initializing quaternion algebras, maximal orders, and doing all the basic operations.
- Computing all optimal embeddings, and sorting them by orientation and the class group action.
- Compute the intersection number via "intersecting root geodesics", as well as "x-linking".

Sample output

```
(12:21) gp > [Q, order]=qa_init_2primes(2, 7)
61 = [[0, [2, 7], [7, -1, 7], 14], [[1, 0, 0, 1/2; 0, 1, 0, 1/2; 0, 0, 1, 1/2; 0, 0, 0, 1/2], 0, [2, 2, 2, 2], 1, [], [1
0, 0, -1; 0, 1, 0, -1; 0, 0, 1, -1; 0, 0, 0, 2], [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]]]
(12:21) gp > d1s=qa_embeddablediscs(Q, order, 1, 200, 1, 2021)
62 = [5, 12, 13, 21, 24, 28, 40, 56, 61, 69, 76, 77, 101, 104, 124, 133, 136, 140, 152, 157, 168, 173, 181]
(12:21) gp > e1s=qa_sortedembed(Q, order, 61)
[] \([[1 / 2,-1 / 2,3 / 2,-3 / 2]]]\)
[2] \([[1 / 2,-1 / 2,3 / 2,3 / 2]]]\)
[7] \([[1 / 2,1 / 2,-3 / 2,-3 / 2]]]\)
\([[2,7] \quad[[1 / 2,1 / 2,-3 / 2,3 / 2]]]\)
(12:21) gp > e2s=qa_sortedembed( Q , order, 2021)
time \(=47 \mathrm{~ms}\).
[[] [[1/2, \(-1 / 2,3 / 2,-17 / 2],[1 / 2,-13 / 2,3 / 2,11 / 2],[1 / 2,-7 / 2,45 / 2,23 / 2],[1 / 2,-29 / 2,87 / 2,23 / 2],[1 / 2,-23 / 2,4\) \(5 / 2,7 / 2],[1 / 2,-11 / 2,3 / 2,13 / 2]]]\)
\([[2][[1 / 2,-1 / 2,3 / 2,17 / 2],[1 / 2,-11 / 2,3 / 2,-13 / 2],[1 / 2,-23 / 2,45 / 2,-7 / 2],[1 / 2,-29 / 2,87 / 2,-23 / 2],[1 / 2,-7 / 2\), \(45 / 2,-23 / 2],[1 / 2,-13 / 2,3 / 2,-11 / 2]]]\)
\([[7][[1 / 2,29 / 2,-87 / 2,23 / 2],[1 / 2,23 / 2,-45 / 2,7 / 2],[1 / 2,11 / 2,-3 / 2,13 / 2],[1 / 2,1 / 2,-3 / 2,-17 / 2],[1 / 2,13 / 2\),
\(3 / 2,11 / 2],[1 / 2,7 / 2,-45 / 2,23 / 2]]]\)
\([[2,7][[1 / 2,29 / 2,-87 / 2,-23 / 2],[1 / 2,7 / 2,-45 / 2,-23 / 2],[1 / 2,13 / 2,-3 / 2,-11 / 2],[1 / 2,1 / 2,-3 / 2,17 / 2],[1 / 2,11\) \(/ 2,-3 / 2,-13 / 2],[1 / 2,23 / 2,-45 / 2,-7 / 2]]]\)
```


Sample output

```
(12:21) gp > qa_inum_roots(Q, order, e1s[1,2][1], e2s[1,2][1])
%5 =[[[1/2, 3/2, 3/2, 1/2], [1/2, -1/2, 3/2, -17/2]], [[1/2, -5/2, -11/2, -1/2], [1/2, -1/2, 3/2, -17/2]], [[1/2, 7/2,
17/2,-1/2],[1/2,-1/2, 3/2,-17/2]], [[1/2,-15/2,-39/2, 1/2],[1/2,-1/2, 3/2,-17/2]], [[1/2, 17/2, 45/2,-3/2], [1
/2, -1/2, 3/2, -17/2]], [[1/2, -41/2, -109/2, 5/2], [1/2, -1/2, 3/2,-17/2]], [[1/2, 73/2, -193/2, -1/2], [1/2,-1/2, 3/
2,-17/2]], [[1/2, -33/2, 87/2, 1/2], [1/2,-1/2, 3/2,-17/2]], [[1/2, 15/2, -39/2, -1/2], [1/2, -1/2, 3/2, -17/2]], [[1
/2,-7/2, 17/2, 1/2],[1/2,-1/2, 3/2,-17/2]], [[1/2, 5/2,-11/2, 1/2],[1/2, -1/2, 3/2, -17/2]], [[1/2, -3/2, 3/2, -1/
2], [1/2, -1/2, 3/2, -17/2]]]
(12:21) gp > length(%)
66 = 12
(12:21) gp > qa_inum_x(Q, order, e1s[1,2][1], e2s[1,2][1])
time = 31 ms.
67 = [[[1/2, -1/2, 3/2, -3/2], [1/2, 750167/2, -1986765/2, 33767/2]], [[1/2, -1/2, 3/2, -3/2], [1/2, -3601/2, 9537/2,
63/2]], [[1/2, -1/2, 3/2, -3/2], [1/2,-271/2, 717/2,-17/2]], [[1/2, -1/2, 3/2, -3/2], [1/2, 17/2, 45/2, -17/2]], [[1/2
, -1/2, 3/2,-3/2], [1/2, 2425/2,-6423/2, 115/2]], [[1/2, -1/2, 3/2, -3/2], [1/2, -985271/2, 2609421/2, -44345/2]], [[1
/2,-1/2,3/2,-3/2],[1/2, 127/2,-333/2,-1/2]],[[1/2,-1/2,3/2,-3/2], [1/2, -17/2, 3/2,-1/2]], [[1/2,-1/2, 3/2,
-3/2], [1/2,-145/2,381/2, 1/2]], [[1/2,-1/2, 3/2,-3/2], [1/2, 17/2, 3/2, 1/2]], [[1/2, -1/2, 3/2, -3/2], [1/2, 67290
5/2,-1782141/2, 30281/2]], [[1/2, -1/2, 3/2,-3/2], [1/2, -2887/2, 7647/2, -139/2]]]
(12:21) gp > length(%)
%8=12
(12:21) gp > -
```


Planned algorithms

- Computing the fundamental domain for Shimura curves (partially working prototype in GP, not yet transferred over). See Voight [Voi09] and Page [Pag15] for the algorithms.

Planned algorithms

- Computing the fundamental domain for Shimura curves (partially working prototype in GP, not yet transferred over). See Voight [Voi09] and Page [Pag15] for the algorithms.
- Solve the principal ideal problem for indefinite quaternion algebras (algorithm due to Page [Pag14]).

Planned algorithms

- Computing the fundamental domain for Shimura curves (partially working prototype in GP, not yet transferred over). See Voight [Voi09] and Page [Pag15] for the algorithms.
- Solve the principal ideal problem for indefinite quaternion algebras (algorithm due to Page [Pag14]).
- Use said algorithm to improve the computation of optimal embeddings.

Planned algorithms

- Computing the fundamental domain for Shimura curves (partially working prototype in GP, not yet transferred over). See Voight [Voi09] and Page [Pag15] for the algorithms.
- Solve the principal ideal problem for indefinite quaternion algebras (algorithm due to Page [Pag14]).
- Use said algorithm to improve the computation of optimal embeddings.
- Continue to implement useful basic quaternion algebra methods.

Acknowledgments and References

This research was supported by an NSERC Vanier Scholarship.
W. Duke, Ö. Imamoḡlu, and Á. Tóth.

Modular cocycles and linking numbers.
Duke Math. J., 166(6):1179-1210, 2017.

H. Darmon and J. Vonk.

Singular moduli for real quadratic fields: a rigid analytic approach.
preprint, to appear in Duke Math Journal, 2017.

Benedict H. Gross and Don B. Zagier.
On singular moduli.
J. Reine Angew. Math., 355:191-220, 1985.
A. Page.

An algorithm for the principal ideal problem in indefinite quaternion algebras.
LMS J. Comput. Math., 17(suppl. A):366-384, 2014.
Aurel Page.
Computing arithmetic Kleinian groups.
Math. Comp., 84(295):2361-2390, 2015.
John Voight.
Computing fundamental domains for Fuchsian groups.
J. Théor. Nombres Bordeaux, 21(2):469-491, 2009.

