Double character sum and double Dirichlet series

Martin Čech
Concordia University
Québec-Maine Number Theory conference
27/09/2020

Double character sum

We will study the double character sum

$$
S(X, Y)=\sum_{\substack{m \leq X, m \text { odd } n \text { odd }}} \sum_{\substack{n \leq Y \\ n}} \chi_{m}(n),
$$

where $\chi_{m}(n)=\left(\frac{m}{n}\right)$.

Double character sum

We will study the double character sum
where $\chi_{m}(n)=\left(\frac{m}{n}\right)$. Suppose $X \leq Y$.

Double character sum

We will study the double character sum

$$
S(X, Y)=\sum_{\substack{m \leq X, n \\ m \text { odd } n \text { odd }}} \sum_{\substack{n \leq Y,\\}} \chi_{m}(n),
$$

where $\chi_{m}(n)=\left(\frac{m}{n}\right)$. Suppose $X \leq Y$. We first estimate the longer sum over Y using the Pólya-Vinogradov inequality.

Double character sum

We will study the double character sum

$$
S(X, Y)=\sum_{\substack{m \leq X, \sum_{n}^{n \leq Y,} \\ m \text { odd } n \text { odd }}} \chi_{m}(n),
$$

where $\chi_{m}(n)=\left(\frac{m}{n}\right)$. Suppose $X \leq Y$. We first estimate the longer sum over Y using the Pólya-Vinogradov inequality.
If $m=\square$:

$$
\sum_{n \leq Y, n \text { odd }} \chi_{m}(n)=\sum_{\substack{n \leq Y, n \text { odd, } \\(m, n)=1}} 1=\frac{Y}{2} \frac{\varphi(m)}{m}+O\left(Y^{\varepsilon}\right)
$$

Double character sum

We will study the double character sum

$$
S(X, Y)=\sum_{\substack{m \leq X, m \text { odd } n \text { odd }}} \sum_{\substack{n \leq Y,\\}} \chi_{m}(n)
$$

where $\chi_{m}(n)=\left(\frac{m}{n}\right)$. Suppose $X \leq Y$. We first estimate the longer sum over Y using the Pólya-Vinogradov inequality.
If $m=\square$:

$$
\sum_{n \leq Y, n \text { odd }} \chi_{m}(n)=\sum_{\substack{n \leq Y, n \text { odd, } \\(m, n)=1}} 1=\frac{Y}{2} \frac{\varphi(m)}{m}+O\left(Y^{\varepsilon}\right)
$$

If $m \neq \square$, Pólya-Vinogradov gives

$$
\sum_{n \leq Y} \chi_{m}(n) \ll m^{1 / 2} \log m .
$$

Double character sum

Hence

$$
S(X, Y)=\left(\frac{Y}{2}+O\left(Y^{\varepsilon}\right)\right) \sum_{\substack{m \leq \sqrt{X}, m \text { odd }}} \frac{\varphi(m)}{m}+O\left(\sum_{m \leq X} m^{1 / 2} \log m\right)=
$$

Double character sum

Hence

$$
\begin{aligned}
S(X, Y) & =\left(\frac{Y}{2}+O\left(Y^{\varepsilon}\right)\right) \sum_{\substack{m \leq \sqrt{X}, m \\
\text { odd }}} \frac{\varphi(m)}{m}+O\left(\sum_{m \leq X} m^{1 / 2} \log m\right)= \\
& =\frac{2 Y \sqrt{X}}{\pi^{2}}+O\left(X^{3 / 2} \log X+Y \log X+X^{1 / 2} Y^{\varepsilon}\right)
\end{aligned}
$$

Double character sum

Hence

$$
\begin{aligned}
S(X, Y) & =\left(\frac{Y}{2}+O\left(Y^{\varepsilon}\right)\right) \sum_{\substack{m \leq \sqrt{X}, m \\
m \text { odd }}} \frac{\varphi(m)}{m}+O\left(\sum_{m \leq X} m^{1 / 2} \log m\right)= \\
& =\frac{2 Y \sqrt{X}}{\pi^{2}}+O\left(X^{3 / 2} \log X+Y \log X+X^{1 / 2} Y^{\varepsilon}\right)
\end{aligned}
$$

This gives a valid asymptotic formula if $X=o(Y / \log Y)$.

Double character sum

Hence

$$
\begin{aligned}
S(X, Y) & =\left(\frac{Y}{2}+O\left(Y^{\varepsilon}\right)\right) \sum_{\substack{m \leq \sqrt{X}, m \\
m \text { odd }}} \frac{\varphi(m)}{m}+O\left(\sum_{m \leq X} m^{1 / 2} \log m\right)= \\
& =\frac{2 Y \sqrt{X}}{\pi^{2}}+O\left(X^{3 / 2} \log X+Y \log X+X^{1 / 2} Y^{\varepsilon}\right)
\end{aligned}
$$

This gives a valid asymptotic formula if $X=o(Y / \log Y)$. Similarly, if $Y \leq X$,

$$
S(X, Y)=\frac{2 X \sqrt{Y}}{\pi^{2}}+O\left(Y^{3 / 2} \log Y+X \log Y+Y^{1 / 2} X^{\varepsilon}\right)
$$

gives a valid asymptotic if $Y=o(X / \log X)$.

Double character sum

Hence

$$
\begin{aligned}
S(X, Y) & =\left(\frac{Y}{2}+O\left(Y^{\varepsilon}\right)\right) \sum_{\substack{m \leq \sqrt{X}, m \\
m \text { odd }}} \frac{\varphi(m)}{m}+O\left(\sum_{m \leq X} m^{1 / 2} \log m\right)= \\
& =\frac{2 Y \sqrt{X}}{\pi^{2}}+O\left(X^{3 / 2} \log X+Y \log X+X^{1 / 2} Y^{\varepsilon}\right)
\end{aligned}
$$

This gives a valid asymptotic formula if $X=o(Y / \log Y)$. Similarly, if $Y \leq X$,

$$
S(X, Y)=\frac{2 X \sqrt{Y}}{\pi^{2}}+O\left(Y^{3 / 2} \log Y+X \log Y+Y^{1 / 2} X^{\varepsilon}\right)
$$

gives a valid asymptotic if $Y=o(X / \log X)$.
What if X, Y have similar size?

Double character sum

Theorem (Conrey, Farmer, Soundararajan (2000))

Uniformly for all large X, Y, we have:

$$
S(X, Y)=\frac{2}{\pi^{2}} C\left(\frac{Y}{X}\right) X^{3 / 2}+O\left(\left(X Y^{7 / 16}+Y X^{7 / 16}\right) \log X Y\right)
$$

where

$$
C(\alpha)=\sqrt{\alpha}+\frac{1}{2 \pi} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \int_{0}^{\alpha} \sqrt{y}\left(1-\cos \left(\frac{2 \pi k^{2}}{y}\right)+\sin \left(\frac{2 \pi k^{2}}{y}\right)\right) d y
$$

The function $C(\alpha)$ is not smooth, in particular $C^{\prime}(\alpha)$ is almost everywhere not differentiable.

Double character sum

Theorem (Conrey, Farmer, Soundararajan (2000))

Uniformly for all large X, Y, we have:

$$
S(X, Y)=\frac{2}{\pi^{2}} C\left(\frac{Y}{X}\right) X^{3 / 2}+O\left(\left(X Y^{7 / 16}+Y X^{7 / 16}\right) \log X Y\right)
$$

where

$$
C(\alpha)=\sqrt{\alpha}+\frac{1}{2 \pi} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \int_{0}^{\alpha} \sqrt{y}\left(1-\cos \left(\frac{2 \pi k^{2}}{y}\right)+\sin \left(\frac{2 \pi k^{2}}{y}\right)\right) d y
$$

The function $C(\alpha)$ is not smooth, in particular $C^{\prime}(\alpha)$ is almost everywhere not differentiable.
The main term has size $X Y^{1 / 2}+Y X^{1 / 2}$, so it is always bigger than the error term.

Double character sum

Theorem (Conrey, Farmer, Soundararajan (2000))

Uniformly for all large X, Y, we have:

$$
S(X, Y)=\frac{2}{\pi^{2}} C\left(\frac{Y}{X}\right) X^{3 / 2}+O\left(\left(X Y^{7 / 16}+Y X^{7 / 16}\right) \log X Y\right)
$$

where

$$
C(\alpha)=\sqrt{\alpha}+\frac{1}{2 \pi} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \int_{0}^{\alpha} \sqrt{y}\left(1-\cos \left(\frac{2 \pi k^{2}}{y}\right)+\sin \left(\frac{2 \pi k^{2}}{y}\right)\right) d y .
$$

The function $C(\alpha)$ is not smooth, in particular $C^{\prime}(\alpha)$ is almost everywhere not differentiable.
The main term has size $X Y^{1 / 2}+Y X^{1 / 2}$, so it is always bigger than the error term. The proof is by Poisson summation and estimation of the sums of Gauss sums.

Double character sum

From now on, we will work with the smooth sum

$$
S(X, Y)=\sum_{m \text { odd } n \text { odd }} \chi_{m}(n) \varphi(m / X) \psi(n / Y),
$$

where φ, ψ are smooth weights supported in $(0,1)$.

Double character sum

From now on, we will work with the smooth sum

$$
S(X, Y)=\sum_{m \text { odd } n \text { odd }} \sum_{m}(n) \varphi(m / X) \psi(n / Y)
$$

where φ, ψ are smooth weights supported in $(0,1)$. We denote by $\hat{\varphi}$ the Mellin transform, i.e.,

$$
\hat{\varphi}(s)=\int_{0}^{\infty} \varphi(x) x^{s-1} d x
$$

Double character sum

From now on, we will work with the smooth sum

$$
S(X, Y)=\sum_{m \text { odd } n \text { odd }} \sum_{m}(n) \varphi(m / X) \psi(n / Y)
$$

where φ, ψ are smooth weights supported in $(0,1)$. We denote by $\hat{\varphi}$ the Mellin transform, i.e.,

$$
\hat{\varphi}(s)=\int_{0}^{\infty} \varphi(x) x^{s-1} d x
$$

The inverse Mellin formula says

$$
\varphi(x)=\frac{1}{2 \pi i} \int_{(c)} \hat{\varphi}(s) x^{-s} d s
$$

where the integral is over the vertical line $\operatorname{Re}(s)=c$. If φ is smooth, then $\hat{\varphi}(\sigma+i t)<_{A, \sigma}(1+|t|)^{-A}$ for any A.

Main result

Theorem (Č., 2020+)

Let $\varepsilon>0$. Then for all large X, Y, we have

$$
S(X, Y)=\frac{2}{\pi^{2}} \cdot X^{3 / 2} \cdot D\left(\frac{Y}{X} ; \varphi, \psi\right)+O_{\varepsilon}\left(X Y^{\delta}+Y X^{\delta}\right)
$$

where $\delta=\varepsilon$, and

$$
\begin{aligned}
& D(\alpha ; \varphi, \psi)=\frac{\hat{\varphi}(1) \hat{\psi}\left(\frac{1}{2}\right) \alpha^{1 / 2}+\hat{\psi}(1) \hat{\varphi}\left(\frac{1}{2}\right) \alpha}{2}+ \\
& \quad+\frac{1}{i \sqrt{\pi}} \int_{(3 / 4)}\left(\frac{\alpha}{2 \pi}\right)^{s} \cdot \hat{\varphi}\left(\frac{3}{2}-s\right) \hat{\psi}(s) \Gamma\left(s-\frac{1}{2}\right) \sin \left(\frac{\pi s}{2}\right) \zeta(2 s-1) d s .
\end{aligned}
$$

If we assume the Riemann Hypothesis, then we can take $\delta=-1 / 4+\varepsilon$.
For $\varphi=\psi=1_{[0,1]}$, one can show that $D(\alpha ; \varphi, \psi)=C(\alpha)$.

Proof idea

We use the Mellin inversion formula twice:

$$
S(X, Y)=\sum_{m \text { odd } n \text { odd }} \sum_{m}(n) \varphi(m / X) \psi(n / Y)
$$

Proof idea

We use the Mellin inversion formula twice:

$$
\begin{aligned}
S(X, Y) & =\sum_{m \text { odd } n \text { odd }} \sum_{m}(n) \varphi(m / X) \psi(n / Y)= \\
& =\sum_{m \text { odd }} \varphi(m / X) \cdot \frac{1}{2 \pi i} \int_{(\sigma)} L_{2}\left(s, \chi_{m}\right) Y^{s} \hat{\psi}(s) d s
\end{aligned}
$$

Proof idea

We use the Mellin inversion formula twice:

$$
\begin{aligned}
S(X, Y) & =\sum_{m \text { odd }} \sum_{n \text { odd }} \chi_{m}(n) \varphi(m / X) \psi(n / Y)= \\
& =\sum_{m \text { odd }} \varphi(m / X) \cdot \frac{1}{2 \pi i} \int_{(\sigma)} L_{2}\left(s, \chi_{m}\right) Y^{s} \hat{\psi}(s) d s= \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(\sigma)} \int_{(\omega)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s,
\end{aligned}
$$

where the subscript 2 means the Euler factor at 2 is removed,

Proof idea

We use the Mellin inversion formula twice:

$$
\begin{aligned}
S(X, Y) & =\sum_{m \text { odd }} \sum_{n \text { odd }} \chi_{m}(n) \varphi(m / X) \psi(n / Y)= \\
& =\sum_{m \text { odd }} \varphi(m / X) \cdot \frac{1}{2 \pi i} \int_{(\sigma)} L_{2}\left(s, \chi_{m}\right) Y^{s} \hat{\psi}(s) d s= \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(\sigma)} \int_{(\omega)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s,
\end{aligned}
$$

where the subscript 2 means the Euler factor at 2 is removed, and

$$
A(s, w)=\sum_{m \text { odd }} \frac{L_{2}\left(s, \chi_{m}\right)}{m^{w}}
$$

Proof idea

We use the Mellin inversion formula twice:

$$
\begin{aligned}
S(X, Y) & =\sum_{m \text { odd }} \sum_{n \text { odd }} \chi_{m}(n) \varphi(m / X) \psi(n / Y)= \\
& =\sum_{m \text { odd }} \varphi(m / X) \cdot \frac{1}{2 \pi i} \int_{(\sigma)} L_{2}\left(s, \chi_{m}\right) Y^{s} \hat{\psi}(s) d s= \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(\sigma)} \int_{(\omega)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s,
\end{aligned}
$$

where the subscript 2 means the Euler factor at 2 is removed, and

$$
A(s, w)=\sum_{m \text { odd }} \frac{L_{2}\left(s, \chi_{m}\right)}{m^{w}}=\sum_{m \text { odd } n \text { odd }} \sum_{m^{w} n^{s}} \frac{\chi_{m}(n)}{m^{w}}
$$

is a double Dirichlet series, absolutely convergent if $\operatorname{Re}(s), \operatorname{Re}(w)$ are large enough.

Double Dirichlet series

$$
S(X, Y)=\left(\frac{1}{2 \pi i}\right)^{2} \int_{(\sigma)} \int_{(\omega)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s
$$

Our goal is to shift the two integrals as far to the left as possible and compute the contribution of the residues.

Double Dirichlet series

$$
S(X, Y)=\left(\frac{1}{2 \pi i}\right)^{2} \int_{(\sigma)} \int_{(\omega)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s
$$

Our goal is to shift the two integrals as far to the left as possible and compute the contribution of the residues.

We need to study the analytic properties of $A(s, w)$. We will show:

- Meromorphic continuation

Double Dirichlet series

$$
S(X, Y)=\left(\frac{1}{2 \pi i}\right)^{2} \int_{(\sigma)} \int_{(\omega)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s
$$

Our goal is to shift the two integrals as far to the left as possible and compute the contribution of the residues.

We need to study the analytic properties of $A(s, w)$. We will show:

- Meromorphic continuation
- A group of functional equations

Double Dirichlet series

$$
S(X, Y)=\left(\frac{1}{2 \pi i}\right)^{2} \int_{(\sigma)} \int_{(\omega)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s
$$

Our goal is to shift the two integrals as far to the left as possible and compute the contribution of the residues.

We need to study the analytic properties of $A(s, w)$. We will show:

- Meromorphic continuation
- A group of functional equations
- Polar lines $s=1, w=1, s+w=3 / 2$ (and others)

Heuristic

What kind of functional equation do we expect?

Heuristic

What kind of functional equation do we expect? Assume quadratic reciprocity is perfect, all characters primitive, all numbers coprime, no gamma factors,...

Heuristic

What kind of functional equation do we expect? Assume quadratic reciprocity is perfect, all characters primitive, all numbers coprime, no gamma factors,...
The functional equation for $L\left(s, \chi_{m}\right)$:

$$
L\left(s, \chi_{m}\right) \approx m^{1 / 2-s} L\left(1-s, \chi_{m}\right) .
$$

Heuristic

What kind of functional equation do we expect?
Assume quadratic reciprocity is perfect, all characters primitive, all numbers coprime, no gamma factors,...
The functional equation for $L\left(s, \chi_{m}\right)$:

$$
L\left(s, \chi_{m}\right) \approx m^{1 / 2-s} L\left(1-s, \chi_{m}\right)
$$

Hence

$$
A(s, w)=\sum_{m \text { odd }} \frac{L\left(s, \chi_{m}\right)}{m^{w}}
$$

Heuristic

What kind of functional equation do we expect?
Assume quadratic reciprocity is perfect, all characters primitive, all numbers coprime, no gamma factors,...
The functional equation for $L\left(s, \chi_{m}\right)$:

$$
L\left(s, \chi_{m}\right) \approx m^{1 / 2-s} L\left(1-s, \chi_{m}\right)
$$

Hence

$$
A(s, w)=\sum_{m \text { odd }} \frac{L\left(s, \chi_{m}\right)}{m^{w}} \approx \sum_{m \text { odd }} \frac{L\left(1-s, \chi_{m}\right)}{m^{s+w-1 / 2}}
$$

Heuristic

What kind of functional equation do we expect?
Assume quadratic reciprocity is perfect, all characters primitive, all numbers coprime, no gamma factors,...
The functional equation for $L\left(s, \chi_{m}\right)$:

$$
L\left(s, \chi_{m}\right) \approx m^{1 / 2-s} L\left(1-s, \chi_{m}\right)
$$

Hence

$$
A(s, w)=\sum_{m \text { odd }} \frac{L\left(s, \chi_{m}\right)}{m^{w}} \approx \sum_{m \text { odd }} \frac{L\left(1-s, \chi_{m}\right)}{m^{s+w-1 / 2}}=A(1-s, s+w-1 / 2) .
$$

Heuristic

What kind of functional equation do we expect?
Assume quadratic reciprocity is perfect, all characters primitive, all numbers coprime, no gamma factors,...
The functional equation for $L\left(s, \chi_{m}\right)$:

$$
L\left(s, \chi_{m}\right) \approx m^{1 / 2-s} L\left(1-s, \chi_{m}\right)
$$

Hence

$$
A(s, w)=\sum_{m \text { odd }} \frac{L\left(s, \chi_{m}\right)}{m^{w}} \approx \sum_{m \text { odd }} \frac{L\left(1-s, \chi_{m}\right)}{m^{s+w-1 / 2}}=A(1-s, s+w-1 / 2)
$$

Moreover, "quadratic reciprocity" gives

$$
A(s, w)=\sum_{m \text { odd } n \text { odd }} \sum_{m^{s} n^{w}} \frac{\chi_{m}(n)}{m^{\prime}}
$$

Heuristic

What kind of functional equation do we expect?
Assume quadratic reciprocity is perfect, all characters primitive, all numbers coprime, no gamma factors,...
The functional equation for $L\left(s, \chi_{m}\right)$:

$$
L\left(s, \chi_{m}\right) \approx m^{1 / 2-s} L\left(1-s, \chi_{m}\right)
$$

Hence

$$
A(s, w)=\sum_{m \text { odd }} \frac{L\left(s, \chi_{m}\right)}{m^{w}} \approx \sum_{m \text { odd }} \frac{L\left(1-s, \chi_{m}\right)}{m^{s+w-1 / 2}}=A(1-s, s+w-1 / 2) .
$$

Moreover, "quadratic reciprocity" gives

$$
A(s, w)=\sum_{m \text { odd } n \text { odd }} \frac{\chi_{m}(n)}{m^{s} n^{w}} \approx \sum_{m \text { odd } n \text { odd }} \sum_{m^{s} n^{w}} \frac{\chi_{n}(m)}{m^{(}}
$$

Heuristic

What kind of functional equation do we expect?
Assume quadratic reciprocity is perfect, all characters primitive, all numbers coprime, no gamma factors,...
The functional equation for $L\left(s, \chi_{m}\right)$:

$$
L\left(s, \chi_{m}\right) \approx m^{1 / 2-s} L\left(1-s, \chi_{m}\right)
$$

Hence

$$
A(s, w)=\sum_{m \text { odd }} \frac{L\left(s, \chi_{m}\right)}{m^{w}} \approx \sum_{m \text { odd }} \frac{L\left(1-s, \chi_{m}\right)}{m^{s+w-1 / 2}}=A(1-s, s+w-1 / 2)
$$

Moreover, "quadratic reciprocity" gives

$$
A(s, w)=\sum_{m \text { odd } n \text { odd }} \frac{\chi_{m}(n)}{m^{s} n^{w}} \approx \sum_{m \text { odd } n \text { odd }} \sum_{m^{s} n^{w}} \frac{\chi_{n}(m)}{m^{w}}=A(w, s) .
$$

Heuristic

We expect two functional equations:

$$
\begin{aligned}
& A(s, w) \approx A(w, s) \\
& A(s, w) \approx A(1-s, s+w-1 / 2) .
\end{aligned}
$$

Heuristic

We expect two functional equations:

$$
\begin{aligned}
& A(s, w) \approx A(w, s), \\
& A(s, w) \approx A(1-s, s+w-1 / 2) .
\end{aligned}
$$

The two transformations $(s, w) \mapsto(w, s)$ and $(s, w) \mapsto(1-s, 1+w-1 / 2)$ generate a finite group (the dihedral group of order 12) and allow us to meromorphically continue $A(s, w)$ to the whole \mathbb{C}^{2}.

Heuristic

We expect two functional equations:

$$
\begin{aligned}
& A(s, w) \approx A(w, s) \\
& A(s, w) \approx A(1-s, s+w-1 / 2) .
\end{aligned}
$$

The two transformations $(s, w) \mapsto(w, s)$ and $(s, w) \mapsto(1-s, 1+w-1 / 2)$ generate a finite group (the dihedral group of order 12) and allow us to meromorphically continue $A(s, w)$ to the whole \mathbb{C}^{2}.

To make this heuristic rigorous - need to deal with non-primitive characters, exact quadratic reciprocity and functional equations.

Heuristic

We expect two functional equations:

$$
\begin{aligned}
& A(s, w) \approx A(w, s) \\
& A(s, w) \approx A(1-s, s+w-1 / 2) .
\end{aligned}
$$

The two transformations $(s, w) \mapsto(w, s)$ and $(s, w) \mapsto(1-s, 1+w-1 / 2)$ generate a finite group (the dihedral group of order 12) and allow us to meromorphically continue $A(s, w)$ to the whole \mathbb{C}^{2}.

To make this heuristic rigorous - need to deal with non-primitive characters, exact quadratic reciprocity and functional equations.
Blomer worked out the details in this case.

Heuristic

We expect two functional equations:

$$
\begin{aligned}
& A(s, w) \approx A(w, s), \\
& A(s, w) \approx A(1-s, s+w-1 / 2) .
\end{aligned}
$$

The two transformations $(s, w) \mapsto(w, s)$ and $(s, w) \mapsto(1-s, 1+w-1 / 2)$ generate a finite group (the dihedral group of order 12) and allow us to meromorphically continue $A(s, w)$ to the whole \mathbb{C}^{2}.

To make this heuristic rigorous - need to deal with non-primitive characters, exact quadratic reciprocity and functional equations.
Blomer worked out the details in this case. He showed that

$$
Z(s, w):=A(s, w) \zeta_{2}(2 s+2 w-1)
$$

has meromorphic continuation with polar lines $s=1, w=1$ and $s+w=3 / 2$, and satisfies some functional equations.
Part of a general theory of Bump, Diaconu, Friedberg, Goldfeld, Hoffstein, and others

Meromorphic continuation (due to Blomer)

Consider

$$
Z\left(s, w ; \psi, \psi^{\prime}\right):=\zeta_{2}(2 s+2 w-1) \sum_{m \text { odd }} \frac{L_{2}\left(s, \chi_{m} \psi\right) \psi^{\prime}(m)}{m^{w}}
$$

where ψ, ψ^{\prime} are characters modulo 8 .

Meromorphic continuation (due to Blomer)

Consider

$$
Z\left(s, w ; \psi, \psi^{\prime}\right):=\zeta_{2}(2 s+2 w-1) \sum_{m \text { odd }} \frac{L_{2}\left(s, \chi_{m} \psi\right) \psi^{\prime}(m)}{m^{w}}
$$

where ψ, ψ^{\prime} are characters modulo 8 . Let $m=m_{0} m_{1}^{2}$ with $\mu\left(m_{0}\right)^{2}=1$

Meromorphic continuation (due to Blomer)

Consider

$$
Z\left(s, w ; \psi, \psi^{\prime}\right):=\zeta_{2}(2 s+2 w-1) \sum_{m \text { odd }} \frac{L_{2}\left(s, \chi_{m} \psi\right) \psi^{\prime}(m)}{m^{w}}
$$

where ψ, ψ^{\prime} are characters modulo 8 . Let $m=m_{0} m_{1}^{2}$ with $\mu\left(m_{0}\right)^{2}=1$:

$$
Z\left(s, w ; \psi, \psi^{\prime}\right)=\zeta_{2}(2 s+2 w-1) \sum_{\substack{m_{0} \text { odd, } \\ \mu^{2}\left(m_{0}\right)=1}} \frac{L_{2}\left(s, \chi_{m_{0}} \psi\right) \psi^{\prime}\left(m_{0}\right)}{m_{0}^{w}}
$$

Meromorphic continuation (due to Blomer)

Consider

$$
Z\left(s, w ; \psi, \psi^{\prime}\right):=\zeta_{2}(2 s+2 w-1) \sum_{m \text { odd }} \frac{L_{2}\left(s, \chi_{m} \psi\right) \psi^{\prime}(m)}{m^{w}}
$$

where ψ, ψ^{\prime} are characters modulo 8 . Let $m=m_{0} m_{1}^{2}$ with $\mu\left(m_{0}\right)^{2}=1$:

$$
\begin{aligned}
Z\left(s, w ; \psi, \psi^{\prime}\right)= & \zeta_{2}(2 s+2 w-1) \sum_{\substack{m_{0} \text { odd, } \\
\mu^{2}\left(m_{0}\right)=1}} \frac{L_{2}\left(s, \chi_{m_{0}} \psi\right) \psi^{\prime}\left(m_{0}\right)}{m_{0}^{w}} \times \\
& \times \sum_{m_{1} \text { odd }} \frac{1}{m_{1}^{2 w}} \prod_{p \mid m_{1}}\left(1-\frac{\chi_{m_{0}}(p) \psi(p)}{p^{s}}\right)
\end{aligned}
$$

Meromorphic continuation (due to Blomer)

Meromorphic continuation (due to Blomer)

$$
\sum_{m_{1} \text { odd }} \frac{1}{m_{1}^{2 w}} \prod_{p \mid m_{1}}\left(1-\frac{\chi_{m_{0}}(p) \psi(p)}{p^{s}}\right)=\sum_{m_{1} \text { odd }} \sum_{d \mid m_{1}} \frac{\mu(d) \chi_{m_{0}}(d) \psi(d)}{m_{1}^{2 w} d^{s}}
$$

Meromorphic continuation (due to Blomer)

$$
\begin{aligned}
& \sum_{m_{1} \text { odd }} \frac{1}{m_{1}^{2 w}} \prod_{p \mid m_{m}}\left(1-\frac{\chi_{m_{0}}(p) \psi(p)}{\rho^{s}}\right)=\sum_{m_{1} \text { odd } d \mid m_{1}} \frac{\mu(d) \chi_{m_{m}}(d) \psi(d)}{m_{1}^{2} d^{s}}= \\
& \quad=\sum_{d \text { odd }} \frac{\mu(d) \chi_{m_{0}}(d) \psi(d)}{d^{s+2 w}} \sum_{m_{1} \text { odd }} \frac{1}{m_{1}^{2 w}}
\end{aligned}
$$

Meromorphic continuation (due to Blomer)

$$
\begin{aligned}
& \sum_{m_{1} \text { odd }} \frac{1}{m_{1}^{2 w}} \prod_{p \mid m_{1}}\left(1-\frac{\chi_{m_{0}}(p) \psi(p)}{p^{s}}\right)=\sum_{m_{1} \text { odd } d \mid m_{1}} \frac{\mu(d) \chi_{m_{0}}(d) \psi(d)}{m_{1}^{2} w d^{s}}= \\
&=\sum_{d \text { odd }} \frac{\mu(d) \chi_{m_{0}}(d) \psi(d)}{d^{s+2 w}} \sum_{m_{1} \text { odd }} \frac{1}{m_{1}^{2 w}}=\frac{\zeta_{2}(2 w)}{L_{2}\left(s+2 w, \chi_{m_{0}} \psi\right)},
\end{aligned}
$$

Meromorphic continuation (due to Blomer)

$$
\begin{gathered}
\sum_{m_{1} \text { odd }} \frac{1}{m_{1}^{2 w}} \prod_{p \mid m_{1}}\left(1-\frac{\chi_{m_{0}}(p) \psi(p)}{p^{s}}\right)=\sum_{m_{1} \text { odd } d \mid m_{1}} \frac{\mu(d) \chi_{m_{0}}(d) \psi(d)}{m_{1}^{2} d^{s}}= \\
=\sum_{d \text { odd }} \frac{\mu(d) \chi_{m_{0}}(d) \psi(d)}{d^{s+2 w}} \sum_{m_{1} \text { odd }} \frac{1}{m_{1}^{2 w}}=\frac{\zeta_{2}(2 w)}{L_{2}\left(s+2 w, \chi_{m_{0}} \psi\right)},
\end{gathered}
$$

SO

$$
Z\left(s, w ; \psi, \psi^{\prime}\right)=\zeta_{2}(2 s+2 w-1) \sum_{\substack{m_{0} \text { odd, } \\ \mu^{2}\left(m_{0}\right)=1}} \frac{L_{2}\left(s, \chi_{m_{0}} \psi\right) \psi^{\prime}\left(m_{0}\right) \zeta_{2}(2 w)}{m_{0}^{w} L_{2}\left(s+2 w, \chi_{m_{0}} \psi\right)}
$$

Meromorphic continuation (due to Blomer)

$$
\begin{gathered}
\sum_{m_{1} \text { odd }} \frac{1}{m_{1}^{2 w}} \prod_{p \mid m_{1}}\left(1-\frac{\chi_{m_{0}}(p) \psi(p)}{p^{s}}\right)=\sum_{m_{1} \text { odd } d \mid m_{1}} \frac{\mu(d) \chi_{m_{0}}(d) \psi(d)}{m_{1}^{2} d^{s}}= \\
=\sum_{d \text { odd }} \frac{\mu(d) \chi_{m_{0}}(d) \psi(d)}{d^{s+2 w}} \sum_{m_{1} \text { odd }} \frac{1}{m_{1}^{2 w}}=\frac{\zeta_{2}(2 w)}{L_{2}\left(s+2 w, \chi_{m_{0}} \psi\right)},
\end{gathered}
$$

so

$$
Z\left(s, w ; \psi, \psi^{\prime}\right)=\zeta_{2}(2 s+2 w-1) \sum_{\substack{m_{0} \text { odd, } \\ \mu^{2}\left(m_{0}\right)=1}} \frac{L_{2}\left(s, \chi_{m_{0}} \psi\right) \psi^{\prime}\left(m_{0}\right) \zeta_{2}(2 w)}{m_{0}^{w} L_{2}\left(s+2 w, \chi_{m_{0}} \psi\right)}
$$

Notice that $(s, w) \mapsto(1-s, s+w-1 / 2)$ interchanges $2 s+2 w-1$ with $2 w$ and preserves $s+2 w$.

Meromorphic continuation (due to Blomer)

$$
Z\left(s, w ; \psi, \psi^{\prime}\right)=\zeta_{2}(2 s+2 w-1) \sum_{\substack{m_{0} \text { odd, } \\ \mu^{2}\left(m_{0}\right)=1}} \frac{L_{2}\left(s, \chi_{m_{0}} \psi\right) \psi^{\prime}\left(m_{0}\right) \zeta_{2}(2 w)}{m_{0}^{w} L_{2}\left(s+2 w, \chi_{m_{0}} \psi\right)}
$$

The sum converges absolutely for $\operatorname{Re}(w)>1$ and $\operatorname{Re}(s+w)>3 / 2$ unless ψ is the trivial character, in which case the first summand has a pole at $s=1$ with residue $\zeta_{2}(2 w) / 2$.

Meromorphic continuation (due to Blomer)

$$
Z\left(s, w ; \psi, \psi^{\prime}\right)=\zeta_{2}(2 s+2 w-1) \sum_{\substack{m_{0} \text { odd, } \\ \mu^{2}\left(m_{0}\right)=1}} \frac{L_{2}\left(s, \chi_{m_{0}} \psi\right) \psi^{\prime}\left(m_{0}\right) \zeta_{2}(2 w)}{m_{0}^{w} L_{2}\left(s+2 w, \chi_{m_{0}} \psi\right)} .
$$

The sum converges absolutely for $\operatorname{Re}(w)>1$ and $\operatorname{Re}(s+w)>3 / 2$ unless ψ is the trivial character, in which case the first summand has a pole at $s=1$ with residue $\zeta_{2}(2 w) / 2$.
Using the functional equation for $L\left(s, \chi_{m_{0}} \psi\right)$, we can find a 16×16 matrix $B(s)$ such that

$$
Z(s, w)=B(s) Z(1-s, s+w-1 / 2)
$$

where

$$
Z(s, w, \psi)=\left(\begin{array}{c}
Z\left(s, w ; \psi, \psi_{1}\right) \\
Z\left(s, w ; \psi, \psi_{-1}\right) \\
Z\left(s, w ; \psi, \psi_{2}\right) \\
Z\left(s, w ; \psi, \psi_{-2}\right)
\end{array}\right), \quad Z(s, w)=\left(\begin{array}{c}
Z\left(s, w, \psi_{1}\right) \\
Z\left(s, w, \psi_{-1}\right) \\
Z\left(s, w, \psi_{2}\right) \\
Z\left(s, w, \psi_{-2}\right)
\end{array}\right),
$$

and $\psi_{j}(n)=\left(\frac{j}{n}\right)$.

Meromorphic continuation (due to Blomer)

The use of quadratic reciprocity gives a 16×16 matrix A such that

$$
\mathrm{Z}(s, w)=A \cdot \mathrm{Z}(w, s)
$$

Meromorphic continuation

We get meromorphic continuation with polar lines $s=1, w=1, s+w=3 / 2$ (other cancelled by gamma factors) outside a "compact domain". Use Bochner's Tube Theorem on the holomorphic $(s-1)(w-1)(s+w-3 / 2) Z\left(s, w ; \psi, \psi^{\prime}\right)$ to continue everywhere. $A(s, w)$ is polynomially bounded in vertical strips.

Poles of $A(s, w)$

$A(s, w)=\frac{Z\left(s, w ; \psi_{1}, \psi_{1}\right)}{\zeta_{2}(2 s+2 w-1)}$ has the following polar lines:

- $s=1$, with residue $\frac{\zeta_{2}(2 w)}{2 \zeta_{2}(2 w+1)}$,

Poles of $A(s, w)$

$A(s, w)=\frac{Z\left(s, w ; \psi_{1}, \psi_{1}\right)}{\zeta_{2}(2 s+2 w-1)}$ has the following polar lines:

- $s=1$, with residue $\frac{\zeta_{2}(2 w)}{2 \zeta_{2}(2 w+1)}$,
- $w=1$, with residue $\frac{\zeta_{2}(2 s)}{2 \zeta_{2}(2 s+1)}$,

Poles of $A(s, w)$

$A(s, w)=\frac{Z\left(s, w ; \psi_{1}, \psi_{1}\right)}{\zeta_{2}(2 s+2 w-1)}$ has the following polar lines:

- $s=1$, with residue $\frac{\zeta_{2}(2 w)}{2 \zeta_{2}(2 w+1)}$,
- $w=1$, with residue $\frac{\zeta_{2}(2 s)}{2 \zeta_{2}(2 s+1)}$,
- $s+w=3 / 2$ with residue

$$
\operatorname{Res}_{\left(s, \frac{3}{2}-s\right)} A(s, w)=\frac{\sqrt{\pi} \sin \left(\frac{\pi s}{2}\right) \Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1)}{2 \zeta_{2}(2)(2 \pi)^{s}}
$$

Poles of $A(s, w)$

$A(s, w)=\frac{Z\left(s, w ; \psi_{1}, \psi_{1}\right)}{\zeta_{2}(2 s+2 w-1)}$ has the following polar lines:

- $s=1$, with residue $\frac{\zeta_{2}(2 w)}{2 \zeta_{2}(2 w+1)}$,
- $w=1$, with residue $\frac{\zeta_{2}(2 s)}{2 \zeta_{2}(2 s+1)}$,
- $s+w=3 / 2$ with residue

$$
\operatorname{Res}_{\left(s, \frac{3}{2}-s\right)} A(s, w)=\frac{\sqrt{\pi} \sin \left(\frac{\pi s}{2}\right) \Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1)}{2 \zeta_{2}(2)(2 \pi)^{s}}
$$

- zeros of $\zeta_{2}(2 s+2 w-1)=\zeta(2 s+2 w-1)\left(1-2^{1-2 s-2 w}\right)$

Poles of $A(s, w)$

$A(s, w)=\frac{Z\left(s, w ; \psi_{1}, \psi_{1}\right)}{\zeta_{2}(2 s+2 w-1)}$ has the following polar lines:

- $s=1$, with residue $\frac{\zeta_{2}(2 w)}{2 \zeta_{2}(2 w+1)}$,
- $w=1$, with residue $\frac{\zeta_{2}(2 s)}{2 \zeta_{2}(2 s+1)}$,
- $s+w=3 / 2$ with residue

$$
\operatorname{Res}_{\left(s, \frac{3}{2}-s\right)} A(s, w)=\frac{\sqrt{\pi} \sin \left(\frac{\pi s}{2}\right) \Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1)}{2 \zeta_{2}(2)(2 \pi)^{s}}
$$

- zeros of $\zeta_{2}(2 s+2 w-1)=\zeta(2 s+2 w-1)\left(1-2^{1-2 s-2 w}\right)$, that is:
- the lines $s+w=\frac{\rho+1}{2}$.

Poles of $A(s, w)$

$A(s, w)=\frac{Z\left(s, w ; \psi_{1}, \psi_{1}\right)}{\zeta_{2}(2 s+2 w-1)}$ has the following polar lines:

- $s=1$, with residue $\frac{\zeta_{2}(2 w)}{2 \zeta_{2}(2 w+1)}$,
- $w=1$, with residue $\frac{\zeta_{2}(2 s)}{2 \zeta_{2}(2 s+1)}$,
- $s+w=3 / 2$ with residue

$$
\operatorname{Res}_{\left(s, \frac{3}{2}-s\right)} A(s, w)=\frac{\sqrt{\pi} \sin \left(\frac{\pi s}{2}\right) \Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1)}{2 \zeta_{2}(2)(2 \pi)^{s}}
$$

- zeros of $\zeta_{2}(2 s+2 w-1)=\zeta(2 s+2 w-1)\left(1-2^{1-2 s-2 w}\right)$, that is:
- the lines $s+w=\frac{\rho+1}{2}$. These have $\operatorname{Re}(s+w)<1$, or $\leq 3 / 4$ under RH.

Poles of $A(s, w)$

$A(s, w)=\frac{Z\left(s, w ; \psi_{1}, \psi_{1}\right)}{\zeta_{2}(2 s+2 w-1)}$ has the following polar lines:

- $s=1$, with residue $\frac{\zeta_{2}(2 w)}{2 \zeta_{2}(2 w+1)}$,
- $w=1$, with residue $\frac{\zeta_{2}(2 s)}{2 \zeta_{2}(2 s+1)}$,
- $s+w=3 / 2$ with residue

$$
\operatorname{Res}_{\left(s, \frac{3}{2}-s\right)} A(s, w)=\frac{\sqrt{\pi} \sin \left(\frac{\pi s}{2}\right) \Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1)}{2 \zeta_{2}(2)(2 \pi)^{s}},
$$

- zeros of $\zeta_{2}(2 s+2 w-1)=\zeta(2 s+2 w-1)\left(1-2^{1-2 s-2 w}\right)$, that is:
- the lines $s+w=\frac{\rho+1}{2}$. These have $\operatorname{Re}(s+w)<1$, or $\leq 3 / 4$ under RH.
- the lines $s+w=\frac{k \pi i}{\log 2}+\frac{1}{2}$, which have $\operatorname{Re}(s+w)=\frac{1}{2}$.

Poles of $A(s, w)$

$A(s, w)=\frac{Z\left(s, w ; \psi_{1}, \psi_{1}\right)}{\zeta_{2}(2 s+2 w-1)}$ has the following polar lines:

- $s=1$, with residue $\frac{\zeta_{2}(2 w)}{2 \zeta_{2}(2 w+1)}$,
- $w=1$, with residue $\frac{\zeta_{2}(2 s)}{2 \zeta_{2}(2 s+1)}$,
- $s+w=3 / 2$ with residue

$$
\operatorname{Res}_{\left(s, \frac{3}{2}-s\right)} A(s, w)=\frac{\sqrt{\pi} \sin \left(\frac{\pi s}{2}\right) \Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1)}{2 \zeta_{2}(2)(2 \pi)^{s}},
$$

- zeros of $\zeta_{2}(2 s+2 w-1)=\zeta(2 s+2 w-1)\left(1-2^{1-2 s-2 w}\right)$, that is:
- the lines $s+w=\frac{\rho+1}{2}$. These have $\operatorname{Re}(s+w)<1$, or $\leq 3 / 4$ under RH.
- the lines $s+w=\frac{k \pi i}{\log 2}+\frac{1}{2}$, which have $\operatorname{Re}(s+w)=\frac{1}{2}$.

Shifting the integral

$$
S(X, Y)=\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{(2)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s=
$$

Shifting the integral

$$
\begin{aligned}
S(X, Y) & =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{(2)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s= \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{(3 / 4+\varepsilon)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+R,
\end{aligned}
$$

Shifting the integral

$$
\begin{aligned}
S(X, Y) & =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{(2)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s= \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{(3 / 4+\varepsilon)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+R,
\end{aligned}
$$

where R is the contribution of the residue on the polar line $w=1$ given by

$$
\begin{equation*}
R=X \hat{\varphi}(1) \frac{1}{2 \pi i} \int \frac{Y^{s} \zeta_{2}(2 s)}{2 \zeta_{2}(2 s+1)} \hat{\psi}(s) d s . \tag{2}
\end{equation*}
$$

Shifting the integral

$$
\begin{aligned}
S(X, Y) & =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{(2)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s= \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{(3 / 4+\varepsilon)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+R,
\end{aligned}
$$

where R is the contribution of the residue on the polar line $w=1$ given by

$$
\begin{equation*}
R=X \hat{\varphi}(1) \frac{1}{2 \pi i} \int \frac{Y^{s} \zeta_{2}(2 s)}{2 \zeta_{2}(2 s+1)} \hat{\psi}(s) d s . \tag{2}
\end{equation*}
$$

The last integral has a pole at $s=1 / 2$ with residue $\frac{\gamma^{1 / 2} \hat{\psi}(1 / 2)}{8 \zeta_{2}(2)}$,

Shifting the integral

$$
\begin{aligned}
S(X, Y) & =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{(2)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s= \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{(3 / 4+\varepsilon)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+R,
\end{aligned}
$$

where R is the contribution of the residue on the polar line $w=1$ given by

$$
\begin{equation*}
R=X \hat{\varphi}(1) \frac{1}{2 \pi i} \int \frac{Y^{s} \zeta_{2}(2 s)}{2 \zeta_{2}(2 s+1)} \hat{\psi}(s) d s \tag{2}
\end{equation*}
$$

The last integral has a pole at $s=1 / 2$ with residue $\frac{Y^{1 / 2} \hat{\psi}(1 / 2)}{8 \zeta_{2}(2)}$, and at $s=\frac{\rho-1}{2}$, which have $\operatorname{Re}(s) \leq c$, where $c=0$ or $c=-1 / 4$ under RH.

Shifting the integral

$$
\begin{aligned}
S(X, Y) & =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{(2)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s= \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{(3 / 4+\varepsilon)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+R,
\end{aligned}
$$

where R is the contribution of the residue on the polar line $w=1$ given by

$$
\begin{equation*}
R=X \hat{\varphi}(1) \frac{1}{2 \pi i} \int \frac{Y^{s} \zeta_{2}(2 s)}{2 \zeta_{2}(2 s+1)} \hat{\psi}(s) d s . \tag{2}
\end{equation*}
$$

The last integral has a pole at $s=1 / 2$ with residue $\frac{Y^{1 / 2} \hat{\psi}(1 / 2)}{8 \zeta_{2}(2)}$, and at $s=\frac{\rho-1}{2}$, which have $\operatorname{Re}(s) \leq c$, where $c=0$ or $c=-1 / 4$ under RH. Hence for $\delta=c+\varepsilon$,

$$
R=\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)}{8 \zeta_{2}(2)}+O\left(X Y^{\delta}\right)
$$

Shifting the integral

$$
\begin{aligned}
S(X, Y) & =\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)}{8 \zeta_{2}(2)}+ \\
& +\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{\left(\frac{3}{4}+\varepsilon\right)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+O\left(X Y^{\delta}\right)
\end{aligned}
$$

Shifting the integral

$$
\begin{aligned}
S(X, Y) & =\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)}{8 \zeta_{2}(2)}+ \\
& +\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{\left(\frac{3}{4}+\varepsilon\right)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+O\left(X Y^{\delta}\right)
\end{aligned}
$$

If $\varphi=\psi=1_{[0,1]}$, then the first term is $\frac{2 X Y^{1 / 2}}{\pi^{2}}$, which corresponds to the contribution when $m=\square$.

Shifting the integral

$$
\begin{aligned}
S(X, Y) & =\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)}{8 \zeta_{2}(2)}+ \\
& +\left(\frac{1}{2 \pi i}\right)^{2} \int_{(2)} \int_{\left(\frac{3}{4}+\varepsilon\right)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+O\left(X Y^{\delta}\right)
\end{aligned}
$$

If $\varphi=\psi=1_{[0,1]}$, then the first term is $\frac{2 X Y^{1 / 2}}{\pi^{2}}$, which corresponds to the contribution when $m=\square$.
The contribution of the polar line $s=1$ is completely analogous, so

$$
\begin{aligned}
S(X, Y) & =\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)+Y X^{1 / 2} \hat{\varphi}(1 / 2) \hat{\psi}(1)}{8 \zeta_{2}(2)}+ \\
& +\left(\frac{1}{2 \pi i}\right)^{2} \int_{(3 / 4)} \int_{(3 / 4+\varepsilon)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+O\left(X Y^{\delta}+Y X^{\delta}\right)
\end{aligned}
$$

Shifting the integral further

$$
\begin{aligned}
& S(X, Y)=\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)+Y X^{1 / 2} \hat{\varphi}(1 / 2) \hat{\psi}(1)}{8 \zeta_{2}(2)}+ \\
& \quad+\left(\frac{1}{2 \pi i}\right)^{2} \int_{(3 / 4)} \int_{(3 / 4+\varepsilon)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+O\left(X Y^{\delta}+Y X^{\delta}\right)
\end{aligned}
$$

Shifting the integral further

$$
\begin{aligned}
& S(X, Y)=\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)+Y X^{1 / 2} \hat{\varphi}(1 / 2) \hat{\psi}(1)}{8 \zeta_{2}(2)}+ \\
& \quad+\left(\frac{1}{2 \pi i}\right)^{2} \int_{(3 / 4)} \int_{(3 / 4+\varepsilon)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+O\left(X Y^{\delta}+Y X^{\delta}\right)= \\
& \quad=\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)+Y X^{1 / 2} \hat{\varphi}(1 / 2) \hat{\psi}(1)}{8 \zeta_{2}(2)}+Q \\
& \quad+\left(\frac{1}{2 \pi i}\right)^{2} \int_{(3 / 4)} \int_{\left(\delta^{\prime}\right)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+O\left(X Y^{\delta}+Y X^{\delta}\right),
\end{aligned}
$$

Shifting the integral further

$$
\begin{aligned}
& S(X, Y)=\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)+Y X^{1 / 2} \hat{\varphi}(1 / 2) \hat{\psi}(1)}{8 \zeta_{2}(2)}+ \\
& \quad+\left(\frac{1}{2 \pi i}\right)^{2} \int_{(3 / 4)} \int_{(3 / 4+\varepsilon)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+O\left(X Y^{\delta}+Y X^{\delta}\right)= \\
& \quad=\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)+Y X^{1 / 2} \hat{\varphi}(1 / 2) \hat{\psi}(1)}{8 \zeta_{2}(2)}+Q \\
& \quad+\left(\frac{1}{2 \pi i}\right)^{2} \int_{(3 / 4)} \int_{\left(\delta^{\prime}\right)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+O\left(X Y^{\delta}+Y X^{\delta}\right)
\end{aligned}
$$

where

$$
Q=\frac{1}{2 \pi i} \int_{(3 / 4)} X^{3 / 2-s} Y^{s} \hat{\varphi}(3 / 2-s) \hat{\psi}(s) \frac{\sqrt{\pi} \sin \left(\frac{\pi s}{2}\right) \Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1)}{2 \zeta_{2}(2)(2 \pi)^{s}} d s
$$

Shifting the integral further

$$
\begin{aligned}
& S(X, Y)=\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)+Y X^{1 / 2} \hat{\varphi}(1 / 2) \hat{\psi}(1)}{8 \zeta_{2}(2)}+ \\
& \quad+\left(\frac{1}{2 \pi i}\right)^{2} \int_{(3 / 4)} \int_{(3 / 4+\varepsilon)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+O\left(X Y^{\delta}+Y X^{\delta}\right)= \\
& \quad=\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)+Y X^{1 / 2} \hat{\varphi}(1 / 2) \hat{\psi}(1)}{8 \zeta_{2}(2)}+Q \\
& \quad+\left(\frac{1}{2 \pi i}\right)^{2} \int_{(3 / 4)} \int_{\left(\delta^{\prime}\right)} A(s, w) X^{w} Y^{s} \hat{\varphi}(w) \hat{\psi}(s) d w d s+O\left(X Y^{\delta}+Y X^{\delta}\right)
\end{aligned}
$$

where

$$
Q=\frac{1}{2 \pi i} \int_{(3 / 4)} X^{3 / 2-s} Y^{s} \hat{\varphi}(3 / 2-s) \hat{\psi}(s) \frac{\sqrt{\pi} \sin \left(\frac{\pi s}{2}\right) \Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1)}{2 \zeta_{2}(2)(2 \pi)^{s}} d s
$$

We can take $\delta^{\prime}=1 / 4+\delta$, so the last double integral is

$$
\ll X^{1 / 4+\delta} Y^{3 / 4} \ll X Y^{\delta}+Y X^{\delta} .
$$

Final result

Putting everything together gives our final result:

$$
\begin{aligned}
& S(X, Y)=\frac{X Y^{1 / 2} \hat{\varphi}(1) \hat{\psi}(1 / 2)+Y X^{1 / 2} \hat{\varphi}(1 / 2) \hat{\psi}(1)}{\pi^{2}}+ \\
& +\frac{2 X^{3 / 2}}{\pi^{2}} \cdot \frac{1}{\sqrt{\pi} i} \int_{(3 / 4)}\left(\frac{Y}{2 \pi X}\right)^{s} \hat{\varphi}\left(\frac{3}{2}-s\right) \hat{\psi}(s) \sin \left(\frac{\pi s}{2}\right) \Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1) d s+ \\
& +O\left(X Y^{\delta}+Y X^{\delta}\right)= \\
& =\frac{2}{\pi^{2}} \cdot X^{3 / 2} \cdot D\left(\frac{Y}{X} ; \varphi, \psi\right)+O\left(X Y^{\delta}+Y X^{\delta}\right)
\end{aligned}
$$

Thank you.

