Monotone Chains of Fourier Coefficients of Hecke Cusp Forms

Sacha Mangerel
(Joint work with O. Klurman)

Centre de Recherches Mathématiques (CRM)
Québec-Maine Number Theory Conference
September 26th, 2020

Arrangements Problem

$f: \mathbb{N} \rightarrow \mathbb{R}$ multiplicative (i.e., $f(m n)=f(m) f(n)$ whenever $(m, n)=1$)

Problem (Infinitely Many Solutions)

If $a_{1}, \ldots, a_{k} \geq 0$ are distinct integers then the set

$$
\begin{equation*}
\left\{n \in \mathbb{N}: f\left(n+a_{1}\right)<f\left(n+a_{2}\right)<\cdots<f\left(n+a_{k}\right)\right\} \tag{1}
\end{equation*}
$$

is unbounded.

Arrangements Problem

$f: \mathbb{N} \rightarrow \mathbb{R}$ multiplicative (i.e., $f(m n)=f(m) f(n)$ whenever $(m, n)=1$)

Problem (Infinitely Many Solutions)

If $a_{1}, \ldots, a_{k} \geq 0$ are distinct integers then the set

$$
\begin{equation*}
\left\{n \in \mathbb{N}: f\left(n+a_{1}\right)<f\left(n+a_{2}\right)<\cdots<f\left(n+a_{k}\right)\right\} \tag{1}
\end{equation*}
$$

is unbounded.

Problem (Sharp Density)

The set (1) has natural density $1 / k!$, i.e.,

$$
\frac{1}{X}\left|\left\{n \leq X: f\left(n+a_{1}\right)<\cdots<f\left(n+a_{k}\right)\right\}\right|=\frac{1}{k!}+o_{X \rightarrow \infty}(1) .
$$

Arrangements Problem

$f: \mathbb{N} \rightarrow \mathbb{R}$ multiplicative (i.e., $f(m n)=f(m) f(n)$ whenever $(m, n)=1$)

Problem (Infinitely Many Solutions)

If $a_{1}, \ldots, a_{k} \geq 0$ are distinct integers then the set

$$
\begin{equation*}
\left\{n \in \mathbb{N}: f\left(n+a_{1}\right)<f\left(n+a_{2}\right)<\cdots<f\left(n+a_{k}\right)\right\} \tag{1}
\end{equation*}
$$

is unbounded.

Problem (Sharp Density)

The set (1) has natural density $1 / k!$, i.e.,

$$
\frac{1}{X}\left|\left\{n \leq X: f\left(n+a_{1}\right)<\cdots<f\left(n+a_{k}\right)\right\}\right|=\frac{1}{k!}+o_{X \rightarrow \infty}(1) .
$$

- Distributions of $f\left(n+a_{i}\right), f\left(n+a_{j}\right)$ are independent for "typical" multiplicative function; all arrangements should be equally likely
- For f unbounded (e.g., divisor function), $f\left(n+a_{i}\right)=f\left(n+a_{j}\right)$ is rare

Examples:

Some information can be gleaned if $k=2$:

- for $f(n)=\sum_{d \mid n} 1$, we have $f(n) \geq 2$, with equality iff n is prime; then we have $f(p)<f(p-1)$ and $f(p)<f(p+1)$ i.o.
- Erdős (1940's): $f(n)<f(n+1)$ (resp. $f(n)>f(n+1))$ for all n iff $f(n)=n^{\alpha}$ with $\alpha>0($ resp. $\alpha<0)$
- Matomäki-Radziwitt (2015): If $a \neq 0$ then $f(n)<0<f(n+a)$ occurs for a positive proportion of n, provide $f(n)<0$ has a solution

Examples:

Some information can be gleaned if $k=2$:

- for $f(n)=\sum_{d \mid n} 1$, we have $f(n) \geq 2$, with equality iff n is prime; then we have $f(p)<f(p-1)$ and $f(p)<f(p+1)$ i.o.
- Erdős (1940's): $f(n)<f(n+1)$ (resp. $f(n)>f(n+1))$ for all n iff $f(n)=n^{\alpha}$ with $\alpha>0$ (resp. $\alpha<0$)
- Matomäki-Radziwitt (2015): If $a \neq 0$ then $f(n)<0<f(n+a)$ occurs for a positive proportion of n, provide $f(n)<0$ has a solution
For $k \geq 3$ this is already hard when f takes only positive values:

Conjecture (Sarkőzy, '00)

If $f: \mathbb{N} \rightarrow \mathbb{N}$ and f is not monotone then both

$$
f(n)<\min \{f(n-1), f(n+1)\} \text { and } f(n)>\max \{f(n-1), f(n+1)\}
$$

occur i.o.

Fourier Coefficients of Cusp Forms

Focus on f arising from Fourier coefficients of arithmetically normalized Hecke cusp form ϕ (non-CM with trivial nebentypus): $\phi(z)=\sum_{n \geq 1} f(n) e^{2 \pi i n z}$
For concreteness, take $\phi=\Delta$, where, writing $q=e^{2 \pi i z}$,

$$
\Delta(z)=q \prod_{m \geq 1}\left(1-q^{m}\right)^{24}=\sum_{n \geq 1} \tau(n) q^{n},
$$

so $f(n)=\tau(n)$ is the Ramanujan τ-function Important Properties:

- $\tau(n) \in \mathbb{Z}$, multiplicative
- $|\tau(p)| \leq 2 p^{11 / 2}$ (Deligne)
- $\{\tau(p)\}_{p}$ satisfies a Sato-Tate law: if $[a, b] \subseteq[-2,2]$,

$$
\left|\left\{p \leq X: a \leq \frac{\tau(p)}{p^{11 / 2}} \leq b\right\}\right|=\pi(X)\left(\frac{2}{\pi} \int_{a}^{b} \sqrt{4-u^{2}} d u+o_{X \rightarrow \infty}(1)\right)
$$

Admissibility and Vanishing of τ

Let $\mathcal{N}_{\tau}:=\{n \in \mathbb{N}: \tau(n) \neq 0\}$.
Lehmer's Conjecture: $\mathcal{N}_{\tau}=\mathbb{N}$
Serre: \mathcal{N}_{τ} has positive natural density
Definition: Let $k \geq 1$. A k-tuple $\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right)$ is admissible if the a_{j} are distinct non-negative integers, such that for each $p \notin \mathcal{N}_{\tau}$ the set

$$
\left\{m \quad(\bmod p): m \not \equiv a_{j} \quad(\bmod p) \forall 1 \leq j \leq k\right\} \neq \emptyset
$$

Proposition

Let $k \geq 1$. If \boldsymbol{a} is admissible then $\left\{n \in \mathbb{N}: n+a_{j} \in \mathcal{N}_{\tau} \forall 1 \leq j \leq k\right\}$ has positive density.

Given a admissible, by relative density of $S \subseteq \mathbb{N}$ we mean the limit

$$
\lim _{x \rightarrow \infty} \frac{\left|S \cap\left\{n \leq X: n+a_{j} \in \mathcal{N}_{\tau} \forall j\right\}\right|}{\left|\left\{n \leq X: n+a_{j} \in \mathcal{N}_{\tau}\right\}\right|} \text { (if it exists) }
$$

Arrangement Problem with $\tau-k=2,3$

Theorem (Klurman-M., '20+)

If $\left(a_{1}, a_{2}\right)$ is admissible then the set

$$
\left\{n \in \mathbb{N}: n+a_{1}, n+a_{2} \in \mathcal{N}_{\tau}, \tau\left(n+a_{1}\right)<\tau\left(n+a_{2}\right)\right\}
$$

has relative upper density $\geq 1 / 2$.

Theorem (Klurman-M., '20+)

Let $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ be admissible. Then the set
$\left\{n \in \mathbb{N}: n+a_{1}, n+a_{2}, n+a_{3} \in \mathcal{N}_{\tau}, \tau\left(n+a_{1}\right)<\tau\left(n+a_{2}\right)<\tau\left(n+a_{3}\right)\right\}$
has relative upper density $\geq 1 / 6$.
The case $k=3$ is completely new!

Conditional Result - $k>3$

In general, we cannot say anything for $k>3$, unless we assume an additional conjecture about correlations of bounded multiplicative functions:

Theorem (Klurman-M., '20+)

Assume Elliott's conjecture holds. Let $k \geq 2$ and let $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be admissible. Then

$$
\left\{n \in \mathbb{N}: \tau\left(n+a_{1}\right)<\cdots<\tau\left(n+a_{k}\right)\right\}
$$

has relative natural density $1 / k$!.
We discuss Elliott's conjecture shortly.

Proof Ideas: First Observations

For $n \in \mathcal{N}_{\tau}$ write $\tau(n)=|\tau(n)| \sigma(n)$, where $\sigma(n):=\operatorname{sign}(\tau(n))$
Suppose $\tau\left(n+a_{1}\right)<\cdots<\tau\left(n+a_{r}\right)<0<\cdots<\tau\left(n+a_{k}\right)$, or let $r=0$. Then:

$$
\begin{gathered}
\left|\tau\left(n+a_{i}\right)\right|>\left|\tau\left(n+a_{j}\right)\right|, \sigma\left(n+a_{i}\right)=\sigma\left(n+a_{j}\right)=-1 \text { for } 1 \leq i<j \leq r \\
\left|\tau\left(n+a_{i}\right)\right|<\left|\tau\left(n+a_{j}\right)\right|, \sigma\left(n+a_{i}\right)=\sigma\left(n+a_{j}\right)=+1 \text { for } r+1 \leq i<j \leq k
\end{gathered}
$$

Questions to address:

- How often do inequalities $\left|\tau\left(n+a_{i}\right)\right|>\left|\tau\left(n+a_{i+1}\right)\right|$ occur for $1 \leq i \leq r-1$ (and same question in reverse for $r+1 \leq i<k) ?$
- How often is $\left(\sigma\left(n+a_{1}\right), \ldots, \sigma\left(n+a_{k}\right)\right)=\boldsymbol{\epsilon}$, for $\boldsymbol{\epsilon} \in\{-1,+1\}^{k}$ with $\epsilon_{j}=-1$ for $1 \leq j \leq r, \epsilon_{j}=+1$ otherwise?
- How often do these conditions occur simultaneously?

Arrangement Problem with $|\tau|$

Theorem (Bilu-Deshouillers-Gun-Luca, '17)

Let $k \geq 1$. If \mathbf{a} is admissible then

$$
\left|\left\{n \leq X: 0<\left|\tau\left(n+a_{1}\right)\right|<\cdots<\left|\tau\left(n+a_{k}\right)\right|\right\}\right|>_{k} X /(\log X)^{k}
$$

in particular, $\left|\tau\left(n+a_{1}\right)\right|<\cdots<\left|\tau\left(n+a_{k}\right)\right|$ i.o.

Arrangement Problem with $|\tau|$

Theorem (Bilu-Deshouillers-Gun-Luca, '17)

Let $k \geq 1$. If \boldsymbol{a} is admissible then

$$
\left|\left\{n \leq X: 0<\left|\tau\left(n+a_{1}\right)\right|<\cdots<\left|\tau\left(n+a_{k}\right)\right|\right\}\right|>_{k} X /(\log X)^{k} ;
$$

in particular, $\left|\tau\left(n+a_{1}\right)\right|<\cdots<\left|\tau\left(n+a_{k}\right)\right|$ i.o.

Theorem (Klurman-M., '20+)

If \boldsymbol{a} is admissible then

$$
\frac{\left|\left\{n \leq X: 0<\left|\tau\left(n+a_{1}\right)\right|<\cdots<\left|\tau\left(n+a_{k}\right)\right|\right\}\right|}{\left|\left\{n \leq X: n+a_{j} \in \mathcal{N}_{\tau} \forall j\right\}\right|}=\frac{1}{k!}+o_{X \rightarrow \infty}(1) .
$$

Idea: Apply Erdős-Kac theorem to study random vector $\left(\log \left|\tau\left(\boldsymbol{n}+a_{1}\right)\right|, \ldots, \log \left|\tau\left(\boldsymbol{n}+a_{k}\right)\right|\right)$ for $\boldsymbol{n} \in[1, x]$ randomly chosen with $\boldsymbol{n}+a_{j} \in \mathcal{N}_{\tau}$, being careful with very small values of $|\tau(p)|$

Proof Ideas: Patterns of $\operatorname{sign}\left(n+a_{j}\right)$

- Sato-Tate $\Rightarrow \sigma\left(n+a_{j}\right)= \pm 1$ with equal probability $1 / 2$
- If signs are independent, $\left(\sigma\left(n+a_{1}\right), \ldots, \sigma\left(n+a_{k}\right)\right)=\boldsymbol{\epsilon}$ should occur with probability $1 / 2^{k}$ for each $\epsilon \in\{-1,+1\}^{k}$

Proof Ideas: Patterns of $\operatorname{sign}\left(n+a_{j}\right)$

- Sato-Tate $\Rightarrow \sigma\left(n+a_{j}\right)= \pm 1$ with equal probability $1 / 2$
- If signs are independent, $\left(\sigma\left(n+a_{1}\right), \ldots, \sigma\left(n+a_{k}\right)\right)=\boldsymbol{\epsilon}$ should occur with probability $1 / 2^{k}$ for each $\epsilon \in\{-1,+1\}^{k}$
- Since

$$
1_{\sigma\left(n+a_{j}\right)=\epsilon_{j}}=\frac{1}{2}\left(1+\epsilon_{j} \sigma\left(n+a_{j}\right)\right),
$$

we can control sign patterns via correlations:

$$
\left|\left\{n \leq X: \sigma\left(n+a_{j}\right)=\epsilon_{j} \forall 1 \leq j \leq k\right\}\right|=\sum_{n \leq x} \prod_{1 \leq j \leq k} \frac{1}{2}\left(1+\epsilon_{j} \sigma\left(n+a_{j}\right)\right)
$$

Proof Ideas: Patterns of $\operatorname{sign}\left(n+a_{j}\right)$

- Sato-Tate $\Rightarrow \sigma\left(n+a_{j}\right)= \pm 1$ with equal probability $1 / 2$
- If signs are independent, $\left(\sigma\left(n+a_{1}\right), \ldots, \sigma\left(n+a_{k}\right)\right)=\boldsymbol{\epsilon}$ should occur with probability $1 / 2^{k}$ for each $\epsilon \in\{-1,+1\}^{k}$
- Since

$$
1_{\sigma\left(n+a_{j}\right)=\epsilon_{j}}=\frac{1}{2}\left(1+\epsilon_{j} \sigma\left(n+a_{j}\right)\right),
$$

we can control sign patterns via correlations:

$$
\begin{gathered}
\left|\left\{n \leq X: \sigma\left(n+a_{j}\right)=\epsilon_{j} \forall 1 \leq j \leq k\right\}\right|=\sum_{n \leq X} \prod_{1 \leq j \leq k} \frac{1}{2}\left(1+\epsilon_{j} \sigma\left(n+a_{j}\right)\right) \\
=2^{-k} \sum_{S \subseteq\{1, \ldots, k\}}\left(\prod_{j \in S} \epsilon_{j}\right) \sum_{n \leq X} \prod_{j \in S} \sigma\left(n+a_{j}\right) .
\end{gathered}
$$

Question: Are the sums $o(X)$ for all $S \neq \emptyset$?

Correlations of Multiplicative Functions

Question: For which $f: \mathbb{N} \rightarrow \mathbb{U}$ multiplicative is it the case that

$$
\begin{equation*}
\sum_{n \leq X} f(n) \bar{f}(n+a) \neq o(X) ? \tag{2}
\end{equation*}
$$

Example 1: $f(n)$ is a Dirichlet character χ modulo a
Example 2: $f(n)$ is smooth and slowly-varying, e.g., $f(n)=n^{i t}, t \in \mathbb{R}$ Heuristic: (2) holds iff f "behaves like" some $\chi(n) n^{i t}$.

Correlations of Multiplicative Functions

Question: For which $f: \mathbb{N} \rightarrow \mathbb{U}$ multiplicative is it the case that

$$
\begin{equation*}
\sum_{n \leq X} f(n) \bar{f}(n+a) \neq o(X) ? \tag{2}
\end{equation*}
$$

Example 1: $f(n)$ is a Dirichlet character χ modulo a Example 2: $f(n)$ is smooth and slowly-varying, e.g., $f(n)=n^{i t}, t \in \mathbb{R}$ Heuristic: (2) holds iff f "behaves like" some $\chi(n) n^{i t}$.

Conjecture (Elliott's Conjecture)
Let X be large. Assume that for each fixed Dirichlet character χ we have

$$
\min _{|t| \leq X} \sum_{p \leq X} \frac{1-\operatorname{Re}\left(f(p) \bar{\chi}(p) p^{-i t}\right)}{p} \rightarrow \infty \text { as } X \rightarrow \infty
$$

Then for any distinct non-negative integers a_{1}, \ldots, a_{k},

$$
\sum_{n \leq X} f\left(n+a_{1}\right) \cdots f\left(n+a_{k}\right)=o(X) .
$$

Partial Results Towards Elliott

By changing how we count, we have partial results for $k=2,3$:

Theorem (Tao, '15)

If $a \geq 1$ and f satisfies the condition in Elliott's conjecture then

$$
\sum_{n \leq X} f(n) \bar{f}(n+a) / n=o(\log X) .
$$

Theorem (Tao-Teräväinen, '17)

If

$$
\sum_{p \leq x}\left(1-\operatorname{Re}\left(f(p)^{3} \overline{\chi(p)}\right)\right) / p \gg \log \log X
$$

for all fixed Dirichlet characters χ then for any a_{1}, a_{2} distinct positive integers,

$$
\sum_{n \leq X} f(n) f\left(n+a_{1}\right) f\left(n+a_{2}\right) / n=o(\log X) .
$$

Proof Ideas: Handling Correlations of $\sigma(n)$

In the conditional and unconditional results, need to establish that sums

$$
\sum_{p \leq x} \frac{1-\operatorname{Re}\left(\sigma(p) \bar{\chi}(p) p^{-i t}\right)}{p}
$$

are growing with X (uniformly in $|t| \leq X$).
Since σ is real-valued, it (roughly-speaking) suffices to consider $t=0$ and χ real-valued.
Question: How does $\sigma(p)=\operatorname{sign}(\tau(p))$ behave in arithmetic progressions?

Proof Ideas: Handling Correlations of $\sigma(n)$

In the conditional and unconditional results, need to establish that sums

$$
\sum_{p \leq x} \frac{1-\operatorname{Re}\left(\sigma(p) \bar{\chi}(p) p^{-i t}\right)}{p}
$$

are growing with X (uniformly in $|t| \leq X$).
Since σ is real-valued, it (roughly-speaking) suffices to consider $t=0$ and χ real-valued.
Question: How does $\sigma(p)=\operatorname{sign}(\tau(p))$ behave in arithmetic progressions? Answer: Using the breakthrough work of Newton-Thorne on automorphy of $L\left(s, \operatorname{sym}^{n} \Delta\right)$, we establish quantitative Sato-Tate in arithmetic progressions, i.e., asymptotic for

$$
\left\{p \leq X: p \equiv a \quad(\bmod q), a \leq \tau(p) p^{-11 / 2} \leq b\right\}
$$

for $q \leq(\log \log X)^{A},[a, b] \subseteq[-2,2]$ (possibly tending to 0 with X).

Thanks for listening!

Proof Ideas: Distribution of $\left|\tau\left(n+a_{j}\right)\right| s$

For $n+a_{j} \in \mathcal{N}_{\tau}$ for all j,
$\left|\tau\left(n+a_{1}\right)\right|<\cdots<\left|\tau\left(n+a_{k}\right)\right| \Rightarrow \log \left|\tau\left(n+a_{1}\right)\right|<\cdots<\log \left|\tau\left(n+a_{k}\right)\right|$
$g_{\tau}(n):=\log \left|\tau(n) n^{-11 / 2}\right|$ is additive, i.e., $g_{\tau}(m n)=g_{\tau}(m)+g_{\tau}(n)$, for $(m, n)=1$; have lots of tools available!
By a covering argument, it is enough to consider

$$
\left\{n \leq X: n+a_{j} \in \mathcal{N} \forall j, g_{\tau}\left(n+a_{j}\right) \in I_{j}\right\}: I_{j} \subseteq \mathbb{R} \text { intervals }
$$

Rough Heuristic: Provided $\left|g_{\tau}(p)\right|$ is not "typically" too large on the primes, then g satisfies the Erdős-Kac theorem, i.e.,

$$
\frac{1}{X}|\{n \leq X: \tilde{g}(n) \in I\}|=\frac{1}{\sqrt{2 \pi}} \int_{I} e^{-u^{2} / 2} d u+o_{X \rightarrow \infty}(1),
$$

where $\tilde{g}(n)$ is a centred and normalized version of $g(n)$.

Sieving with Sato-Tate

Problem: Very small values of $|\tau(p)| p^{-11 / 2}$ may occur... Idea: Say $\xi(X) \rightarrow 0$ with X. We want to control

$$
\left|\left\{p \leq X: 0<|\tau(p)| p^{-11 / 2}<\xi(X)\right\}\right| .
$$

Theorem (Thorner, '20+): Recent breakthrough of Newton-Thorne on automorphy for L-functions of all $S_{y m}{ }^{n} \Delta$ implies quantitative Sato-Tate! Corollary: For all but $o(X)$ integers $n \leq X$,

$$
\log \left|\tau(n) n^{-11 / 2}\right| \sim \log \left|\tilde{\tau}_{y}(n)\right|
$$

where $\tilde{\tau}_{y}\left(p^{k}\right)=1$ if $|\tau(p)| \leq 1 /(\log \log p)$ or $p>y$, and $\tilde{\tau}_{y}\left(p^{k}\right)=\tau\left(p^{k}\right) p^{-11 k / 2}$ otherwise.

Erdős-Kac type theorem for $\left(\log \left|\tau\left(n+a_{1}\right)\right|, \ldots, \log \left|\tau\left(n+a_{k}\right)\right|\right)$

Theorem (Klurman-M., '20+)

Let $k \geq 1$. If \boldsymbol{a} is admissible then

$$
\begin{aligned}
& \qquad \begin{aligned}
& \frac{1}{X}\left|\left\{n \leq X: n+a_{j} \in \mathcal{N}_{\tau}, \frac{\log \left|\tilde{\tau}_{y}\left(n+a_{j}\right)\right|+\frac{1}{2} \log \log X}{\sqrt{\left(1+\pi^{2} / 6\right) \log \log X}} \in I_{j} \forall j\right\}\right| \\
&=(2 \pi)^{-k / 2} \int_{l_{1}} \cdots \int_{I_{k}} e^{-\frac{1}{2}\|\boldsymbol{u}\|^{2}} d \boldsymbol{u}+o_{X \rightarrow \infty}(1),
\end{aligned} \\
& \text { where }\|\boldsymbol{u}\|^{2}:=\sum_{j} u_{j}^{2} .
\end{aligned}
$$

- proof uses the moment method
- case $k=1$ due to Luca, Radziwiłt and Shparlinski
- $\log \left|\tau\left(n+a_{j}\right)\right|$ (suitably normalized) are roughly independent Gaussians, and $1 / k$! is probability of independent Gaussians $X_{1}, \ldots X_{k}$ satisfying $X_{1}<\cdots<X_{k}$

