Multiplicative functions in short intervals revisited

Kaisa Matomäki (Joint work with M. Radziwiłt)

University of Turku, Finland
Quebec-Maine Number Theory Conference 26th September 2020

What are multiplicative functions?

We say that $f: \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative if

$$
f(m n)=f(m) f(n) \quad \text { whenever } \operatorname{gcd}(m, n)=1
$$

We shall concentrate on $f: \mathbb{N} \rightarrow[-1,1]$.

What are multiplicative functions?

We say that $f: \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative if

$$
f(m n)=f(m) f(n) \quad \text { whenever } \operatorname{gcd}(m, n)=1
$$

We shall concentrate on $f: \mathbb{N} \rightarrow[-1,1]$. Some examples:

- The Möbius function

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } n=p_{1} \cdots p_{k} \text { with } p_{j} \text { distinct; } \\ 0 & \text { otherwise }\end{cases}
$$

What are multiplicative functions?

We say that $f: \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative if

$$
f(m n)=f(m) f(n) \quad \text { whenever } \operatorname{gcd}(m, n)=1
$$

We shall concentrate on $f: \mathbb{N} \rightarrow[-1,1]$. Some examples:

- The Möbius function

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } n=p_{1} \cdots p_{k} \text { with } p_{j} \text { distinct } \\ 0 & \text { otherwise }\end{cases}
$$

- The indicator function for the set \mathcal{N} of numbers that can be written as a sum of two squares;

$$
\mathbf{1}_{\mathcal{N}}\left(p^{k}\right)= \begin{cases}0 & \text { if } p \equiv 3 \quad(\bmod 4) \text { and } k \text { is odd } ; \\ 1 & \text { otherwise }\end{cases}
$$

What are multiplicative functions?

We say that $f: \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative if

$$
f(m n)=f(m) f(n) \quad \text { whenever } \operatorname{gcd}(m, n)=1
$$

We shall concentrate on $f: \mathbb{N} \rightarrow[-1,1]$. Some examples:

- The Möbius function

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } n=p_{1} \cdots p_{k} \text { with } p_{j} \text { distinct } \\ 0 & \text { otherwise }\end{cases}
$$

- The indicator function for the set \mathcal{N} of numbers that can be written as a sum of two squares;

$$
\mathbf{1}_{\mathcal{N}}\left(p^{k}\right)= \begin{cases}0 & \text { if } p \equiv 3 \quad(\bmod 4) \text { and } k \text { is odd } ; \\ 1 & \text { otherwise }\end{cases}
$$

- The indicator function of the set of y-smooth numbers (n is y-smooth if $p \mid n \Longrightarrow p \leq y)$.

Averages over $n \leq x$

- Averages of multiplicative functions $f: \mathbb{N} \rightarrow[-1,1]$ over $n \leq x$ are well understood (at least qualitatively):
- The mean value is $o(1)$ if f does not pretend to be 1 and otherwise the mean value is $\neq 0$ and can be calculated:

Averages over $n \leq x$

- Averages of multiplicative functions $f: \mathbb{N} \rightarrow[-1,1]$ over $n \leq x$ are well understood (at least qualitatively):
- The mean value is $o(1)$ if f does not pretend to be 1 and otherwise the mean value is $\neq 0$ and can be calculated:
- Delange: If

$$
\begin{equation*}
\sum_{p} \frac{1-f(p)}{p}<\infty \tag{1}
\end{equation*}
$$

then

$$
\frac{1}{x} \sum_{n \leq x} f(n)=(1+o(1)) \prod_{p \leq x}\left(1-\frac{1}{p}\right)\left(1+\frac{f(p)}{p}+\frac{f\left(p^{2}\right)}{p^{2}}+\ldots\right)
$$

Averages over $n \leq x$

- Averages of multiplicative functions $f: \mathbb{N} \rightarrow[-1,1]$ over $n \leq x$ are well understood (at least qualitatively):
- The mean value is $o(1)$ if f does not pretend to be 1 and otherwise the mean value is $\neq 0$ and can be calculated:
- Delange: If

$$
\begin{equation*}
\sum_{p} \frac{1-f(p)}{p}<\infty \tag{1}
\end{equation*}
$$

then

$$
\frac{1}{x} \sum_{n \leq x} f(n)=(1+o(1)) \prod_{p \leq x}\left(1-\frac{1}{p}\right)\left(1+\frac{f(p)}{p}+\frac{f\left(p^{2}\right)}{p^{2}}+\ldots\right)
$$

- Wirsing: If (1) does not hold, then

$$
\frac{1}{x} \sum_{n \leq x} f(n)=o(1) ; \quad \text { e.g. } \frac{1}{x} \sum_{n \leq x} \mu(n)=o(1)
$$

- Halász's theorem gives quantitative results.

Short averages

- Radziwilł and I have shown that the same story holds in almost all short intervals: For $f: \mathbb{N} \rightarrow[-1,1]$, one has

$$
\left|\frac{1}{h} \sum_{x<n \leq x+h} f(n)-\frac{1}{X} \sum_{x<n \leq 2 X} f(n)\right|=O\left((\log h)^{-1 / 200}\right)
$$

for all but at most $O\left(X(\log h)^{-1 / 200}\right)$ values $x \in(X, 2 X]$.

Short averages

- Radziwiłł and I have shown that the same story holds in almost all short intervals: For $f: \mathbb{N} \rightarrow[-1,1]$, one has

$$
\left|\frac{1}{h} \sum_{x<n \leq x+h} f(n)-\frac{1}{X} \sum_{x<n \leq 2 X} f(n)\right|=O\left((\log h)^{-1 / 200}\right)
$$

for all but at most $O\left(X(\log h)^{-1 / 200}\right)$ values $x \in(X, 2 X]$.

- This work has led into numerous applications and developments, including Tao's resolution of logarithmically averaged Chowla conjecture and Erdős discrepancy problem.
- But it has shortcomings that we now address:

Short averages

- Radziwiłł and I have shown that the same story holds in almost all short intervals: For $f: \mathbb{N} \rightarrow[-1,1]$, one has

$$
\left|\frac{1}{h} \sum_{x<n \leq x+h} f(n)-\frac{1}{X} \sum_{x<n \leq 2 X} f(n)\right|=O\left((\log h)^{-1 / 200}\right)
$$

for all but at most $O\left(X(\log h)^{-1 / 200}\right)$ values $x \in(X, 2 X]$.

- This work has led into numerous applications and developments, including Tao's resolution of logarithmically averaged Chowla conjecture and Erdős discrepancy problem.
- But it has shortcomings that we now address:
- The quantitative bounds are pretty weak (in the paper slightly better than in this simplified form)

Short averages

- Radziwiłł and I have shown that the same story holds in almost all short intervals: For $f: \mathbb{N} \rightarrow[-1,1]$, one has

$$
\left|\frac{1}{h} \sum_{x<n \leq x+h} f(n)-\frac{1}{X} \sum_{x<n \leq 2 X} f(n)\right|=O\left((\log h)^{-1 / 200}\right)
$$

for all but at most $O\left(X(\log h)^{-1 / 200}\right)$ values $x \in(X, 2 X]$.

- This work has led into numerous applications and developments, including Tao's resolution of logarithmically averaged Chowla conjecture and Erdős discrepancy problem.
- But it has shortcomings that we now address:
- The quantitative bounds are pretty weak (in the paper slightly better than in this simplified form)
- The theorem is trivial e.g. for $1_{n \in \mathcal{N}}$ (the indicator function of sums of two squares) since the long average is $C(\log X)^{-1 / 2}$.

Short averages

- Radziwilł and I have shown that the same story holds in almost all short intervals: For $f: \mathbb{N} \rightarrow[-1,1]$, one has

$$
\left|\frac{1}{h} \sum_{x<n \leq x+h} f(n)-\frac{1}{X} \sum_{x<n \leq 2 X} f(n)\right|=O\left((\log h)^{-1 / 200}\right)
$$

for all but at most $O\left(X(\log h)^{-1 / 200}\right)$ values $x \in(X, 2 X]$.

- This work has led into numerous applications and developments, including Tao's resolution of logarithmically averaged Chowla conjecture and Erdős discrepancy problem.
- But it has shortcomings that we now address:
- The quantitative bounds are pretty weak (in the paper slightly better than in this simplified form)
- The theorem is trivial e.g. for $1_{n \in \mathcal{N}}$ (the indicator function of sums of two squares) since the long average is $C(\log X)^{-1 / 2}$.
- For many applications, one needs a result for complex f.

Sums of two squares in short intervals

- Recall \mathcal{N} is the set of numbers that can be written as a sum of two squares. Then

$$
\frac{1}{x} \sum_{n \leq x} 1_{\mathcal{N}}(n)=(C+o(1)) \frac{1}{(\log x)^{1 / 2}}
$$

- This means that the average gap between consecutive $m, n \in \mathcal{N} \cap[X, 2 X]$ is $\asymp(\log X)^{1 / 2}=: h_{1}$.

Sums of two squares in short intervals

- Recall \mathcal{N} is the set of numbers that can be written as a sum of two squares. Then

$$
\frac{1}{x} \sum_{n \leq x} 1_{\mathcal{N}}(n)=(C+o(1)) \frac{1}{(\log x)^{1 / 2}}
$$

- This means that the average gap between consecutive $m, n \in \mathcal{N} \cap[X, 2 X]$ is $\asymp(\log X)^{1 / 2}=: h_{1}$.
- In particular in intervals of length $y=o\left(h_{1}\right)$, typically $\sum_{x<n \leq x+y} 1_{\mathcal{N}}(n)=0$.

Sums of two squares in short intervals

- Recall \mathcal{N} is the set of numbers that can be written as a sum of two squares. Then

$$
\frac{1}{x} \sum_{n \leq x} 1_{\mathcal{N}}(n)=(C+o(1)) \frac{1}{(\log x)^{1 / 2}}
$$

- This means that the average gap between consecutive $m, n \in \mathcal{N} \cap[X, 2 X]$ is $\asymp(\log X)^{1 / 2}=: h_{1}$.
- In particular in intervals of length $y=o\left(h_{1}\right)$, typically
$\sum_{x<n \leq x+y} 1_{\mathcal{N}}(n)=0$.
- But for longer intervals one would expect regular behaviour, i.e

$$
\left|\frac{1}{h_{0} h_{1}} \sum_{x<n \leq x+h_{0} h_{1}} 1_{\mathcal{N}}(n)-\frac{C}{(\log X)^{1 / 2}}\right|=o\left(\frac{1}{(\log X)^{1 / 2}}\right)
$$

for almost all $x \in(X, 2 X]$ as soon as $h_{0} \rightarrow \infty$ with $x \rightarrow \infty$

Sums of two squares in short intervals

$$
\begin{aligned}
& \text { Theorem }(\mathrm{M} \text {-Radziwiłt }(202 ?)) \\
& \text { For any } \delta>0 \text {, and any } h_{0} \geq 1 \text {, } \\
& \left|\frac{1}{h_{0}(\log X)^{1 / 2}} \sum_{x<n \leq x+h_{0}(\log X)^{1 / 2}} 1_{\mathcal{N}}(n)-\frac{C}{(\log X)^{1 / 2}}\right| \leq \frac{\delta}{(\log X)^{1 / 2}}
\end{aligned}
$$

for all but at most

$$
O_{\delta}\left(X h_{0}^{-c \delta^{12}}\right)
$$

integers $x \in(X, 2 X]$, for some $c>0$.

Sums of two squares in short intervals

Theorem (M-Radziwiłt (202?))

For any $\delta>0$, and any $h_{0} \geq 1$,

$$
\left|\frac{1}{h_{0}(\log X)^{1 / 2}} \sum_{x<n \leq x+h_{0}(\log X)^{1 / 2}} 1_{\mathcal{N}}(n)-\frac{C}{(\log X)^{1 / 2}}\right| \leq \frac{\delta}{(\log X)^{1 / 2}}
$$

for all but at most

$$
O_{\delta}\left(X h_{0}^{-c \delta^{12}}\right)
$$

integers $x \in(X, 2 X]$, for some $c>0$.

- Note that the exceptional set bound saves polynomially in h_{0}.
- Previously Hooley (1994) and Plaksin $(1987,1992)$ showed that, for almost all $x \in(X, 2 X]$ one has

$$
\frac{1}{h_{0}(\log X)^{1 / 2}} \sum_{x<n \leq x+h_{0}(\log X)^{1 / 2}} 1_{\mathcal{N}}(n) \asymp \frac{1}{(\log X)^{1 / 2}}
$$

General vanishing case

- When $|f(p)|$ has average value $\alpha \in(0,1)$, it is known that

$$
\frac{1}{x} \sum_{n \leq x}|f(n)| \asymp \prod_{p \leq x}\left(1+\frac{|f(p)|-1}{p}\right) \asymp(\log x)^{\alpha-1}
$$

- Write $h_{1}:=\prod_{p \leq x}\left(1+\frac{|f(p)|-1}{p}\right)^{-1} \asymp(\log x)^{1-\alpha}$.

General vanishing case

- When $|f(p)|$ has average value $\alpha \in(0,1)$, it is known that

$$
\frac{1}{x} \sum_{n \leq x}|f(n)| \asymp \prod_{p \leq x}\left(1+\frac{|f(p)|-1}{p}\right) \asymp(\log x)^{\alpha-1}
$$

- Write $h_{1}:=\prod_{p \leq x}\left(1+\frac{|f(p)|-1}{p}\right)^{-1} \asymp(\log x)^{1-\alpha}$.
- In case $|f(n)|$ takes values in $\{0,1\}$, the average of $f(n)$ in intervals of length $o\left(h_{1}\right)$ is typically 0 .

General vanishing case

- When $|f(p)|$ has average value $\alpha \in(0,1)$, it is known that

$$
\frac{1}{x} \sum_{n \leq x}|f(n)| \asymp \prod_{p \leq x}\left(1+\frac{|f(p)|-1}{p}\right) \asymp(\log x)^{\alpha-1}
$$

- Write $h_{1}:=\prod_{p \leq x}\left(1+\frac{|f(p)|-1}{p}\right)^{-1} \asymp(\log x)^{1-\alpha}$.
- In case $|f(n)|$ takes values in $\{0,1\}$, the average of $f(n)$ in intervals of length $o\left(h_{1}\right)$ is typically 0 .
- But for longer intervals we expect regular behaviour, i.e

$$
\begin{aligned}
& \left|\frac{1}{h_{0} h_{1}} \sum_{x<n \leq x+h_{0} h_{1}} f(n)-\frac{1}{X} \sum_{x<n \leq 2 X} f(n)\right| \\
& =o\left(\prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)\right)
\end{aligned}
$$

for almost all x as soon as $h_{0} \rightarrow \infty$ with $x \rightarrow \infty$

Short intervals, vanishing case

Theorem (M-Radziwiłt (202?))
Let $\varepsilon>0$. Let $f: \mathbb{N} \rightarrow[-1,1]$ be a multiplicative function s.t.

$$
\sum_{w<p \leq z} \frac{|f(p)|}{p} \geq \varepsilon \sum_{w<p \leq z} \frac{1}{p}+O\left(\frac{1}{\log w}\right)
$$

for all $2 \leq w<z<x^{\varepsilon}$. Set $h_{1}:=\prod_{p \leq x}\left(1+\frac{1-|f(p)|}{p}\right)$.

Short intervals, vanishing case

Theorem (M-Radziwiłt (202?))

Let $\varepsilon>0$. Let $f: \mathbb{N} \rightarrow[-1,1]$ be a multiplicative function s.t.

$$
\sum_{w<p \leq z} \frac{|f(p)|}{p} \geq \varepsilon \sum_{w<p \leq z} \frac{1}{p}+O\left(\frac{1}{\log w}\right)
$$

for all $2 \leq w<z<x^{\varepsilon}$. Set $h_{1}:=\prod_{p \leq x}\left(1+\frac{1-|f(p)|}{p}\right)$. For any $\delta>0$, and any $h_{0} \geq 1$,

$$
\left|\frac{1}{h_{0} h_{1}} \sum_{x<n \leq x+h_{0} h_{1}} f(n)-\frac{1}{X} \sum_{x<n \leq 2 X} f(n)\right| \leq \delta \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)
$$

for all but at most $O\left(X h_{0}^{-c \delta \delta^{\kappa}}\right)$ integers $x \in(X, 2 X]$, for some $c=c(\varepsilon)$ and $\kappa=\kappa(\varepsilon)>0$.

Short intervals, vanishing case

Theorem (M-Radziwiłt (202?))

Let $\varepsilon>0$. Let $f: \mathbb{N} \rightarrow[-1,1]$ be a multiplicative function s.t.

$$
\sum_{w<p \leq z} \frac{|f(p)|}{p} \geq \varepsilon \sum_{w<p \leq z} \frac{1}{p}+O\left(\frac{1}{\log w}\right)
$$

for all $2 \leq w<z<x^{\varepsilon}$. Set $h_{1}:=\prod_{p \leq x}\left(1+\frac{1-|f(p)|}{p}\right)$. For any $\delta>0$, and any $h_{0} \geq 1$,

$$
\left|\frac{1}{h_{0} h_{1}} \sum_{x<n \leq x+h_{0} h_{1}} f(n)-\frac{1}{X} \sum_{x<n \leq 2 X} f(n)\right| \leq \delta \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)
$$

for all but at most $O\left(X h_{0}^{-c \delta \delta^{\kappa}}\right)$ integers $x \in(X, 2 X]$, for some $c=c(\varepsilon)$ and $\kappa=\kappa(\varepsilon)>0$.

If f is complex-valued, a twist in main term.

Limitations of Hooley's and Plaksin's methods

- Recall Hooley's and Plaksin's works giving that for almost all x one has

$$
\frac{1}{h_{0}(\log X)^{1 / 2}} \sum_{x<n \leq x+h_{0}(\log X)^{1 / 2}} 1_{\mathcal{N}}(n) \asymp \frac{1}{(\log X)^{1 / 2}} .
$$

Limitations of Hooley's and Plaksin's methods

- Recall Hooley's and Plaksin's works giving that for almost all x one has

$$
\frac{1}{h_{0}(\log X)^{1 / 2}} \sum_{x<n \leq x+h_{0}(\log X)^{1 / 2}} 1_{\mathcal{N}}(n) \asymp \frac{1}{(\log X)^{1 / 2}}
$$

- The main arithmetic information they used was the solution to the shifted convolution problem

$$
\begin{equation*}
\sum_{n \leq x} r_{K}(n) r_{K}(n+h) \tag{2}
\end{equation*}
$$

with $r_{K}(n)$ the coefficients of the Dedekind zeta function of $K=\mathbb{Q}(i)$.

Limitations of Hooley's and Plaksin's methods

- Recall Hooley's and Plaksin's works giving that for almost all x one has

$$
\frac{1}{h_{0}(\log X)^{1 / 2}} \sum_{x<n \leq x+h_{0}(\log X)^{1 / 2}} 1_{\mathcal{N}}(n) \asymp \frac{1}{(\log X)^{1 / 2}}
$$

- The main arithmetic information they used was the solution to the shifted convolution problem

$$
\begin{equation*}
\sum_{n \leq x} r_{K}(n) r_{K}(n+h) \tag{2}
\end{equation*}
$$

with $r_{K}(n)$ the coefficients of the Dedekind zeta function of $K=\mathbb{Q}(i)$.

- (2) is completely open when degree of K exceeds two. Hence the previous approaches completely fail for generalisations.
- We only use multiplicativity, so we have chances to generalise!

Norm forms

- We say an integer n is norm-form of a number field K if n equals a norm of an algebraic integer in K. Write $g_{K}(n)$ for the indicator function. In particular $g_{\mathbb{Q}(i)}(n)=1_{n \in \mathcal{N}}(n)$

Norm forms

- We say an integer n is norm-form of a number field K if n equals a norm of an algebraic integer in K. Write $g_{K}(n)$ for the indicator function. In particular $g_{\mathbb{Q}(i)}(n)=1_{n \in \mathcal{N}}(n)$
- By Odoni's work the density in $[1, x]$ of norm forms of K is

$$
\delta_{K}(x):=\prod_{\substack{p \leq x, p \neq N \mathfrak{a} \\ \mathfrak{a} \text { integral ideal }}}\left(1-\frac{1}{p}\right)
$$

If K is a normal extension of \mathbb{Q} of degree k, then $\delta_{K}(x) \asymp(\log x)^{-1+1 / k}$.

Norm forms

- We say an integer n is norm-form of a number field K if n equals a norm of an algebraic integer in K. Write $g_{K}(n)$ for the indicator function. In particular $g_{\mathbb{Q}(i)}(n)=1_{n \in \mathcal{N}}(n)$
- By Odoni's work the density in $[1, x]$ of norm forms of K is

$$
\delta_{K}(x):=\prod_{\substack{p \leq x, p \neq N \mathfrak{a} \\ \mathfrak{a} \text { integral ideal }}}\left(1-\frac{1}{p}\right)
$$

If K is a normal extension of \mathbb{Q} of degree k, then $\delta_{K}(x) \asymp(\log x)^{-1+1 / k}$.

- Issue: When the class number of K exceeds $1, g_{K}(n)$ is not multiplicative.

Norm forms

- We say an integer n is norm-form of a number field K if n equals a norm of an algebraic integer in K. Write $g_{K}(n)$ for the indicator function. In particular $g_{\mathbb{Q}(i)}(n)=1_{n \in \mathcal{N}}(n)$
- By Odoni's work the density in $[1, x]$ of norm forms of K is

$$
\delta_{K}(x):=\prod_{\substack{p \leq x, p \neq N \mathfrak{N} \\ \mathfrak{a} \text { integral ideal }}}\left(1-\frac{1}{p}\right)
$$

If K is a normal extension of \mathbb{Q} of degree k, then $\delta_{K}(x) \asymp(\log x)^{-1+1 / k}$.

- Issue: When the class number of K exceeds $1, g_{K}(n)$ is not multiplicative.
- However, following work of Odoni, we show that $g_{K}(n)$ is a linear combination of (complex-valued) multiplicative functions.

Norm forms

- We say an integer n is norm-form of a number field K if n equals a norm of an algebraic integer in K. Write $g_{K}(n)$ for the indicator function. In particular $g_{\mathbb{Q}(i)}(n)=1_{n \in \mathcal{N}}(n)$
- By Odoni's work the density in $[1, x]$ of norm forms of K is

$$
\delta_{K}(x):=\prod_{\substack{p \leq x, p \neq N a \\ \mathfrak{a} \text { integral ideal }}}\left(1-\frac{1}{p}\right)
$$

If K is a normal extension of \mathbb{Q} of degree k, then $\delta_{K}(x) \asymp(\log x)^{-1+1 / k}$.

- Issue: When the class number of K exceeds $1, g_{K}(n)$ is not multiplicative.
- However, following work of Odoni, we show that $g_{K}(n)$ is a linear combination of (complex-valued) multiplicative functions.
- Applying our results to each function in the linear combination, we get a theorem in arbitrary number fields.

Norm forms in short intervals

Theorem (M-Radziwiłt (202?))

Let K be a number field over \mathbb{Q}, and let

$$
\delta_{K}(x):=\prod_{\substack{p \leq x, p \neq N \mathfrak{a} \\ \mathfrak{a} \text { integral ideal }}}\left(1-\frac{1}{p}\right) .
$$

Then, as $X \rightarrow \infty$, uniformly in $2 \leq h \leq X$ one has

$$
\left|\frac{1}{h \delta_{K}(X)^{-1}} \sum_{x \leq n \leq x+h \delta_{K}(X)^{-1}} g_{K}(n)-C_{K} \delta_{K}(X)\right| \leq \varepsilon \delta_{K}(X)
$$

for all $x \in(X, 2 X]$ with at most $O_{\varepsilon}\left(X h^{-c \varepsilon^{\kappa}}\right)$ exceptions where $c, \kappa, C_{K}>0$ depend solely on K.

Norm forms in short intervals

Theorem (M-Radziwiłt (202?))

Let K be a number field over \mathbb{Q}, and let

$$
\delta_{K}(x):=\prod_{\substack{p \leq x, p \neq N \mathfrak{a} \\ \mathfrak{a} \text { integral ideal }}}\left(1-\frac{1}{p}\right) .
$$

Then, as $X \rightarrow \infty$, uniformly in $2 \leq h \leq X$ one has

$$
\left|\frac{1}{h \delta_{K}(X)^{-1}} \sum_{x \leq n \leq x+h \delta_{K}(X)^{-1}} g_{K}(n)-C_{K} \delta_{K}(X)\right| \leq \varepsilon \delta_{K}(X)
$$

for all $x \in(X, 2 X]$ with at most $O_{\varepsilon}\left(X h^{-c \varepsilon^{\kappa}}\right)$ exceptions where $c, \kappa, C_{K}>0$ depend solely on K.

This is a vast extension of Hooley's and Plaksin's works for $\mathbb{Q}(i)$, with an asymptotic formula.

Gaps between sums of two squares

- Hooley (1971) and Plaksin $(1987,1992)$ have also studied gaps between sums of two squares.
- Writing $1=s_{1}<s_{2}<\ldots$ for the sequence of integers in \mathcal{N}. Plaksin showed that, for any $\gamma \in[1,2)$ (Hooley: $\gamma \in[1,5 / 3)$),

$$
\sum_{s_{n} \leq x}\left(s_{n+1}-s_{n}\right)^{\gamma} \asymp x(\log x)^{\frac{1}{2}(\gamma-1)}
$$

Gaps between sums of two squares

- Hooley (1971) and Plaksin $(1987,1992)$ have also studied gaps between sums of two squares.
- Writing $1=s_{1}<s_{2}<\ldots$ for the sequence of integers in \mathcal{N}. Plaksin showed that, for any $\gamma \in[1,2)$ (Hooley: $\gamma \in[1,5 / 3)$),

$$
\sum_{s_{n} \leq x}\left(s_{n+1}-s_{n}\right)^{\gamma} \asymp x(\log x)^{\frac{1}{2}(\gamma-1)}
$$

- That is to say, for any $h \geq 1$, the number of $x \in[X, 2 X]$ for which

$$
\left(x, x+h(\log X)^{1 / 2}\right] \cap \mathcal{N}=\emptyset
$$

is at most $O\left(X h^{-1+\varepsilon}\right)$.

Gaps between sums of two squares

- Hooley (1971) and Plaksin $(1987,1992)$ have also studied gaps between sums of two squares.
- Writing $1=s_{1}<s_{2}<\ldots$ for the sequence of integers in \mathcal{N}. Plaksin showed that, for any $\gamma \in[1,2)$ (Hooley: $\gamma \in[1,5 / 3)$),

$$
\sum_{s_{n} \leq x}\left(s_{n+1}-s_{n}\right)^{\gamma} \asymp x(\log x)^{\frac{1}{2}(\gamma-1)}
$$

- That is to say, for any $h \geq 1$, the number of $x \in[X, 2 X]$ for which

$$
\left(x, x+h(\log X)^{1 / 2}\right] \cap \mathcal{N}=\emptyset
$$

is at most $O\left(X h^{-1+\varepsilon}\right)$.

- Again this is based on the shifted convolution problem for $r_{K}(n)$ and does not extend beyond quadratic number fields.

Gaps between sums of two squares

- Hooley (1971) and Plaksin $(1987,1992)$ have also studied gaps between sums of two squares.
- Writing $1=s_{1}<s_{2}<\ldots$ for the sequence of integers in \mathcal{N}. Plaksin showed that, for any $\gamma \in[1,2)$ (Hooley: $\gamma \in[1,5 / 3)$),

$$
\sum_{s_{n} \leq x}\left(s_{n+1}-s_{n}\right)^{\gamma} \asymp x(\log x)^{\frac{1}{2}(\gamma-1)}
$$

- That is to say, for any $h \geq 1$, the number of $x \in[X, 2 X]$ for which

$$
\left(x, x+h(\log X)^{1 / 2}\right] \cap \mathcal{N}=\emptyset
$$

is at most $O\left(X h^{-1+\varepsilon}\right)$.

- Again this is based on the shifted convolution problem for $r_{K}(n)$ and does not extend beyond quadratic number fields.
- If, like Hooley and Plaksin, we do not request asymptotic formula, we get an improved bound for our exceptional set for any K.

Gaps between norm forms

Theorem (M-Radziwiłt (202?))

Let K be a number field and let $\delta_{K}(x)$ be the density of norm-forms. Then, for any $\varepsilon>0$, there exists a constant $c=c(K, \varepsilon)$ such that, for any $h \geq 1$, one has

$$
\frac{1}{h \delta_{K}(x)^{-1}} \sum_{x<n \leq x+h \delta_{K}(x)^{-1}} g_{K}(n) \geq c \delta_{K}(x)
$$

for all but $O_{\varepsilon, K}\left(X h^{-1 / 2+\varepsilon}\right)$ of $x \in(X, 2 X]$.

Gaps between norm forms

Theorem (M-Radziwiłt (202?))

Let K be a number field and let $\delta_{K}(x)$ be the density of norm-forms. Then, for any $\varepsilon>0$, there exists a constant $c=c(K, \varepsilon)$ such that, for any $h \geq 1$, one has

$$
\frac{1}{h \delta_{K}(x)^{-1}} \sum_{x<n \leq x+h \delta_{K}(x)^{-1}} g_{K}(n) \geq c \delta_{K}(x)
$$

for all but $O_{\varepsilon, K}\left(X h^{-1 / 2+\varepsilon}\right)$ of $x \in(X, 2 X]$. Consequently, letting $1 \leq n_{1}<n_{2}<\ldots$ denote the sequence of positive norm-forms of K, one has for any $\gamma \in[1,3 / 2)$,

$$
\sum_{n_{i} \leq x}\left(n_{i+1}-n_{i}\right)^{\gamma} \asymp_{\gamma, K} x \delta_{K}(x)^{\gamma-1}
$$

Gaps between norm forms

Theorem (M-Radziwiłt (202?))

Let K be a number field and let $\delta_{K}(x)$ be the density of norm-forms. Then, for any $\varepsilon>0$, there exists a constant $c=c(K, \varepsilon)$ such that, for any $h \geq 1$, one has

$$
\frac{1}{h \delta_{K}(x)^{-1}} \sum_{x<n \leq x+h \delta_{K}(x)^{-1}} g_{K}(n) \geq c \delta_{K}(x)
$$

for all but $O_{\varepsilon, K}\left(X h^{-1 / 2+\varepsilon}\right)$ of $x \in(X, 2 X]$. Consequently, letting $1 \leq n_{1}<n_{2}<\ldots$ denote the sequence of positive norm-forms of K, one has for any $\gamma \in[1,3 / 2)$,

$$
\sum_{n_{i} \leq x}\left(n_{i+1}-n_{i}\right)^{\gamma} \asymp \gamma, K x \delta_{K}(x)^{\gamma-1}
$$

This vastly extends Hooley's and Plaksin's results (case $K=\mathbb{Q}(i)$ with $\gamma \in[1,5 / 3)$ and $\gamma \in[1,2)$ repsectively).

Other multiplicative functions

Also these results work more generally. E.g. we get

Corollary

Let $\varepsilon>0$ be given and $h \geq 1$. Then the number of intervals $[x, x+h]$ with $x \in[X, 2 X]$ that do not contain an x^{ε}-smooth number is $<_{\eta, \varepsilon} X h^{-1 / 2+\eta}$ for all $\eta>0$.
Consequently, letting $1 \leq n_{1}<n_{2}<\ldots$ denote the sequence of integers n such that all prime factors of n are $\leq n^{\varepsilon}$, one has, for any $\gamma \in[1,3 / 2)$,

$$
\begin{equation*}
\sum_{n_{i} \leq x}\left(n_{i+1}-n_{i}\right)^{\gamma} \asymp_{\varepsilon, \gamma} x \tag{3}
\end{equation*}
$$

Other multiplicative functions

Also these results work more generally. E.g. we get

Corollary

Let $\varepsilon>0$ be given and $h \geq 1$. Then the number of intervals $[x, x+h]$ with $x \in[X, 2 X]$ that do not contain an x^{ε}-smooth number is $<_{\eta, \varepsilon} X h^{-1 / 2+\eta}$ for all $\eta>0$.
Consequently, letting $1 \leq n_{1}<n_{2}<\ldots$ denote the sequence of integers n such that all prime factors of n are $\leq n^{\varepsilon}$, one has, for any $\gamma \in[1,3 / 2)$,

$$
\begin{equation*}
\sum_{n_{i} \leq x}\left(n_{i+1}-n_{i}\right)^{\gamma} \asymp_{\varepsilon, \gamma} x \tag{3}
\end{equation*}
$$

This improves on a recent result of Heath-Brown who got for (3) the upper bound $\ll x^{1+\eta}$ for any $\eta>0$.

Recalling the main theorem

Theorem (M-Radziwiłt (202?))

Let $\varepsilon>0$. Let $f: \mathbb{N} \rightarrow[-1,1]$ be a multiplicative function s.t.

$$
\sum_{w<p \leq z} \frac{|f(p)|}{p} \geq \varepsilon \sum_{w<p \leq z} \frac{1}{p}+O\left(\frac{1}{\log w}\right)
$$

for all $2 \leq w<z<x^{\varepsilon}$. Set $h_{1}:=\prod_{p \leq x}\left(1+\frac{1-|f(p)|}{p}\right)$.

Recalling the main theorem

Theorem (M-RadziwiHt (202?))

Let $\varepsilon>0$. Let $f: \mathbb{N} \rightarrow[-1,1]$ be a multiplicative function s.t.

$$
\sum_{w<p \leq z} \frac{|f(p)|}{p} \geq \varepsilon \sum_{w<p \leq z} \frac{1}{p}+O\left(\frac{1}{\log w}\right)
$$

for all $2 \leq w<z<x^{\varepsilon}$. Set $h_{1}:=\prod_{p \leq x}\left(1+\frac{1-|f(p)|}{p}\right)$. For any $\delta>0$, and any $h_{0} \geq 1$,

$$
\left|\frac{1}{h_{0} h_{1}} \sum_{x<n \leq x+h_{0} h_{1}} f(n)-\frac{1}{X} \sum_{x<n \leq 2 X} f(n)\right| \leq \delta \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)
$$

for all but at most $O\left(X h_{0}^{-c \delta^{\kappa}}\right)$ integers $x \in(X, 2 X]$, for some $c=c(\varepsilon)$ and $\kappa=\kappa(\varepsilon)>0$.

Proof ideas

- For simplicity concentrate on case when the average of f is 0 .
- Our starting point is Perron's formula, giving

$$
\begin{aligned}
\sum_{x<n \leq x+H} f(n) & =\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} \cdot \frac{(x+H)^{1+i t}-x^{1+i t}}{1+i t} \\
& \approx \frac{H}{2 \pi i} \int_{-X / H}^{X / H} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} x^{i t} d t .
\end{aligned}
$$

- For simplicity concentrate on case when the average of f is 0 .
- Our starting point is Perron's formula, giving

$$
\begin{aligned}
\sum_{x<n \leq x+H} f(n) & =\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} \cdot \frac{(x+H)^{1+i t}-x^{1+i t}}{1+i t} \\
& \approx \frac{H}{2 \pi i} \int_{-X / H}^{X / H} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} x^{i t} d t .
\end{aligned}
$$

- If we just put absolute values here, we have an impossible task — with squareroot cancellation RHS would be of size $X^{1 / 2}$, i.e. much larger than the trivial bound H.
- For simplicity concentrate on case when the average of f is 0 .
- Our starting point is Perron's formula, giving

$$
\begin{aligned}
\sum_{x<n \leq x+H} f(n) & =\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} \cdot \frac{(x+H)^{1+i t}-x^{1+i t}}{1+i t} \\
& \approx \frac{H}{2 \pi i} \int_{-X / H}^{X / H} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} x^{i t} d t .
\end{aligned}
$$

- If we just put absolute values here, we have an impossible task — with squareroot cancellation RHS would be of size $X^{1 / 2}$, i.e. much larger than the trivial bound H.
- Normally one would go on and average over x, getting

$$
\frac{1}{X} \int_{X}^{2 X}\left|\sum_{x<n \leq x+H} f(n)\right|^{2} d x \ll \int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}}\right|^{2} d t
$$

The mean square

- Normally one would go on and average over x, getting

$$
\frac{1}{X} \int_{X}^{2 X}\left|\sum_{x<n \leq x+H} f(n)\right|^{2} d x \ll \int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}}\right|^{2} d t
$$

- Normally one would go on and average over x, getting

$$
\frac{1}{X} \int_{X}^{2 X}\left|\sum_{x<n \leq x+H} f(n)\right|^{2} d x \ll \int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}}\right|^{2} d t
$$

- Recall $H=h_{0} h_{1}$ with $h_{1}=\prod_{p \leq X}\left(1+\frac{1-|f(p)|}{p}\right)$. Now to show that

$$
\left|\frac{1}{h_{0} h_{1}} \sum_{x<n \leq x+h_{0} h_{1}} f(n)\right| \leq \delta \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)
$$

with $O\left(X h_{0}^{-c \delta^{\kappa}}\right)$ exceptions, we would need the bound
$\int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}}\right|^{2} d t \ll \delta^{2} h_{0}^{-c \delta^{\kappa}} \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)^{2}$.

Studying the mean square

- We would need the bound

$$
\int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}}\right|^{2} d t \ll \delta^{2} h_{0}^{-c \delta^{\kappa}} \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)^{2} .
$$

- Using Shiu's and Henriot's bounds for averages and correlations of multiplicative functions, one can tweak the usual MVT to show that, for any $a_{n} \leq|f(n)|$,

$$
\int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{a_{n}}{n^{1+i t}}\right|^{2} d t \ll \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)^{2}
$$

Studying the mean square

- We would need the bound

$$
\int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}}\right|^{2} d t \ll \delta^{2} h_{0}^{-c \delta^{\kappa}} \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)^{2} .
$$

- Using Shiu's and Henriot's bounds for averages and correlations of multiplicative functions, one can tweak the usual MVT to show that, for any $a_{n} \leq|f(n)|$,

$$
\int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{a_{n}}{n^{1+i t}}\right|^{2} d t \ll \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)^{2}
$$

- Same situation as in our previous work - need to save something compared to the MVT bound.
- After reproving Halasz and Lipschitz type estimates in the sparse setting, we can repeat those arguments.

Studying the mean square

- We would need the bound

$$
\int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}}\right|^{2} d t \ll \delta^{2} h_{0}^{-c \delta^{\kappa}} \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)^{2} .
$$

- Using Shiu's and Henriot's bounds for averages and correlations of multiplicative functions, one can tweak the usual MVT to show that, for any $a_{n} \leq|f(n)|$,

$$
\int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{a_{n}}{n^{1+i t}}\right|^{2} d t \ll \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)^{2}
$$

- Same situation as in our previous work - need to save something compared to the MVT bound.
- After reproving Halasz and Lipschitz type estimates in the sparse setting, we can repeat those arguments.
- But this gives about $h_{0}^{-c \delta^{\kappa}}+(\log X)^{-\kappa}$ where we want $h_{0}^{-c \delta^{\kappa}}$.

An issue with mean square

- Actually showing the bound

$$
\int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}}\right|^{2} d t \ll \delta^{2} h_{0}^{-c \delta^{\kappa}} \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)^{2}
$$

in general is not possible - there might be some points t where $\sum f(n) n^{-1+i t}$ is $\asymp \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)(\log X)^{-\kappa}$.

An issue with mean square

- Actually showing the bound

$$
\int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}}\right|^{2} d t \ll \delta^{2} h_{0}^{-c \delta^{\kappa}} \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)^{2}
$$

in general is not possible - there might be some points t where $\sum f(n) n^{-1+i t}$ is $\asymp \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)(\log X)^{-\kappa}$.

- But if we had something like

$$
\sum_{P<p \leq 2 P} \frac{f(p)}{p^{1+i t}}=O\left(P^{-1 / 4+\varepsilon}\right)
$$

for all $P=2^{j} \in\left[X^{\varepsilon^{3}}, X^{\varepsilon^{2}}\right]$, then that method would give the desired bound. (also we need to construct a good sieve majorant for $f(n)$ to handle " $n \notin \mathcal{S}^{\prime \prime}$)

An issue with mean square

- Actually showing the bound

$$
\int_{-X / H}^{X / H}\left|\sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}}\right|^{2} d t \ll \delta^{2} h_{0}^{-c \delta^{\kappa}} \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)^{2} .
$$

in general is not possible - there might be some points t where $\sum f(n) n^{-1+i t}$ is $\asymp \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)(\log X)^{-\kappa}$.

- But if we had something like

$$
\sum_{P<p \leq 2 P} \frac{f(p)}{p^{1+i t}}=O\left(P^{-1 / 4+\varepsilon}\right)
$$

for all $P=2^{j} \in\left[X^{\varepsilon^{3}}, X^{\varepsilon^{2}}\right]$, then that method would give the desired bound. (also we need to construct a good sieve majorant for $f(n)$ to handle " $n \notin \mathcal{S}^{\prime \prime}$)

- Key new idea: Handle "exceptional" t before taking the mean square over x.

Splitting into \mathcal{T} and \mathcal{U}

- Recall

$$
\sum_{x<n \leq x+H} f(n) \approx \frac{H}{2 \pi i} \int_{-X / H}^{X / H} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} x^{i t} d t
$$

Splitting into \mathcal{T} and \mathcal{U}

- Recall

$$
\sum_{x<n \leq x+H} f(n) \approx \frac{H}{2 \pi i} \int_{-X / H}^{X / H} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} x^{i t} d t
$$

- Split $[-X / H, X / H]=\mathcal{T} \cup \mathcal{U}$ with $t \in \mathcal{T}$ iff

$$
\left|\sum_{P<p \leq 2 P} \frac{f(p)}{p^{1+i t}}\right|<P^{-1 / 4+\varepsilon} \quad \text { for all } P=2^{j} \in\left[X^{\varepsilon^{3}}, X^{\varepsilon^{2}}\right] .
$$

Splitting into \mathcal{T} and \mathcal{U}

- Recall

$$
\sum_{x<n \leq x+H} f(n) \approx \frac{H}{2 \pi i} \int_{-X / H}^{X / H} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} x^{i t} d t
$$

- Split $[-X / H, X / H]=\mathcal{T} \cup \mathcal{U}$ with $t \in \mathcal{T}$ iff

$$
\left|\sum_{P<p \leq 2 P} \frac{f(p)}{p^{1+i t}}\right|<P^{-1 / 4+\varepsilon} \quad \text { for all } P=2^{j} \in\left[X^{\varepsilon^{3}}, X^{\varepsilon^{2}}\right] .
$$

- By MVT $|\mathcal{U}| \leq(X / H)^{1 / 2-\varepsilon}$, and by previous discussion,

$$
\begin{aligned}
& \frac{1}{X} \int_{X}^{2 X}\left|\frac{H}{2 \pi i} \int_{\mathcal{T}} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} x^{i t} d t\right|^{2} d x \\
& \ll \int_{\mathcal{T}}\left|\sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}}\right|^{2} d t \ll \delta^{2} h_{0}^{-c \delta^{\kappa}} \prod_{p \leq X}\left(1+\frac{|f(p)|-1}{p}\right)^{2}
\end{aligned}
$$

Handling \mathcal{U}

- We are left with studying, for certain $|\mathcal{U}| \leq(X / H)^{1 / 2-\varepsilon}$,

$$
\begin{equation*}
\frac{H}{2 \pi i} \int_{\mathcal{U}} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} x^{i t} d t \tag{4}
\end{equation*}
$$

- We are left with studying, for certain $|\mathcal{U}| \leq(X / H)^{1 / 2-\varepsilon}$,

$$
\begin{equation*}
\frac{H}{2 \pi i} \int_{\mathcal{U}} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} x^{i t} d t \tag{4}
\end{equation*}
$$

- Since most integers have at least two prime factors from $\left(X^{\varepsilon^{2}}, X^{\varepsilon}\right]$, we can at least morally replace $\sum \frac{f(n)}{n^{1+i t}}$ by

$$
\sum_{P_{1}, P_{2} \in\left(X^{\varepsilon^{2}}, X^{\varepsilon}\right]} \sum_{P_{1}<p \leq 2 P_{1}} \frac{f(p)}{p^{1+i t}} \sum_{P_{2}<p \leq 2 P_{2}} \frac{f(p)}{p^{1+i t}} \sum_{m \asymp X /\left(P_{1} P_{2}\right)} \frac{f(m)}{m^{1+i t}} .
$$

Handling \mathcal{U}

- We are left with studying, for certain $|\mathcal{U}| \leq(X / H)^{1 / 2-\varepsilon}$,

$$
\begin{equation*}
\frac{H}{2 \pi i} \int_{\mathcal{U}} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} x^{i t} d t \tag{4}
\end{equation*}
$$

- Since most integers have at least two prime factors from $\left(X^{\varepsilon^{2}}, X^{\varepsilon}\right]$, we can at least morally replace $\sum \frac{f(n)}{n^{1+i t}}$ by

$$
\sum_{P_{1}, P_{2} \in\left(X^{\varepsilon^{2}}, X^{\varepsilon}\right]} \sum_{P_{1}<p \leq 2 P_{1}} \frac{f(p)}{p^{1+i t}} \sum_{P_{2}<p \leq 2 P_{2}} \frac{f(p)}{p^{1+i t}} \sum_{m \simeq X /\left(P_{1} P_{2}\right)} \frac{f(m)}{m^{1+i t}} .
$$

- Now, by Huxley's large value theorem, those $t \in \mathcal{U}$ for which

$$
\left|\sum_{P<p \leq 2 P} \frac{f(p)}{p^{1+i t}}\right| \leq \delta h_{0}^{-c \delta^{\kappa}} \quad \text { for all } P=2^{j} \in\left(X^{\varepsilon^{2}}, X^{\varepsilon}\right]
$$

give an acceptable contribution to square mean of (4).

Handling \mathcal{U}

- We are left with studying, for certain $|\mathcal{U}| \leq(X / H)^{1 / 2-\varepsilon}$,

$$
\begin{equation*}
\frac{H}{2 \pi i} \int_{\mathcal{U}} \sum_{X<n \leq 3 X} \frac{f(n)}{n^{1+i t}} x^{i t} d t \tag{4}
\end{equation*}
$$

- Since most integers have at least two prime factors from $\left(X^{\varepsilon^{2}}, X^{\varepsilon}\right]$, we can at least morally replace $\sum \frac{f(n)}{n^{1+i t}}$ by

$$
\sum_{P_{1}, P_{2} \in\left(X^{\varepsilon^{2}}, X^{\varepsilon}\right]} \sum_{P_{1}<p \leq 2 P_{1}} \frac{f(p)}{p^{1+i t}} \sum_{P_{2}<p \leq 2 P_{2}} \frac{f(p)}{p^{1+i t}} \sum_{m \asymp X /\left(P_{1} P_{2}\right)} \frac{f(m)}{m^{1+i t}} .
$$

- Now, by Huxley's large value theorem, those $t \in \mathcal{U}$ for which

$$
\left|\sum_{P<p \leq 2 P} \frac{f(p)}{p^{1+i t}}\right| \leq \delta h_{0}^{-c \delta^{\kappa}} \quad \text { for all } P=2^{j} \in\left(X^{\varepsilon^{2}}, X^{\varepsilon}\right]
$$

give an acceptable contribution to square mean of (4).

- The complement is tiny and there (4) is $o(H)$ by Halász + tailored Halász-Montgomery type large value results.

The results with positive proportion lower bound

- When one only wants, for $f: \mathbb{N} \rightarrow[0,1]$, with a good exceptional set,

$$
\frac{1}{H} \sum_{x<n<x+H} f(n) \geq \delta \prod_{p \leq x}\left(1+\frac{f(p)-1}{p}\right)
$$

The results with positive proportion lower bound

- When one only wants, for $f: \mathbb{N} \rightarrow[0,1]$, with a good exceptional set,

$$
\frac{1}{H} \sum_{x<n<x+H} f(n) \geq \delta \prod_{p \leq x}\left(1+\frac{f(p)-1}{p}\right)
$$

it suffices to show that, for $K=\left\lfloor 1 / \varepsilon^{10}\right\rfloor$,

$$
\begin{aligned}
& \frac{1}{H} \sum_{\substack{x<p_{1} \cdots p_{K-1} m \leq x+H \\
p_{j} \in\left[X^{\left(1-\varepsilon^{10}\right) / K}, X^{\left.\left(1+\varepsilon^{10}\right) / K\right]}\right.}} f\left(p_{1}\right) \cdots f\left(p_{K-1}\right) f(m) \\
& \gg \prod_{p \leq x}\left(1+\frac{f(p)-1}{p}\right) .
\end{aligned}
$$

- The resulting Dirichlet polynomial is a product of short factors. This gives a lot more flexibility with applying mean and large value theorems
- This way we get the desired result.

Thank you!

