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Motivation

Γ “nice” arithmetic group, e.g.:
- Γ = SL2(Z), SL3(Z), . . .
- Γ = SL2(OK ), K imaginary quadratic
- congruence subgroups, e.g., Γ0(N) ⊆ SL2(Z)

Γ acts on a symmetric space, e.g.:
- SL2(Z) acts on the complex upper half plane
- Γ = SL2(OK ) acts on hyperbolic 3-space

Hecke algebra acts on Hi(Γ\X ,Q)
Phenomenon: same Hecke eigensystem can occur in several
degrees

Venkatesh global derived Hecke algebra H∗Q`
:

- H∗Q`
is a graded Q`-algebra

- H∗(Γ\X ,Q`) is a graded H∗Q`
-module

Conjecture: derived Hecke algebra “causes” the phenomenon
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Setup

F/Qp finite extension, O ring of integers, O/($) = Fq

G/O split reductive group
 G = G(F ), K = G(O), T ⊆ G maximal split torus

Example: G = GLn
 G = GLn(F ), K = GLn(O), T = invertible diagonal matrices

Cartan decomposition (Bruhat-Tits): G = KTK
If G = GLn(F ), this is just the elementary divisor theorem
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Classical spherical Hecke algebra

Spherical Hecke algebra of G:

H(G)C = C [K\G/K ] = Cc(K\G/K ,C)

Product given by convolution:

(h1 ∗ h2)(g) =

∫
G

h1(gx−1) · h2(x)dx

G = KTK ⇒ {1KtK | t ∈ T} generates H(G)C

Gelfand’s trick⇒ H(G)C is commutative
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Gelfand’s trick for the spherical Hecke algebra

∃ σ : G→ G involution such that
σ(K ) = K
σ(t) = t−1 ∀t ∈ T

If G = GLn(F ), take σ(g) = tg−1

Define σ : H(G)C → H(G)C by

σ(f )(g) = f (σ(g)−1)

Easy calculation σ(h1 ∗ h2) = σ(h2) ∗ σ(h1)
Cartan decomposition⇒ σ(h) = h
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Derived Hecke algebra

H(G)C = C [K\G/K ]

= HomK (C,C[G/K ])

= HomG(C[G/K ],C[G/K ])

Idea:
H∗(G)C :=

⊕
i

Exti
G(C[G/K ],C[G/K ])

Problem:
Exti

G(C[G/K ],C[G/K ]) = 0 for i ≥ 1

Solution: choose ` 6= p and consider

H∗(G)Z/`rZ :=
⊕

i

Exti
G(Z/`rZ[G/K ],Z/`rZ[G/K ])
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The main result

Theorem
` 6= p prime such that

q ≡ 1 mod ` and
` does not divide the order of the Weyl group of G

⇒ H∗(G)Z/`rZ is graded-commutative for all r

Weyl group of GLn isomorphic to Sn
 second condition equivalent to ` > n if G = GLn(F )

Result previously known under the condition q ≡ 1 mod `r

(Venkatesh)
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An explicit model for the derived Hecke algebra

(x , y) ∈ G/K ×G/K  Gxy its stabilizer in G

An element h ∈ H(G)∗R is a collection of elements

h(x , y) ∈ H∗(Gxy ,R), (x , y) ∈ G/K ×G/K

such that
h is G-invariant, i.e. Ad(g)∗h(gx ,gy) = h(x , y)

h has finite support modulo G
Multiplication given by convolution:

(h1∗h2)(x , z) =
∑

y∈Gxz\G/K

CoresGxz
Gxyz

(Res
Gxy
Gxyz

h1(x , y)∪Res
Gyz
Gxyz

h2(y , z))
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The involution

G=KTK⇒ (x , y) and (σ(y), σ(x)) lie in same G-orbit, i.e.:
∃ gxy ∈ G such that gxy (x , y) = (σ(y), σ(x))

gxyGxyg−1
xy = σ(Gxy )

 Ad(gxy )∗σ∗ : H∗(Gxy ,R)→ H∗(Gxy ,R)

Define hσ ∈ H(G)∗R via hσ(x , y) = Ad(gxy )∗σ∗(h(x , y))

Easy calculation
 σ(h1 ∗ h2) = (−1)ij · σ(h2) ∗ σ(h1), deg(h1) = i , deg(h2) = j

Under assumptions of theorem: σ(h1 ∗ h2) = σ(h1) ∗ σ(h2)
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How to prove it?

Would you like to know more?
Check out my preprint!
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