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What is (automorphic) spectral reciprocity?

Very roughly: ∑
π∈F
L(π)H(π) =

∑
π∈F̃

L̃(π)H̃(π),

where

I F and F̃ are families of automorphic representations,

I L(π) and L̃(π) are some L-values associated to π,

I H and H̃ are some weight functions and

I this is not a direct consequence of the functional equation for
the L-functions associated to L(π).

Maybe better explained with an example...



An example

Theorem (Blomer and Khan, 2017)

Let Π be an unramified automorphic representation for GL3(Q).
Let q and ` be coprime integers and let s,w ∈ C such that
1
2 ≤ Re(s) ≤ Re(w) < 3

4 . Then if

M(s,w , q, `, h) =
∑

cond(π)=q

L(s,Π× π)L(w , π)

L(1,Ad , π)

λπ(`)

`w
h(π∞)

+ (· · · ),

we have

M(s,w , q, `, h) =M(s ′,w ′, `, q, h̃) + simple polar terms,

where (s ′,w ′) = (1+w−s
2 , 3s+w−1

2 ), h̃ is an integral transform of h.



What is it good for?

Application (Blomer and Khan, 2017)

Bounds for twisted moments∑
cond(π)=q

L(1/2, π)4λπ(`)

and consequently, a subconvexity bound

L(1/2, π)�ε cond(π)
1
4
− 1−2ϑ

24
+ε



The method etc.

The method of Blomer and Khan is classical. It uses the
Kuznetsov and Voronoi summation formulae and ultimately relies
on the reciprocity identity
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Our Goal: Generalize Blomer-Khan’s result to number fields.

It is often the case that an approach based on ”classical” methods
such as Kuznetsov and Voronoi stop working or at least become
very cumbersome when generalized to number fields. Instead we
use adelic methods and the theory of integral representations of
L-functions.



Our main result

Theorem (N., 2020)

Let F be a number field and let q and l be coprime ideals. Let Π
be an unramified cuspidal representation for GL3(F ) and let
s,w , s ′,w ′ ∈ C be as in Blomer-Khan’s theorem. Then if

M0(s,w , q, l) =
1

Nq

∑
cond(π)=q
π∞ spherical

Λ(s,Π× π)Λ(w , π)

Λ(1,Ad , π)

λπ(l)

(Nl)w
+(· · · ),

we have

M0(s,w , q, l) =M0(s ′,w ′, l, q) + simple polar terms.



Our result vs. Blomer-Khan’s

Our result

1. works for general number fields,

2. does not allow for general weight functions. In particular, our
sums is supported on representations that are spherical at the
archimedean places,

3. requires the GL(3) form to be cuspidal. In particular we
cannot deduce a generalization to BK’s subconvexity estimate.



A non-vanishing result

Corollary (N., 2020)

Let F be number field and let Π be an unramified cuspidal
automorphic representation for GL3(F ). Then for prime ideals p of
F with sufficiently large norm, there is at least one automorphic
cuspidal automorphic representation π, such that π∞ is spherical
and cond(π) = p and

L(1/2,Π× π)L(1/2, π) 6= 0.

This generalizes1 a non-vanishing result of R. Khan over Q.
As a matter of fact, the argument in Khan’s paper is substantially
similar to that of Blomer-Khan.

1up to the restriction on sphericity



Proof Sketch

The theory of integral representations as developed by
Jacquet–Piatestski-Shapiro–Shalika states that for unramified
automorphic representations Π and π of GL(3) and GL(2)
respectively, there exist vectors Φ ∈ Π and φ ∈ π such that

Λ(s,Π× π) =

ˆ
GL2(F )\GL2(A)

Φ

(
h

1

)
φ(h) |deth|s−1/2 dh

and

Λ(w , π) =

ˆ
F×\A×

φ

(
y

1

)
|y |s−1/2d×y ,

for Re(s) and Re(w) sufficiently large. The so-called spherical
vectors.



First case: q = l = 1

We let

AsΦ(h) := | det h|s−1/2
ˆ
F×\A×

(
z(u)h

1

)
|u|2s−1d×u,

where z(u) =

(
u

u

)
and spectrally decomposing the period

P(s,w ,Φ) =

ˆ
F×\A×

AsΦ

(
y

1

)
|y |w−1/2d×y

we arrive at

∑
π

〈AsΦ, φπ〉
ˆ
φπ

(
y

1

)
|y |w−1/2d×y =

=
∑

π spherical

L(s,Π× π)L(w , π) + (· · · ) (1)



Period reciprocity

We unfold P(s,w ,Φ) as

ˆ
F×\A×

ˆ
F×\A×

Φ

uy
u

1

 |u|2s−1|y |s+w−1d×ud×y .

Now we look at the identityuy
u

1

 =

u
u

u

w23

y
u−1

1

w23,

where w23 is the Weyl element corresponding to the
permutation (2, 3).



One last step

Since Φ is left invariant by Z3(A)GL3(F ) and right invariant by
GL3(oF ), we have

Φ

uy
u

1

 = Φ

y
u−1

1

 .

Replacing this in the definition of P(s,w ,Φ), we get

P(s,w ,Φ) =

ˆ
F×\A×

ˆ
F×\A×

Φ

y
u−1

1

 |u|2s−1|y |s+w−1d×ud×y .

Now, changing variables we see that P(s,w ,Φ) = P(s ′,w ′,Φ) and
the reformula holds.



What about higher level?

Finally, for larger conductor, we introduce matrices of the shape

uβ =

1 βq−1

1
1

 and vβ =

1 βq−1

1
1


The first one acts as a level-raising operator and the second is
related to the Hecke operators.
Finally, the same change of variable as before intechanges the
action of these matrices since

uβ = w23vβw23.

This obsevation along with local computations by Kim (2010) and
Booker-Krishnamurthy-Lee (2019) lead us to the main formula.



Thank You!


