Computing with (indefinite) quadratic forms and quaternion algebras in PARI/GP

James Rickards

McGill University

james.rickards@mail.mcgill.ca

September 27th 2020

• Γ is a discrete subgroup of $PSL(2, \mathbb{R})$.

- Γ is a discrete subgroup of PSL(2, \mathbb{R}).
- Equip $\Gamma \setminus \mathbb{H}$ with the usual hyperbolic metric.

- Γ is a discrete subgroup of $PSL(2, \mathbb{R})$.
- Equip $\Gamma \setminus \mathbb{H}$ with the usual hyperbolic metric.
- Geodesics on $\Gamma \setminus \mathbb{H}$ are the images of hyperbolic geodesics in \mathbb{H} , i.e. vertical lines and semi-circles centred on the real axis.

- Γ is a discrete subgroup of $PSL(2, \mathbb{R})$.
- Equip $\Gamma \setminus \mathbb{H}$ with the usual hyperbolic metric.
- Geodesics on $\Gamma \setminus \mathbb{H}$ are the images of hyperbolic geodesics in \mathbb{H} , i.e. vertical lines and semi-circles centred on the real axis.
- If γ ∈ Γ is primitive and hyperbolic, its *root geodesic* is the upper half plane geodesic connecting the two (real) roots.

- Γ is a discrete subgroup of $PSL(2, \mathbb{R})$.
- Equip $\Gamma \setminus \mathbb{H}$ with the usual hyperbolic metric.
- Geodesics on $\Gamma \setminus \mathbb{H}$ are the images of hyperbolic geodesics in \mathbb{H} , i.e. vertical lines and semi-circles centred on the real axis.
- If γ ∈ Γ is primitive and hyperbolic, its *root geodesic* is the upper half plane geodesic connecting the two (real) roots.
- \bullet This descends to a closed geodesic in $\Gamma \backslash \mathbb{H},$ and all closed geodesics arise in this fashion.

• I am studying the *intersections* of pairs of closed geodesics.

- I am studying the *intersections* of pairs of closed geodesics.
- The discrete groups I consider are PSL(2, ℤ), and unit groups of Eichler orders in indefinite quaternion algebras over ℚ (i.e. Shimura curves).

- I am studying the *intersections* of pairs of closed geodesics.
- The discrete groups I consider are PSL(2, ℤ), and unit groups of Eichler orders in indefinite quaternion algebras over ℚ (i.e. Shimura curves).
- The case of Γ = PSL(2, ℤ) relates to the work of Duke, Imamoḡlu, and Tóth on linking numbers of modular knots in SL(2, ℝ)/SL(2, ℤ) ([DIT17]).

- I am studying the *intersections* of pairs of closed geodesics.
- The discrete groups I consider are PSL(2, Z), and unit groups of Eichler orders in indefinite quaternion algebras over Q (i.e. Shimura curves).
- The case of Γ = PSL(2, ℤ) relates to the work of Duke, Imamoḡlu, and Tóth on linking numbers of modular knots in SL(2, ℝ)/SL(2, ℤ) ([DIT17]).
- The Shimura curve case (conjecturally) relates to the work of Darmon and Vonk on real quadratic analogues of the *j*-function ([DV17]).

- I am studying the *intersections* of pairs of closed geodesics.
- The discrete groups I consider are PSL(2, Z), and unit groups of Eichler orders in indefinite quaternion algebras over Q (i.e. Shimura curves).
- The case of Γ = PSL(2, ℤ) relates to the work of Duke, Imamoḡlu, and Tóth on linking numbers of modular knots in SL(2, ℝ)/SL(2, ℤ) ([DIT17]).
- The Shimura curve case (conjecturally) relates to the work of Darmon and Vonk on real quadratic analogues of the *j*-function ([DV17]).
- There are lots of parallels to the work of Gross and Zagier on the factorization of the difference of *j*-values ([GZ85]).

The setup for $PSL(2,\mathbb{Z})$

 Let q(x, y) be a primitive indefinite binary quadratic form (PIBQF), let γ_q be its automorph, and let ℓ_q be the geodesic connecting the roots of q.

The setup for $\mathsf{PSL}(2,\mathbb{Z})$

- Let q(x, y) be a primitive indefinite binary quadratic form (PIBQF), let γ_q be its automorph, and let ℓ_q be the geodesic connecting the roots of q.
- This translates the inputs into pairs of PIBQFs, which come equipped with discriminants.

The setup for $\mathsf{PSL}(2,\mathbb{Z})$

- Let q(x, y) be a primitive indefinite binary quadratic form (PIBQF), let γ_q be its automorph, and let ℓ_q be the geodesic connecting the roots of q.
- This translates the inputs into pairs of PIBQFs, which come equipped with discriminants.
- In fact, we can descend to equivalence classes of PIBQFs, since the root geodesic in $\Gamma \setminus \mathbb{H}$ does not depend on the representative.

 Let B be an indefinite quaternion algebra over Q, O an Eichler order in B, and ι : B → Mat₂(ℝ) an embedding.

- Let B be an indefinite quaternion algebra over Q, O an Eichler order in B, and ι : B → Mat₂(R) an embedding.
- For D a discriminant, let O_D be the unique quadratic order of discriminant D, lying in Q(√D). Let ε_D be the fundamental unit of O_D.

- Let B be an indefinite quaternion algebra over Q, O an Eichler order in B, and ι : B → Mat₂(R) an embedding.
- For *D* a discriminant, let \mathcal{O}_D be the unique quadratic order of discriminant *D*, lying in $\mathbb{Q}(\sqrt{D})$. Let ϵ_D be the fundamental unit of \mathcal{O}_D .

- Let B be an indefinite quaternion algebra over Q, O an Eichler order in B, and ι : B → Mat₂(R) an embedding.
- For *D* a discriminant, let \mathcal{O}_D be the unique quadratic order of discriminant *D*, lying in $\mathbb{Q}(\sqrt{D})$. Let ϵ_D be the fundamental unit of \mathcal{O}_D .
- An optimal embedding of \mathcal{O}_D into \mathbb{O} is a ring homomorphism $\phi : \mathcal{O}_D \to \mathbb{O}$ that does not extend to an embedding of a larger order.
- Two optimal embeddings φ₁, φ₂ are equivalent if there exists an r ∈ O of norm 1 with rφ₁r⁻¹ = φ₂.

- Let B be an indefinite quaternion algebra over Q, O an Eichler order in B, and ι : B → Mat₂(R) an embedding.
- For *D* a discriminant, let \mathcal{O}_D be the unique quadratic order of discriminant *D*, lying in $\mathbb{Q}(\sqrt{D})$. Let ϵ_D be the fundamental unit of \mathcal{O}_D .
- An optimal embedding of \mathcal{O}_D into \mathbb{O} is a ring homomorphism $\phi : \mathcal{O}_D \to \mathbb{O}$ that does not extend to an embedding of a larger order.
- Two optimal embeddings φ₁, φ₂ are equivalent if there exists an r ∈ O of norm 1 with rφ₁r⁻¹ = φ₂.
- Then $\iota(\phi(\epsilon_D)) \in \Gamma$ is a hyperbolic element.

- Let B be an indefinite quaternion algebra over Q, O an Eichler order in B, and ι : B → Mat₂(R) an embedding.
- For *D* a discriminant, let \mathcal{O}_D be the unique quadratic order of discriminant *D*, lying in $\mathbb{Q}(\sqrt{D})$. Let ϵ_D be the fundamental unit of \mathcal{O}_D .
- An optimal embedding of \mathcal{O}_D into \mathbb{O} is a ring homomorphism $\phi : \mathcal{O}_D \to \mathbb{O}$ that does not extend to an embedding of a larger order.
- Two optimal embeddings φ₁, φ₂ are equivalent if there exists an r ∈ O of norm 1 with rφ₁r⁻¹ = φ₂.
- Then $\iota(\phi(\epsilon_D)) \in \Gamma$ is a hyperbolic element.
- Thus we take the inputs to be pairs of (equivalence classes of) optimal embeddings, which again come equipped with discriminants.

• Write programs to compute intersection numbers, and study the output!

- Write programs to compute intersection numbers, and study the output!
- I chose to work with PARI/GP (other good options include Sage and Magma).

- Write programs to compute intersection numbers, and study the output!
- I chose to work with PARI/GP (other good options include Sage and Magma).
- PARI: a C library with an extensive amount of number theoretic tools.

- Write programs to compute intersection numbers, and study the output!
- I chose to work with PARI/GP (other good options include Sage and Magma).
- PARI: a C library with an extensive amount of number theoretic tools.
- GP: a scripting language that allows "on the go" access to the tools in PARI.

- Write programs to compute intersection numbers, and study the output!
- I chose to work with PARI/GP (other good options include Sage and Magma).
- PARI: a C library with an extensive amount of number theoretic tools.
- GP: a scripting language that allows "on the go" access to the tools in PARI.
- Initially, I was working exclusively in GP.

Question

Given positive discriminants D_1 , D_2 , which quaternion algebras admit optimal embeddings into a maximal order that have non-trivial intersections?

Question

Given positive discriminants D_1 , D_2 , which quaternion algebras admit optimal embeddings into a maximal order that have non-trivial intersections?

• Ran a bunch of computations on quaternion algebras ramifying at {p, q}, and produced a finite list of such pairs for each pair of discriminants.

Question

Given positive discriminants D_1 , D_2 , which quaternion algebras admit optimal embeddings into a maximal order that have non-trivial intersections?

- Ran a bunch of computations on quaternion algebras ramifying at {p, q}, and produced a finite list of such pairs for each pair of discriminants.
- Possible ramifying primes were always "small", and missing certain primes, even when the discriminants grew.

Question

Given positive discriminants D_1 , D_2 , which quaternion algebras admit optimal embeddings into a maximal order that have non-trivial intersections?

• Turned this data into the conjecture

$$pq\mid \frac{D_1D_2-x^2}{4}$$

for some integer x with $x \equiv D_1 D_2 \pmod{2}$ and $|x| < \sqrt{D_1 D_2}$.

Question

Given positive discriminants D_1 , D_2 , which quaternion algebras admit optimal embeddings into a maximal order that have non-trivial intersections?

• Turned this data into the conjecture

$$pq\mid \frac{D_1D_2-x^2}{4}$$

for some integer x with $x \equiv D_1 D_2 \pmod{2}$ and $|x| < \sqrt{D_1 D_2}$.

• This was later refined into a more precise necessary and sufficient condition, which was proven.

Question

Given positive discriminants D_1 , D_2 , which quaternion algebras admit optimal embeddings into a maximal order that have non-trivial intersections?

• Turned this data into the conjecture

$$pq\mid \frac{D_1D_2-x^2}{4}$$

for some integer x with $x \equiv D_1 D_2 \pmod{2}$ and $|x| < \sqrt{D_1 D_2}$.

- This was later refined into a more precise necessary and sufficient condition, which was proven.
- Computations were valuable to help verify the more precise conjecture in some of the messier cases.

• Darmon and Vonk ([DV17]) provided a recipe to produce a real quadratic analogue to $j(\tau_1) - j(\tau_2)$ (lies in the correct ring class field, has a structured factorization).

- Darmon and Vonk ([DV17]) provided a recipe to produce a real quadratic analogue to $j(\tau_1) j(\tau_2)$ (lies in the correct ring class field, has a structured factorization).
- The exponents of primes in the factorization should correspond to intersection numbers in a very concrete way.

- Darmon and Vonk ([DV17]) provided a recipe to produce a real quadratic analogue to $j(\tau_1) j(\tau_2)$ (lies in the correct ring class field, has a structured factorization).
- The exponents of primes in the factorization should correspond to intersection numbers in a very concrete way.
- To test, I created a 587 page document detailing every "p-weighted" intersection number for $D_1 = 5, 13$ and $D_2 \le 1000$. Compiling these computations took about a week.

- Darmon and Vonk ([DV17]) provided a recipe to produce a real quadratic analogue to $j(\tau_1) j(\tau_2)$ (lies in the correct ring class field, has a structured factorization).
- The exponents of primes in the factorization should correspond to intersection numbers in a very concrete way.
- To test, I created a 587 page document detailing every "p-weighted" intersection number for $D_1 = 5, 13$ and $D_2 \le 1000$. Compiling these computations took about a week.
- The data matched perfectly!

Q-Quadratic Package

• Since April I have been rewriting everything in PARI, which has increased the efficiency of various algorithms anywhere from 3 to 100 times.

Q-Quadratic Package

- Since April I have been rewriting everything in PARI, which has increased the efficiency of various algorithms anywhere from 3 to 100 times.
- In addition, there are two users manuals: one for PARI and one for GP (currently they are 58 and 26 pages long respectively).

Q-Quadratic Package

- Since April I have been rewriting everything in PARI, which has increased the efficiency of various algorithms anywhere from 3 to 100 times.
- In addition, there are two users manuals: one for PARI and one for GP (currently they are 58 and 26 pages long respectively).
- I am uploading the package to my Github (live version is 0.3): https://github.com/JamesRickards-Canada/Q-Quadratic

Documentation excerpt

3.1 Discriminant methods

These methods deal with discriminant operations that do not involve quadratic forms.

Name:	GEN disclist
Input:	GEN D1, GEN D2, int fund, GEN cop
Input format:	Integers D1, D2, fund=0, 1, cop an integer
Output format:	Vector
Description:	Returns the set of discriminants (non-square integers equivalent to $0,\ 1$ modulo 4) between $D1$ and $D2$ inclusive. If fund=1, only returns fundamental
	discriminants, and if $cop \neq 0$, only returns discriminants coprime to cop .

Name:	GEN discprimeindex
Input:	GEN D, GEN facs
Input format:	Discriminant D, facs=0 or the factorization of D (the output of Z_factor)
Output format:	Vector
Description:	Returns the set of primes p for which D/p^2 is a discriminant.

Name:	GEN discprimeindex_typecheck
Input:	GEN D
Input format:	Discriminant D
Output format:	Vector
Description:	Checks that D is a discriminant, and returns discprimeindex(D, gen_0).

Name:	GEN fdisc
Input:	GEN D
Input format:	Discriminant D
Output format:	Integer
Description:	Returns the fundamental discriminant associated to D.

• Computing the *narrow* class group associated to a discriminant *D* in terms of BQFs (PARI/GP has implementations for the full class group, as well as the narrow class group for fundamental discriminants).

- Computing the *narrow* class group associated to a discriminant *D* in terms of BQFs (PARI/GP has implementations for the full class group, as well as the narrow class group for fundamental discriminants).
- Computing the Conway rivers associated to a PIBQF, as well as left/right neighbours of reduced forms.

- Computing the *narrow* class group associated to a discriminant *D* in terms of BQFs (PARI/GP has implementations for the full class group, as well as the narrow class group for fundamental discriminants).
- Computing the Conway rivers associated to a PIBQF, as well as left/right neighbours of reduced forms.
- Finding the general integer solution set to the equation

$$Ax^2 + Bxy + Cy^2 + Dx + Ey = n,$$

as well as the simultaneous equations

$$AX^2 + BY^2 + CZ^2 + DXY + EXZ + FYZ = n_1,$$
 $GX + HY + IZ = n_2.$

Initializing quaternion algebras, maximal orders, and doing all the basic operations.

- Initializing quaternion algebras, maximal orders, and doing all the basic operations.
- Computing all optimal embeddings, and sorting them by orientation and the class group action.

- Initializing quaternion algebras, maximal orders, and doing all the basic operations.
- Computing all optimal embeddings, and sorting them by orientation and the class group action.
- Compute the intersection number via "intersecting root geodesics", as well as "x-linking".

Sample output

(12:21) gp > [0, order]=qa init 2primes(2, 7)1 = [[0, [2, 7], [7, -1, 7], 14], [[1, 0, 0, 1/2; 0, 1, 0, 1/2; 0, 0, 1, 1/2; 0, 0, 0, 1/2], 0, [2, 2, 2, 2], 1, [], [2, 2, 2, 2], 1, [], [2, 2, 2], 1, [], [2, 2], 1]0, 0, -1; 0, 1, 0, -1; 0, 0, 1, -1; 0, 0, 0, 2], [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]]](12:21) gp > d1s=qa embeddablediscs(0, order, 1, 200, 1, 2021) **42** = [5, 12, 13, 21, 24, 28, 40, 56, 61, 69, 76, 77, 101, 104, 124, 133, 136, 140, 152, 157, 168, 173, 181] (12:21) gp > e1s=qa sortedembed(0, order, 61) [] [[1/2, -1/2, 3/2, -3/2]]][2] [[1/2, -1/2, 3/2, 3/2]]][7] [[1/2, 1/2, -3/2, -3/2]]][[2, 7] [[1/2, 1/2, -3/2, 3/2]]](12:21) gp > e2s=ga sortedembed(0, order, 2021) time = 47 ms. [[] [[1/2, -1/2, 3/2, -17/2], [1/2, -13/2, 3/2, 11/2], [1/2, -7/2, 45/2, 23/2], [1/2, -29/2, 87/2, 23/2], [1/2, -23/2, 45/2, 23/2], [1/2, -29/2, 87/2, 23/2], [1/2, -23/2], 5/2, 7/2], [1/2, -11/2, 3/2, 13/2]]] [[2] [[1/2, -1/2, 3/2, 17/2], [1/2, -11/2, 3/2, -13/2], [1/2, -23/2, 45/2, -7/2], [1/2, -29/2, 87/2, -23/2], [1/2, -7/2] 45/2, -23/2], [1/2, -13/2, 3/2, -11/2]]] [7] [[1/2, 29/2, -87/2, 23/2], [1/2, 23/2, -45/2, 7/2], [1/2, 11/2, -3/2, 13/2], [1/2, 1/2, -3/2, -17/2], [1/2, 13/2, 3/2, 11/21, [1/2, 7/2, -45/2, 23/2]]] [[2, 7] [[1/2, 29/2, -87/2, -23/2], [1/2, 7/2, -45/2, -23/2], [1/2, 13/2, -3/2, -11/2], [1/2, 1/2, -3/2, 17/2], [1/2, 1/2],/2, -3/2, -13/2], [1/2, 23/2, -45/2, -7/2]]]

Sample output

```
(12;21) gp > ga inum roots(0, order, e1s[1,2][1], e2s[1,2][1])
   = [[[1/2, 3/2, 3/2, 1/2], [1/2, -1/2, 3/2, -17/2]], [[1/2, -5/2, -11/2, -1/2], [1/2, -1/2, 3/2, -17/2]], [[1/2, 7/2, -1/2]], [[1/2, 7/2, -1/2]], [[1/2, 7/2, -1/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]], [[1/2, 7/2]]], [[1/2, 7/2]], [[1/2, 7/2]]], [[1/2, 7/2]], [[1/2, 7/2]]], [[1/2, 7/2]]], [[1/2, 7/2]]]
17/2, -1/2], [1/2, -1/2, 3/2, -17/2]], [[1/2, -15/2, -39/2, 1/2], [1/2, -1/2, 3/2, -17/2]], [[1/2, 17/2, 45/2, -3/2],
/2, -1/2, 3/2, -17/2]], [[1/2, -41/2, -109/2, 5/2], [1/2, -1/2, 3/2, -17/2]], [[1/2, 73/2, -193/2, -1/2], [1/2, -1/2, 3/2, -1/2]],
   -17/2]], [[1/2, -33/2, 87/2, 1/2], [1/2, -1/2, 3/2, -17/2]], [[1/2, 15/2, -39/2, -1/2], [1/2, -1/2, 3/2, -17/2]], []
], [1/2, -1/2, 3/2, -17/2]]]
(12:21) gp > length(%)
(12:21) gp > qa inum x(Q, order, e1s[1,2][1], e2s[1,2][1])
time = 31 ms.
67 = [[[1/2, -1/2, 3/2, -3/2], [1/2, 750167/2, -1986765/2, 33767/2]], [[1/2, -1/2, 3/2, -3/2], [1/2, -3601/2, 9537/2, -
53/2]], [[1/2, -1/2, 3/2, -3/2], [1/2, -271/2, 717/2, -17/2]], [[1/2, -1/2, 3/2, -3/2], [1/2, 17/2, 45/2, -17/2]], [[1/2
 /2, -1/2, 3/2, -3/2], [1/2, 127/2, -333/2, -1/2]], [[1/2, -1/2, 3/2, -3/2], [1/2, -17/2, 3/2, -1/2]], [[1/2, -1/2, 3/2,
-3/2], [1/2, -145/2, 381/2, 1/2]], [[1/2, -1/2, 3/2, -3/2], [1/2, 17/2, 3/2, 1/2]], [[1/2, -1/2, 3/2, -3/2], [1/2, 67296
5/2, -1782141/2, 30281/2]], [[1/2, -1/2, 3/2, -3/2], [1/2, -2887/2, 7647/2, -139/2]]]
(12:21) gp > length(%)
 12:21) gp > _
```

• Computing the fundamental domain for Shimura curves (partially working prototype in GP, not yet transferred over). See Voight [Voi09] and Page [Pag15] for the algorithms.

- Computing the fundamental domain for Shimura curves (partially working prototype in GP, not yet transferred over). See Voight [Voi09] and Page [Pag15] for the algorithms.
- Solve the principal ideal problem for indefinite quaternion algebras (algorithm due to Page [Pag14]).

- Computing the fundamental domain for Shimura curves (partially working prototype in GP, not yet transferred over). See Voight [Voi09] and Page [Pag15] for the algorithms.
- Solve the principal ideal problem for indefinite quaternion algebras (algorithm due to Page [Pag14]).
- Use said algorithm to improve the computation of optimal embeddings.

- Computing the fundamental domain for Shimura curves (partially working prototype in GP, not yet transferred over). See Voight [Voi09] and Page [Pag15] for the algorithms.
- Solve the principal ideal problem for indefinite quaternion algebras (algorithm due to Page [Pag14]).
- Use said algorithm to improve the computation of optimal embeddings.
- Continue to implement useful basic quaternion algebra methods.

Acknowledgments and References

This research was supported by an NSERC Vanier Scholarship. W. Duke, Ö. Imamoğlu, and Á. Tóth. Modular cocycles and linking numbers. Duke Math. J., 166(6):1179-1210, 2017. H. Darmon and J. Vonk. Singular moduli for real quadratic fields: a rigid analytic approach. preprint, to appear in Duke Math Journal, 2017. Benedict H. Gross and Don B. Zagier. On singular moduli. J. Reine Angew. Math., 355:191-220, 1985. A. Page. An algorithm for the principal ideal problem in indefinite quaternion algebras. LMS J. Comput. Math., 17(suppl. A):366-384, 2014. Aurel Page. Computing arithmetic Kleinian groups. Math. Comp., 84(295):2361-2390, 2015. John Voight. Computing fundamental domains for Fuchsian groups. J. Théor. Nombres Bordeaux, 21(2):469-491, 2009.