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Introduction

Γ is a discrete subgroup of PSL(2,R).

Equip Γ\H with the usual hyperbolic metric.

Geodesics on Γ\H are the images of hyperbolic geodesics in H, i.e. vertical
lines and semi-circles centred on the real axis.

If γ ∈ Γ is primitive and hyperbolic, its root geodesic is the upper half plane
geodesic connecting the two (real) roots.

This descends to a closed geodesic in Γ\H, and all closed geodesics arise in
this fashion.
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My research

I am studying the intersections of pairs of closed geodesics.

The discrete groups I consider are PSL(2,Z), and unit groups of Eichler
orders in indefinite quaternion algebras over Q (i.e. Shimura curves).

The case of Γ = PSL(2,Z) relates to the work of Duke, Imamoḡlu, and Tóth
on linking numbers of modular knots in SL(2,R)/ SL(2,Z) ([DIT17]).

The Shimura curve case (conjecturally) relates to the work of Darmon and
Vonk on real quadratic analogues of the j−function ([DV17]).

There are lots of parallels to the work of Gross and Zagier on the
factorization of the difference of j−values ([GZ85]).
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The setup for PSL(2,Z)

Let q(x , y) be a primitive indefinite binary quadratic form (PIBQF), let γq be
its automorph, and let `q be the geodesic connecting the roots of q.

This translates the inputs into pairs of PIBQFs, which come equipped with
discriminants.

In fact, we can descend to equivalence classes of PIBQFs, since the root
geodesic in Γ\H does not depend on the representative.
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The setup for Shimura curves

Let B be an indefinite quaternion algebra over Q, O an Eichler order in B,
and ι : B → Mat2(R) an embedding.

For D a discriminant, let OD be the unique quadratic order of discriminant
D, lying in Q(

√
D). Let εD be the fundamental unit of OD .

An optimal embedding of OD into O is a ring homomorphism φ : OD → O
that does not extend to an embedding of a larger order.

Two optimal embeddings φ1, φ2 are equivalent if there exists an r ∈ O of
norm 1 with rφ1r

−1 = φ2.

Then ι(φ(εD)) ∈ Γ is a hyperbolic element.

Thus we take the inputs to be pairs of (equivalence classes of) optimal
embeddings, which again come equipped with discriminants.
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Where to start?

Write programs to compute intersection numbers, and study the output!

I chose to work with PARI/GP (other good options include Sage and
Magma).

PARI: a C library with an extensive amount of number theoretic tools.

GP: a scripting language that allows “on the go” access to the tools in PARI.

Initially, I was working exclusively in GP.
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Finding interesting examples

Question

Given positive discriminants D1,D2, which quaternion algebras admit optimal
embeddings into a maximal order that have non-trivial intersections?

Ran a bunch of computations on quaternion algebras ramifying at {p, q}, and
produced a finite list of such pairs for each pair of discriminants.

Possible ramifying primes were always “small”, and missing certain primes,
even when the discriminants grew.
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Finding interesting examples

Question

Given positive discriminants D1,D2, which quaternion algebras admit optimal
embeddings into a maximal order that have non-trivial intersections?

Turned this data into the conjecture

pq | D1D2 − x2

4

for some integer x with x ≡ D1D2 (mod 2) and |x | <
√
D1D2.

This was later refined into a more precise necessary and sufficient condition,
which was proven.

Computations were valuable to help verify the more precise conjecture in
some of the messier cases.
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Connection with Darmon-Vonk

Darmon and Vonk ([DV17]) provided a recipe to produce a real quadratic
analogue to j(τ1)− j(τ2) (lies in the correct ring class field, has a structured
factorization).

The exponents of primes in the factorization should correspond to
intersection numbers in a very concrete way.

To test, I created a 587 page document detailing every “p−weighted”
intersection number for D1 = 5, 13 and D2 ≤ 1000. Compiling these
computations took about a week.

The data matched perfectly!
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Q-Quadratic Package

Since April I have been rewriting everything in PARI, which has increased the
efficiency of various algorithms anywhere from 3 to 100 times.

In addition, there are two users manuals: one for PARI and one for GP
(currently they are 58 and 26 pages long respectively).

I am uploading the package to my Github (live version is 0.3):
https://github.com/JamesRickards-Canada/Q-Quadratic
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Documentation excerpt
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Implemented algorithms

Computing the narrow class group associated to a discriminant D in terms of
BQFs (PARI/GP has implementations for the full class group, as well as the
narrow class group for fundamental discriminants).

Computing the Conway rivers associated to a PIBQF, as well as left/right
neighbours of reduced forms.

Finding the general integer solution set to the equation

Ax2 + Bxy + Cy2 + Dx + Ey = n,

as well as the simultaneous equations

AX 2 + BY 2 + CZ 2 + DXY + EXZ + FYZ = n1, GX + HY + IZ = n2.
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Implemented algorithms

Initializing quaternion algebras, maximal orders, and doing all the basic
operations.

Computing all optimal embeddings, and sorting them by orientation and the
class group action.

Compute the intersection number via “intersecting root geodesics”, as well as
“x-linking”.
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Sample output
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Planned algorithms

Computing the fundamental domain for Shimura curves (partially working
prototype in GP, not yet transferred over). See Voight [Voi09] and Page
[Pag15] for the algorithms.

Solve the principal ideal problem for indefinite quaternion algebras (algorithm
due to Page [Pag14]).

Use said algorithm to improve the computation of optimal embeddings.

Continue to implement useful basic quaternion algebra methods.
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