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What are multiplicative functions?

We say that f : N→ C is multiplicative if

f (mn) = f (m)f (n) whenever gcd(m, n) = 1.

We shall concentrate on f : N→ [−1, 1].

Some examples:

The Möbius function

µ(n) =

{
(−1)k if n = p1 · · · pk with pj distinct;

0 otherwise.

The indicator function for the set N of numbers that can be
written as a sum of two squares;

1N (pk) =

{
0 if p ≡ 3 (mod 4) and k is odd;

1 otherwise.

The indicator function of the set of y -smooth numbers (n is
y -smooth if p | n =⇒ p ≤ y).

Kaisa Matomäki Multiplicative functions in short intervals revisited



What are multiplicative functions?

We say that f : N→ C is multiplicative if

f (mn) = f (m)f (n) whenever gcd(m, n) = 1.

We shall concentrate on f : N→ [−1, 1]. Some examples:
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Averages over n ≤ x

Averages of multiplicative functions f : N→ [−1, 1] over
n ≤ x are well understood (at least qualitatively):
The mean value is o(1) if f does not pretend to be 1 and
otherwise the mean value is 6= 0 and can be calculated:

Delange: If ∑
p

1− f (p)

p
<∞, (1)

then

1

x

∑
n≤x

f (n) = (1+o(1))
∏
p≤x

(
1− 1

p

)(
1 +

f (p)

p
+

f (p2)

p2
+ . . .

)

Wirsing: If (1) does not hold, then

1

x

∑
n≤x

f (n) = o(1); e.g.
1

x

∑
n≤x

µ(n) = o(1).

Halász’s theorem gives quantitative results.
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Short averages

Radziwi l l and I have shown that the same story holds in
almost all short intervals: For f : N→ [−1, 1], one has∣∣∣∣∣∣1h

∑
x<n≤x+h

f (n)− 1

X

∑
X<n≤2X

f (n)

∣∣∣∣∣∣ = O
(

(log h)−1/200
)

for all but at most O(X (log h)−1/200) values x ∈ (X , 2X ].

This work has led into numerous applications and
developments, including Tao’s resolution of logarithmically
averaged Chowla conjecture and Erdős discrepancy problem.

But it has shortcomings that we now address:

The quantitative bounds are pretty weak (in the paper slightly
better than in this simplified form)

The theorem is trivial e.g. for 1n∈N (the indicator function of
sums of two squares) since the long average is C (logX )−1/2.

For many applications, one needs a result for complex f .
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Sums of two squares in short intervals

Recall N is the set of numbers that can be written as a sum
of two squares. Then

1

x

∑
n≤x

1N (n) = (C + o(1))
1

(log x)1/2
.

This means that the average gap between consecutive
m, n ∈ N ∩ [X , 2X ] is � (logX )1/2 =: h1.

In particular in intervals of length y = o(h1), typically∑
x<n≤x+y 1N (n) = 0.

But for longer intervals one would expect regular behaviour, i.e∣∣∣ 1

h0h1

∑
x<n≤x+h0h1

1N (n)− C

(logX )1/2

∣∣∣ = o

(
1

(logX )1/2

)

for almost all x ∈ (X , 2X ] as soon as h0 →∞ with x →∞
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Sums of two squares in short intervals

Theorem (M-Radziwi l l (202?))

For any δ > 0, and any h0 ≥ 1,∣∣∣ 1

h0(logX )1/2

∑
x<n≤x+h0(logX )1/2

1N (n)− C

(logX )1/2

∣∣∣ ≤ δ

(logX )1/2
.

for all but at most
Oδ(Xh

−cδ12
0 )

integers x ∈ (X , 2X ], for some c > 0.

Note that the exceptional set bound saves polynomially in h0.

Previously Hooley (1994) and Plaksin (1987, 1992) showed
that, for almost all x ∈ (X , 2X ] one has

1

h0(logX )1/2

∑
x<n≤x+h0(logX )1/2

1N (n) � 1

(logX )1/2
.
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General vanishing case

When |f (p)| has average value α ∈ (0, 1), it is known that

1

x

∑
n≤x
|f (n)| �

∏
p≤x

(
1 +
|f (p)| − 1

p

)
� (log x)α−1.

Write h1 :=
∏

p≤x

(
1 + |f (p)|−1

p

)−1
� (log x)1−α.

In case |f (n)| takes values in {0, 1}, the average of f (n) in
intervals of length o(h1) is typically 0.

But for longer intervals we expect regular behaviour, i.e∣∣∣ 1

h0h1

∑
x<n≤x+h0h1

f (n)− 1

X

∑
X<n≤2X

f (n)
∣∣∣

= o

∏
p≤X

(
1 +
|f (p)| − 1

p

)
for almost all x as soon as h0 →∞ with x →∞
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Short intervals, vanishing case

Theorem (M-Radziwi l l (202?))

Let ε > 0. Let f : N→ [−1, 1] be a multiplicative function s.t.∑
w<p≤z

|f (p)|
p
≥ ε

∑
w<p≤z

1

p
+ O

(
1

logw

)

for all 2 ≤ w < z < xε. Set h1 :=
∏

p≤X

(
1 + 1−|f (p)|

p

)
.

For any

δ > 0, and any h0 ≥ 1,∣∣∣ 1

h0h1

∑
x<n≤x+h0h1

f (n)− 1

X

∑
X<n≤2X

f (n)
∣∣∣ ≤ δ ∏

p≤X

(
1 +
|f (p)| − 1

p

)
for all but at most O(Xh−cδ

κ

0 ) integers x ∈ (X , 2X ], for some
c = c(ε) and κ = κ(ε) > 0.

If f is complex-valued, a twist in main term.
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Limitations of Hooley’s and Plaksin’s methods

Recall Hooley’s and Plaksin’s works giving that for almost all
x one has

1

h0(logX )1/2

∑
x<n≤x+h0(logX )1/2

1N (n) � 1

(logX )1/2
.

The main arithmetic information they used was the solution
to the shifted convolution problem∑

n≤x
rK (n)rK (n + h) (2)

with rK (n) the coefficients of the Dedekind zeta function of
K = Q(i).

(2) is completely open when degree of K exceeds two. Hence
the previous approaches completely fail for generalisations.

We only use multiplicativity, so we have chances to generalise!
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Norm forms

We say an integer n is norm-form of a number field K if n
equals a norm of an algebraic integer in K . Write gK (n) for
the indicator function. In particular gQ(i)(n) = 1n∈N (n)

By Odoni’s work the density in [1, x ] of norm forms of K is

δK (x) :=
∏

p≤x , p 6=Na
a integral ideal

(
1− 1

p

)
If K is a normal extension of Q of degree k , then
δK (x) � (log x)−1+1/k .

Issue: When the class number of K exceeds 1, gK (n) is not
multiplicative.

However, following work of Odoni, we show that gK (n) is a
linear combination of (complex-valued) multiplicative
functions.

Applying our results to each function in the linear
combination, we get a theorem in arbitrary number fields.

Kaisa Matomäki Multiplicative functions in short intervals revisited



Norm forms

We say an integer n is norm-form of a number field K if n
equals a norm of an algebraic integer in K . Write gK (n) for
the indicator function. In particular gQ(i)(n) = 1n∈N (n)

By Odoni’s work the density in [1, x ] of norm forms of K is

δK (x) :=
∏

p≤x , p 6=Na
a integral ideal

(
1− 1

p

)
If K is a normal extension of Q of degree k , then
δK (x) � (log x)−1+1/k .

Issue: When the class number of K exceeds 1, gK (n) is not
multiplicative.

However, following work of Odoni, we show that gK (n) is a
linear combination of (complex-valued) multiplicative
functions.

Applying our results to each function in the linear
combination, we get a theorem in arbitrary number fields.
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equals a norm of an algebraic integer in K . Write gK (n) for
the indicator function. In particular gQ(i)(n) = 1n∈N (n)

By Odoni’s work the density in [1, x ] of norm forms of K is

δK (x) :=
∏

p≤x , p 6=Na
a integral ideal
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Kaisa Matomäki Multiplicative functions in short intervals revisited



Norm forms in short intervals

Theorem (M-Radziwi l l (202?))

Let K be a number field over Q, and let

δK (x) :=
∏

p≤x , p 6=Na
a integral ideal

(
1− 1

p

)
.

Then, as X →∞, uniformly in 2 ≤ h ≤ X one has∣∣∣ 1

hδK (X )−1

∑
x≤n≤x+hδK (X )−1

gK (n)− CKδK (X )
∣∣∣ ≤ εδK (X )

for all x ∈ (X , 2X ] with at most Oε(Xh
−cεκ) exceptions where

c , κ,CK > 0 depend solely on K .

This is a vast extension of Hooley’s and Plaksin’s works for Q(i),
with an asymptotic formula.
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Gaps between sums of two squares

Hooley (1971) and Plaksin (1987, 1992) have also studied
gaps between sums of two squares.

Writing 1 = s1 < s2 < . . . for the sequence of integers in N .
Plaksin showed that, for any γ ∈ [1, 2) (Hooley: γ ∈ [1, 5/3)),∑

sn≤x
(sn+1 − sn)γ � x(log x)

1
2
(γ−1)

That is to say, for any h ≥ 1, the number of x ∈ [X , 2X ] for
which

(x , x + h(logX )1/2] ∩N = ∅
is at most O(Xh−1+ε).

Again this is based on the shifted convolution problem for
rK (n) and does not extend beyond quadratic number fields.

If, like Hooley and Plaksin, we do not request asymptotic
formula, we get an improved bound for our exceptional set for
any K .
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Gaps between norm forms

Theorem (M-Radziwi l l (202?))

Let K be a number field and let δK (x) be the density of
norm-forms. Then, for any ε > 0, there exists a constant
c = c(K , ε) such that, for any h ≥ 1, one has

1

hδK (x)−1

∑
x<n≤x+hδK (x)−1

gK (n) ≥ cδK (x)

for all but Oε,K (Xh−1/2+ε) of x ∈ (X , 2X ].

Consequently, letting
1 ≤ n1 < n2 < . . . denote the sequence of positive norm-forms of
K , one has for any γ ∈ [1, 3/2),∑

ni≤x
(ni+1 − ni )

γ �γ,K xδK (x)γ−1.

This vastly extends Hooley’s and Plaksin’s results (case K = Q(i)
with γ ∈ [1, 5/3) and γ ∈ [1, 2) repsectively).
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Other multiplicative functions

Also these results work more generally. E.g. we get

Corollary

Let ε > 0 be given and h ≥ 1. Then the number of intervals
[x , x + h] with x ∈ [X , 2X ] that do not contain an xε-smooth
number is �η,ε Xh

−1/2+η for all η > 0.
Consequently, letting 1 ≤ n1 < n2 < . . . denote the sequence of
integers n such that all prime factors of n are ≤ nε, one has, for
any γ ∈ [1, 3/2), ∑

ni≤x
(ni+1 − ni )

γ �ε,γ x (3)

This improves on a recent result of Heath-Brown who got for (3)
the upper bound � x1+η for any η > 0.
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Recalling the main theorem

Theorem (M-Radziwi l l (202?))

Let ε > 0. Let f : N→ [−1, 1] be a multiplicative function s.t.∑
w<p≤z

|f (p)|
p
≥ ε

∑
w<p≤z

1

p
+ O

(
1

logw

)

for all 2 ≤ w < z < xε. Set h1 :=
∏

p≤X

(
1 + 1−|f (p)|

p

)
.

For any

δ > 0, and any h0 ≥ 1,∣∣∣ 1

h0h1

∑
x<n≤x+h0h1

f (n)− 1

X

∑
X<n≤2X

f (n)
∣∣∣ ≤ δ ∏

p≤X

(
1 +
|f (p)| − 1

p

)
for all but at most O(Xh−cδ

κ

0 ) integers x ∈ (X , 2X ], for some
c = c(ε) and κ = κ(ε) > 0.
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Kaisa Matomäki Multiplicative functions in short intervals revisited



Proof ideas

For simplicity concentrate on case when the average of f is 0.

Our starting point is Perron’s formula, giving∑
x<n≤x+H

f (n) =
1

2πi

∫ ∞
−∞

∑
X<n≤3X

f (n)

n1+it
· (x + H)1+it − x1+it

1 + it

≈ H

2πi

∫ X/H

−X/H

∑
X<n≤3X

f (n)

n1+it
x itdt.

If we just put absolute values here, we have an impossible task
— with squareroot cancellation RHS would be of size X 1/2,
i.e. much larger than the trivial bound H.

Normally one would go on and average over x , getting

1

X

∫ 2X

X

∣∣∣∣∣∣
∑

x<n≤x+H

f (n)

∣∣∣∣∣∣
2

dx �
∫ X/H

−X/H

∣∣∣∣∣∣
∑

X<n≤3X

f (n)

n1+it

∣∣∣∣∣∣
2

dt.
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The mean square

Normally one would go on and average over x , getting

1

X

∫ 2X

X

∣∣∣∣∣∣
∑

x<n≤x+H

f (n)

∣∣∣∣∣∣
2

dx �
∫ X/H

−X/H

∣∣∣∣∣∣
∑

X<n≤3X

f (n)

n1+it

∣∣∣∣∣∣
2

dt.

Recall H = h0h1 with h1 =
∏

p≤X (1 + 1−|f (p)|
p ). Now to show

that ∣∣∣ 1

h0h1

∑
x<n≤x+h0h1

f (n)
∣∣∣ ≤ δ ∏

p≤X

(
1 +
|f (p)| − 1

p

)
with O(Xh−cδ

κ

0 ) exceptions, we would need the bound

∫ X/H

−X/H

∣∣∣∣∣∣
∑

X<n≤3X

f (n)

n1+it

∣∣∣∣∣∣
2

dt � δ2h−cδ
κ

0

∏
p≤X

(
1 +
|f (p)| − 1

p

)2
.
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Studying the mean square

We would need the bound∫ X/H

−X/H

∣∣∣∣∣∣
∑

X<n≤3X

f (n)

n1+it

∣∣∣∣∣∣
2

dt � δ2h−cδ
κ

0

∏
p≤X

(
1 +
|f (p)| − 1

p

)2
.

Using Shiu’s and Henriot’s bounds for averages and
correlations of multiplicative functions, one can tweak the
usual MVT to show that, for any an ≤ |f (n)|,∫ X/H

−X/H

∣∣∣∣∣∣
∑

X<n≤3X

an
n1+it

∣∣∣∣∣∣
2

dt �
∏
p≤X

(
1 +
|f (p)| − 1

p

)2
.

Same situation as in our previous work — need to save
something compared to the MVT bound.
After reproving Halasz and Lipschitz type estimates in the
sparse setting, we can repeat those arguments.
But this gives about h−cδ

κ

0 + (logX )−κ where we want h−cδ
κ

0 .
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An issue with mean square

Actually showing the bound∫ X/H

−X/H

∣∣∣∣∣∣
∑

X<n≤3X

f (n)

n1+it

∣∣∣∣∣∣
2

dt � δ2h−cδ
κ

0

∏
p≤X

(
1 +
|f (p)| − 1

p

)2
.

in general is not possible — there might be some points t
where

∑
f (n)n−1+it is �

∏
p≤X (1 + |f (p)|−1

p )(logX )−κ.

But if we had something like∑
P<p≤2P

f (p)

p1+it
= O(P−1/4+ε)

for all P = 2j ∈ [X ε3 ,X ε2 ], then that method would give the
desired bound. (also we need to construct a good sieve
majorant for f (n) to handle ”n 6∈ S”)

Key new idea: Handle ”exceptional” t before taking the mean
square over x .
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desired bound. (also we need to construct a good sieve
majorant for f (n) to handle ”n 6∈ S”)

Key new idea: Handle ”exceptional” t before taking the mean
square over x .

Kaisa Matomäki Multiplicative functions in short intervals revisited



Splitting into T and U

Recall ∑
x<n≤x+H

f (n) ≈ H

2πi

∫ X/H

−X/H

∑
X<n≤3X

f (n)

n1+it
x itdt.

Split [−X/H,X/H] = T ∪ U with t ∈ T iff∣∣∣∣∣∣
∑

P<p≤2P

f (p)

p1+it

∣∣∣∣∣∣ < P−1/4+ε for all P = 2j ∈ [X ε3 ,X ε2 ].

By MVT |U| ≤ (X/H)1/2−ε, and by previous discussion,

1

X

∫ 2X

X

∣∣∣∣∣∣ H2πi
∫
T

∑
X<n≤3X

f (n)

n1+it
x itdt

∣∣∣∣∣∣
2

dx

�
∫
T

∣∣∣∣∣∣
∑

X<n≤3X

f (n)

n1+it

∣∣∣∣∣∣
2

dt � δ2h−cδ
κ

0

∏
p≤X

(
1 +
|f (p)| − 1

p

)2
.
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Kaisa Matomäki Multiplicative functions in short intervals revisited



Handling U

We are left with studying, for certain |U| ≤ (X/H)1/2−ε,

H

2πi

∫
U

∑
X<n≤3X

f (n)

n1+it
x itdt. (4)

Since most integers have at least two prime factors from
(X ε2 ,X ε], we can at least morally replace

∑ f (n)
n1+it by∑

P1,P2∈(X ε
2
,X ε]

∑
P1<p≤2P1

f (p)

p1+it

∑
P2<p≤2P2

f (p)

p1+it

∑
m�X/(P1P2)

f (m)

m1+it
.

Now, by Huxley’s large value theorem, those t ∈ U for which∣∣∣ ∑
P<p≤2P

f (p)

p1+it

∣∣∣ ≤ δh−cδκ0 for all P = 2j ∈ (X ε2 ,X ε]

give an acceptable contribution to square mean of (4).
The complement is tiny and there (4) is o(H) by Halász +
tailored Halász-Montgomery type large value results.
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The results with positive proportion lower bound

When one only wants, for f : N→ [0, 1], with a good
exceptional set,

1

H

∑
x<n<x+H

f (n) ≥ δ
∏
p≤x

(
1 +

f (p)− 1

p

)
,

it suffices to show that, for K = b1/ε10c,
1

H

∑
x<p1···pK−1m≤x+H

pj∈[X (1−ε10)/K ,X (1+ε10)/K ]

f (p1) · · · f (pK−1)f (m)

�
∏
p≤x

(
1 +

f (p)− 1

p

)
.

The resulting Dirichlet polynomial is a product of short
factors. This gives a lot more flexibility with applying mean
and large value theorems
This way we get the desired result.
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Thank you!
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