Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion

Tinkering with Lattices: A New Take on the Erdős Distance Problem

Elena Kim¹, Fernando Trejos Suárez²

1. Pomona College, 2. Yale University

1. elena.kim@pomona.edu, 2. fernando.trejos@yale.edu

Advisors: Eyvindur Palsson (palsson@vt.edu) and Steven J Miller (sjm1@williams.edu)

SMALL REU at Williams College

2020 Québec-Maine Number Theory Conference Joint work with Jason Zhao

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
●00		00	000000000000	0000	000

Erdős distinct distances problem

Question [Erdős, 1946]

Given *n* points in a plane, what is the minimum number of distinct distances f(n) that they determine?

Some Examples:

3 points; 1 distance

4 points; 2 distances

9 points; 4 distances

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
0●0		00	000000000000	0000	000
Einer Faster					

Theorem (Erdős, 1946)

Let $[P_n]$ be the class of subsets of the plane with n points, and let f(n) be the minimum number of distinct distances determined by an element $P_n \in [P_n]$. Then,

$$(n-3/4)^{1/2}-1/2 \leq f(n) \leq cn/\sqrt{\log n}.$$

Upper Bound: Upper bound for distinct distances of the $\sqrt{n} \times \sqrt{n}$ integer lattice.

Lower Bound (the hard part): Work with the convex hull of an arbitrary point set P_n .

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000					

Erdős Distinct Distances Problem: Bounds

Upper bounds (unimproved since Erdős!):

• $\Delta(n) = O(\frac{n}{\sqrt{\log n}})$ (Erdős, 1946)

Lower bounds:

A set with $O(\frac{n}{\sqrt{\log n}})$ distinct distances is *near-optimal*. The integer lattice is a near-optimal set.

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000		00	000000000000	0000	000

Lattice Distance Distribution

Figure: Distance distribution for 200×200 integer lattice

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000	0●00000	00	000000000000	0000	000
Repeating	Distances				

How often do distances on the integer lattice repeat?

- 4 points at a distance 1 from the origin.
- 4 points at a distance $\sqrt{2} = \sqrt{1^2 + 1^2}$ from the origin.
- 8 points at a distance $\sqrt{5} = \sqrt{2^2 + 1^2} = \sqrt{1^2 + 2^2}$.

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000	00●0000	00	000000000000	0000	000

Calculating Distance Frequency

What is the frequency of a distance \sqrt{d} on a $N \times N$ lattice?

- Find all the decompositions of d into $d = a^2 + b^2$, where $N-1 \ge a \ge b \ge 0$. If there are m ordered pairs (a, b) with $a^2 + b^2 = d$, \sqrt{d} is on the m-th curve!
- If b = 0 or a = b, then the frequency of that particular decomposition is 2(N a)(N b). If a > b then the frequency of that particular decomposition is 4(N a)(N b).
- Add all the frequencies together.

Background	Distance distribution	Upper Bounds	Lower Bounds	Conclusion
	0000000			

More Facts About the Distance Distribution

Theorem (Fermat)

Suppose d has prime factorization $d = 2^{f} p_{1}^{g_{1}} \cdots p_{m}^{g_{m}} q_{1}^{h_{1}} \cdots q_{n}^{h_{n}}$, where $p_{i} \equiv 1 \pmod{4}$, $q_{i} \equiv 3 \pmod{4}$. Then there exist r(d) ordered pairs $(a, b) \in \mathbb{Z}^{2}$ with $a^{2} + b^{2} = d$, where

$$r(d) = egin{cases} 4\,(g_1+1)\cdots(g_m+1) & h_i ext{ is even for all } i_i \ 0 & else. \end{cases}$$

• The number of integers in the set $\{1, ..., 2n\}$ which can be written as the sum of two squares is of order $\frac{cn}{\sqrt{\log n}}$. (Source of Erdos's Upper Bound!)

000	0000000	00	000000000000	0000	000

- The first (left-most) distance on each curve has the highest frequency on that curve.
- Define n_k as the least positive integer such that there are k ordered pairs (a, b) with $a^2 + b^2 = n_k$, so that $\sqrt{n_k}$ is the first distance on the k-th curve. Then the sequence n_1, n_2, \ldots will be a list of potential candidates for the most common distance on the lattice!

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000	00000€0	00	000000000000	0000	
What is th	e most commo	n distan	ce on the latti	ce?	

- The first distance on each curve has the highest frequency on that curve.
- Define n_k as the least positive integer such that there are k ordered pairs (a, b) with $a^2 + b^2 = n_k$, so that $\sqrt{n_k}$ is the left-most distance on the k-th curve. Then the sequence n_1, n_2, \ldots will be a list of potential candidates for the most common integer on the lattice!

Lemma (SMALL 2020)

Let $k = q_1^{\alpha_1} q_2^{\alpha_2} \cdots q_n^{\alpha_n}$ be arbitrary, where $q_1 > q_2 > \ldots > q_n$, and let $5 = p_1 < p_2 < \cdots$ be the primes $\equiv 1 \pmod{4}$, in increasing order. Then,

$$n_{k} = \left(\underbrace{p_{1} \cdots p_{\alpha_{1}}}_{\alpha_{1} \text{ primes}}\right)^{q_{1}-1} \left(\underbrace{p_{\alpha_{1}+1} \cdots p_{\alpha_{1}+\alpha_{2}}}_{\alpha_{2} \text{ primes}}\right)^{q_{2}-1} \cdots \left(\underbrace{p_{\alpha_{1}+\dots+\alpha_{n-1}+1} \cdots p_{\alpha_{1}+\dots+p_{\alpha_{1}+\dots+\alpha_{n}}}}_{\alpha_{n} \text{ primes}}\right)^{q_{n}-1}$$

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
	000000				

What is the most common distance on the lattice?

Although n_k is difficult to deal with, the extremal cases are simple:

• For k prime,
$$n_k = 5^{k-1}$$
.

- For $k = 2^m$, $n_k = p_1 \cdots p_m$ where $p_1 < \ldots < p_m$ are the first m primes such that $p_i \equiv 1 \pmod{4}$.
- Adapting previous asymptotic results on the product of the first k primes,

$$n_k pprox \mathrm{e}^{rac{1}{2}(1+c)\log_2 2k\log\log_2 2k}$$

We arrive at the following upper bound for the frequency of $\sqrt{n_k}$:

$$2kN\left(N-e^{\frac{1}{4}(1+c)\log_2 2k\log\log_2 2k}\right).$$

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000		●○	000000000000	0000	000
Error intro	duction				

We want to compare the distance distribution of the integer lattice with those of its subsets.

Why do we care about this?

The integer lattice is a near-optimal set, *however* its subsets can have distance distributions with a wide range of behavior.

Basically, we are trying to solve the Erdős distance problem on subsets of the lattice.

Background 000	Distance distribution	Error ○●	Upper Bounds 000000000000	Lower Bounds 0000	Conclusion
Calculating	g error				

How do we compare the distance distributions of subsets of the lattice with the distance distribution of the lattice?

- The $N \times N$ lattice has $\frac{N^2(N^2-1)}{2} \approx \frac{N^4}{2}$ total distances. A subset with p points has $\frac{p(p-1)}{2} \approx \frac{p^2}{2}$ total distances.
- So we scale the distance distribution of the subset up by $\frac{N^4}{p^2}$.
- Then, for each unique distance we find the absolute difference between the scaled subset frequency and the lattice frequency.
- We then average these difference to find the error.

Background 000	Distance distribution	Error 00	Upper Bounds ●00000000000	Lower Bounds	Conclusion 000
Configurat	tions				

What configuration of p points maximizes error?

-

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000		00	o●oooooooooo	0000	000

What configuration of p points maximizes error?

•	0	0	0			•
0	۰	0	•	•	•	•
0	۰	0	•	•	•	•
0	۰	0	•	•	•	•
0	۰	0	•	0	0	
0	۰	0	0	0	0	0
•	•	٠	٠	٠	٠	•

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000		00	00000000000	0000	000

What configuration of p points maximizes error?

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000		00	000●00000000	0000	000

What configuration of p points maximizes error?

Background 000	Distance distribution	Error 00	Upper Bounds 00000000000	Lower Bounds 0000	Conclusion

What configuration of p points maximizes error?

Background 000	Distance distribution	Error 00	Upper Bounds 00000000000	Lower Bounds 0000	Conclusion

What configuration of p points maximizes error?

Background 000	Distance distribution	Error 00	Upper Bounds 000000000000	Lower Bounds 0000	Conclusion

What configuration of p points maximizes error?

Background 000	Distance distribution	Error 00	Upper Bounds 0000000●0000	Lower Bounds 0000	Conclusion

What configuration of p points maximizes error?

Figure: p = 4(N - 1)

Background 000	Distance distribution	Error 00	Upper Bounds 0000000000000	Lower Bounds 0000	Conclusion

What configuration of p points maximizes error?

Figure: p = 4(N - 1) + 4(N - 3)

Background 000	Distance distribution	Error 00	Upper Bounds 000000000€00	Lower Bounds 0000	Conclusion

What configuration of p points maximizes error?

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000		00	000000000000	0000	000
Error Calc	ulations				

How do we calculate the error for one of these configurations?

Ex: for $p = \left\lceil \frac{N^2}{2} \right\rceil$ we have a checkerboard lattice.

We simplify by looking at $\sqrt{a^2 + b^2}$ instead of \sqrt{d} .

 $\sqrt{a^2 + b^2}$ only appears if a and b are both even or both odd.

Background 000	Distance distribution	Error 00	Upper Bounds 00000000000	Lower Bounds	Conclusion 000
Error Calo	culations				

The error is:

$$\frac{4}{N+2} \left[\frac{3}{4} \left(4 \left(\frac{N(5N-1)}{6} \right) - \frac{N(5N-1)}{6} \right) + \frac{1}{4} \left(\frac{N(5N-1)}{6} \right) \right] + \frac{N-2}{N+2} \left[\frac{1}{2} \left(4 \left(\frac{N(3N-1)}{3} \right) - \frac{N(3N-1)}{3} \right) + \frac{1}{2} \frac{N(3N-1)}{3} \right] \\ = 2N^2 - \frac{25N}{6} - \frac{121}{21(N+2)} + \frac{188}{21(3N-1)} + \frac{71}{6}$$

Background 000	Distance distribution	Error 00	Upper Bounds 000000000000	Lower Bounds ●000	Conclusion 000
L					
Lower Bo	unds				

How do you calculate a lower bound for the error?

- Scale frequency down by $\frac{p^2}{N^4}$ and round frequency to nearest whole number
- We call this the optimal distance distribution for p points

Figure: data for N = 100

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000		00	000000000000	0●00	000
Calculating	g Lower Bound				

$$\mathsf{Error} \geq \begin{cases} \frac{N^3}{N+2} + \frac{N^2}{N+2} - \frac{10N}{3(N+2)} & \text{if } p \leq \frac{\log_5(N)}{5} \left(11 - 2\sqrt{10}\right), \\ \frac{N^4}{8p^2} & \text{if } p \text{ sufficiently large.} \end{cases}$$

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000		00	000000000000	00●0	000
	z Lower Bound				

$$\mathsf{Error} \geq \begin{cases} \frac{N^3}{N+2} + \frac{N^2}{N+2} - \frac{10N}{3(N+2)} & \text{if } p \leq \frac{\log_5(N)}{5} \left(11 - 2\sqrt{10} \right), \\ \frac{N^4}{8p^2} & \text{if } p \text{ sufficiently large.} \end{cases}$$

Optimal distance distribution is actually the empty distance distribution.

So error is the average frequency in the full lattice.

If the most frequent distance on the lattice is F, then p small enough that $N^4/p^2 > 2F$ will be sufficient. (Error contribution for adding any distance will result in strict increase in absolute difference).

$$p \leq \log_5(N)(11 - 2\sqrt{10})/5$$
 ensures $N^4/p^2 > 2F$.

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000		00	000000000000	000●	000
Lower Bou	und Formula				

$$\mathsf{Error} \geq \begin{cases} \frac{N^3}{N+2} + \frac{N^2}{N+2} - \frac{10N}{3(N+2)} & \text{if } p \leq \frac{\log_5(N)}{5} \left(11 - 2\sqrt{10} \right), \\ \frac{N^4}{8p^2} & \text{if } p \text{ sufficiently large.} \end{cases}$$

- Some intuition: the average error should be around $\frac{p^2}{4N^4}$
- However, for small p, many original frequencies are very close to 0, so average is smaller than $\frac{N^4}{4p^2}$

Background 000	Distance distribution	Error 00	Upper Bounds 000000000000	Lower Bounds 0000	Conclusion
Further w	ork				

- Characterizing sets of maximum error.
- Characterizing sets of minimum error.
- Extending results to other lattice structures.

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000		00	000000000000	0000	○●○
Acknowled	dgements				

Thanks to

- Jason Zhao (Collaborator)
- Prof. Eyvindur Palsson (Mentor),
- Prof. Steven J. Miller (Mentor, NSF Grant DMS1561945),
- the SMALL REU program (NSF grant DMS1947438)
- Yale University
- The Quebec-Maine Conference organizers,
- and to you, for your attention today!

Background	Distance distribution	Error	Upper Bounds	Lower Bounds	Conclusion
000		00	000000000000	0000	○○●

Questions?

Elena Kim (elena.kim@pomona.edu)

Fernando Trejos Suárez (fernando.trejos@yale.edu)