Extremely Pointless Curves

Jon Grantham
Québec-Maine Number Theory Conference

September 2020

Center for Computing Sciences
17100 Science Drive • Bowie, Maryland 20715

Work

This is ongoing joint work with Xander Faber.

Gonality

- The gonality γ of a curve X over a field k is the minimum degree of a nonconstant k-morphism $X \rightarrow \mathbb{P}^{1}$.

Gonality

- The gonality γ of a curve X over a field k is the minimum degree of a nonconstant k-morphism $X \rightarrow \mathbb{P}^{1}$.
- Gonality 1 curves are isomorphic to \mathbb{P}^{1}, so coincide with genus 0 curves.
- Gonality 2 curves are hyperelliptic, and include elliptic curves (genus 1 and up).
- Gonality 3 curves are known as trigonal curves.

Gonality, Genus, and Curves over Finite Fields

- A natural question (indeed, one asked by Van der Geer) is, given a smooth, projective curve over a finite field \mathbb{F}_{q} of genus g and gonality γ, what is the maximum number of points?
- We answered this for $q \leq 4$ and $g \leq 5$ in previous work.
- We used a combination of explicit geometry of small-genus curves, as well as computer searches.

Enter Pointless Curves

- Let C be a curve with genus $g>0$ over a finite field
- The gonality satisfies $\gamma \leq g+1$.
- If C has a rational point, then the gonality satisfies $\gamma \leq g$.
- A curve with gonality $g+1$ must thus be pointless, a concept introduced by Howe-Lauter-Top.
- In fact, a curve over \mathbb{F}_{q} with gonality $g+1$ has no effective divisor of degree $g-2$.
- That implies it has no points over $\mathbb{F}_{q^{r}}$ for all $r \mid g-2$.
- Since such a curve is pointless over a number of different finite fields, we call it extremely pointless.

Weil Bounds

- Applying Weil's Formula to a pointless curve over $\mathbb{F}_{q^{g-2}}$, we have $2 g \sqrt{q^{g-2}} \geq q^{g-2}+1>q^{g-2}$.
- Thus $q<(2 g)^{\frac{2}{g-2}}$.
- This bound gives us the following list of possibilites for extremely pointless curves.

Weil Bounds

- Applying Weil's Formula to a pointless curve over $\mathbb{F}_{q^{g-2}}$, we have $2 g \sqrt{q^{g-2}} \geq q^{g-2}+1>q^{g-2}$.
- Thus $q<(2 g)^{\frac{2}{g-2}}$.
- This bound gives us the following list of possibilites for extremely pointless curves.
- $g=3$ and $q \leq 32$;
- $g=4$ and $q \leq 7$;
- $g=5$ and $q \leq 4$;
- $g=6$ and $q=2$ or 3 ; or
- $7 \leq g \leq 10$ and $q=2$.

Previous Results for Genus 3, 4 and 5

- There exists an extremely pointless curve of genus 3 over \mathbb{F}_{q} if and only if $q \leq 23$ or $q=29$ or $q=32$ (Howe-Lauter-Top).
- There exists an extremely pointless curve of genus 4 over \mathbb{F}_{2}. (Faber-G.)
- There exists an extremely pointless curve of genus 4 over \mathbb{F}_{3}. (Castryck-Tuitman)
- There does not exist an extremely pointless curve of genus 4 over \mathbb{F}_{4}. (Faber-G.)
- There does not exist an extremely pointless curve of genus 5 over $\mathbb{F}_{2}, \mathbb{F}_{3}$ or \mathbb{F}_{4}. (Faber-G.)

Previous Results for Genus 3, 4 and 5

- There exists an extremely pointless curve of genus 3 over \mathbb{F}_{q} if and only if $q \leq 23$ or $q=29$ or $q=32$ (Howe-Lauter-Top).
- There exists an extremely pointless curve of genus 4 over \mathbb{F}_{2}. (Faber-G.)
- There exists an extremely pointless curve of genus 4 over \mathbb{F}_{3}. (Castryck-Tuitman)
- There does not exist an extremely pointless curve of genus 4 over \mathbb{F}_{4}. (Faber-G.)
- There does not exist an extremely pointless curve of genus 5 over $\mathbb{F}_{2}, \mathbb{F}_{3}$ or \mathbb{F}_{4}. (Faber-G.)
- (Our treatment of binary curves is on the arXiv; our treatment of ternary and quaternary curves will be soon.)

What's Left

- Eight cases:
- $g=4$ and $q=5$ or $q=7$;
- $g=6$ and $q=2$ or 3 ; or
- $7 \leq g \leq 10$ and $q=2$.

Lauter's Algorithm for Serre's Explicit Method

- In 1998, Lauter gave an algorithmic description of Serre's technique that computes a list of all possible zeta functions of a curve over a finite field.
- For an extremely pointless curve, certain terms must be zero, hence we can eliminate most zeta functions.
- For the (g, q) pairs $(4,5),(4,7),(6,3)$ and $(8,2),(10,2)$ a computation using Lauter's algorithm eliminates all zeta functions.

The Stubborn Three Two

- There exists an extremely pointless curve of genus 3 if and only if $q \leq 23$ or $q=29$ or $q=32$.
- There exists an extremely pointless curve of genus 4 if and only if $q=2$ or 3 .
- We don't know if there is an extremely pointless curve of genus g over \mathbb{F}_{q} for these (g, q)-pairs:
- $(6,2) \quad 3$ zeta functions survive!
- $(7,2)-79$ zeta functions survive!
- $(9,2)-1$ zeta function survives!
- Further tools by Serre and Howe-Lauter gets us down to $\{z, 77,1\}$ survivors.
- We can exclude all other cases.

The Stubborn Three Two

- There exists an extremely pointless curve of genus 3 if and only if $q \leq 23$ or $q=29$ or $q=32$.
- There exists an extremely pointless curve of genus 4 if and only if $q=2$ or 3 .
- We don't know if there is an extremely pointless curve of genus g over \mathbb{F}_{q} for these (g, q)-pairs:
- $(6,2)$ 3 zeta functions survive!
- $(7,2)-79$ zeta functions survive!
- $(9,2)-1$ zeta function survives!
- Further tools by Serre and Howe-Lauter gets us down to $\{z, 77,1\}$ survivors.
- We can exclude all other cases.
- Questions welcome; answers all the more so.

