
Monotone Chains of Fourier Coefficients of
Hecke Cusp Forms

Sacha Mangerel
(Joint work with O. Klurman)

Centre de Recherches Mathématiques (CRM)
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Arrangements Problem

f : N→ R multiplicative (i.e., f (mn) = f (m)f (n) whenever (m, n) = 1)

Problem (Infinitely Many Solutions)

If a1, . . . , ak ≥ 0 are distinct integers then the set

{n ∈ N : f (n + a1) < f (n + a2) < · · · < f (n + ak)} (1)

is unbounded.

Problem (Sharp Density)

The set (1) has natural density 1/k!, i.e.,

1

X
|{n ≤ X : f (n + a1) < · · · < f (n + ak)}| =

1

k!
+ oX→∞(1).

Distributions of f (n + ai ), f (n + aj) are independent for “typical”
multiplicative function; all arrangements should be equally likely

For f unbounded (e.g., divisor function), f (n+ ai ) = f (n+ aj) is rare
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Examples:

Some information can be gleaned if k = 2:

for f (n) =
∑

d|n 1, we have f (n) ≥ 2, with equality iff n is prime;

then we have f (p) < f (p − 1) and f (p) < f (p + 1) i.o.

Erdős (1940’s): f (n) < f (n + 1) (resp. f (n) > f (n + 1)) for all n
iff f (n) = nα with α > 0 (resp. α < 0)

Matomäki-Radziwi l l (2015): If a 6= 0 then f (n) < 0 < f (n + a)
occurs for a positive proportion of n, provide f (n) < 0 has a solution

For k ≥ 3 this is already hard when f takes only positive values:

Conjecture (Sarkőzy, ’00)

If f : N→ N and f is not monotone then both

f (n) < min{f (n − 1), f (n + 1)} and f (n) > max{f (n − 1), f (n + 1)}

occur i.o.
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Fourier Coefficients of Cusp Forms

Focus on f arising from Fourier coefficients of arithmetically normalized
Hecke cusp form φ (non-CM with trivial nebentypus):
φ(z) =

∑
n≥1 f (n)e2πinz

For concreteness, take φ = ∆, where, writing q = e2πiz ,

∆(z) = q
∏
m≥1

(1− qm)24 =
∑
n≥1

τ(n)qn,

so f (n) = τ(n) is the Ramanujan τ -function
Important Properties:

τ(n) ∈ Z, multiplicative

|τ(p)| ≤ 2p11/2 (Deligne)

{τ(p)}p satisfies a Sato-Tate law: if [a, b] ⊆ [−2, 2],∣∣∣∣{p ≤ X : a ≤ τ(p)

p11/2
≤ b

}∣∣∣∣ = π(X )

(
2

π

∫ b

a

√
4− u2du + oX→∞(1)

)



Admissibility and Vanishing of τ

Let Nτ := {n ∈ N : τ(n) 6= 0}.
Lehmer’s Conjecture: Nτ = N
Serre: Nτ has positive natural density
Definition: Let k ≥ 1. A k-tuple a = (a1, . . . , ak) is admissible if the aj
are distinct non-negative integers, such that for each p /∈ Nτ the set

{m (mod p) : m 6≡ aj (mod p) ∀ 1 ≤ j ≤ k} 6= ∅.

Proposition

Let k ≥ 1. If a is admissible then {n ∈ N : n + aj ∈ Nτ ∀ 1 ≤ j ≤ k} has
positive density.

Given a admissible, by relative density of S ⊆ N we mean the limit

lim
X→∞

|S ∩ {n ≤ X : n + aj ∈ Nτ ∀j}|
|{n ≤ X : n + aj ∈ Nτ}|

(if it exists)



Arrangement Problem with τ - k = 2, 3

Theorem (Klurman-M., ’20+)

If (a1, a2) is admissible then the set

{n ∈ N : n + a1, n + a2 ∈ Nτ , τ(n + a1) < τ(n + a2)}

has relative upper density ≥ 1/2.

Theorem (Klurman-M., ’20+)

Let a = (a1, a2, a3) be admissible. Then the set

{n ∈ N : n + a1, n + a2, n + a3 ∈ Nτ , τ(n + a1) < τ(n + a2) < τ(n + a3)}

has relative upper density ≥ 1/6.

The case k = 3 is completely new!



Conditional Result - k > 3

In general, we cannot say anything for k > 3, unless we assume an
additional conjecture about correlations of bounded multiplicative
functions:

Theorem (Klurman-M., ’20+)

Assume Elliott’s conjecture holds. Let k ≥ 2 and let (a1, a2, . . . , ak) be
admissible. Then

{n ∈ N : τ(n + a1) < · · · < τ(n + ak)}

has relative natural density 1/k!.

We discuss Elliott’s conjecture shortly.



Proof Ideas: First Observations

For n ∈ Nτ write τ(n) = |τ(n)|σ(n), where σ(n) := sign(τ(n))
Suppose τ(n + a1) < · · · < τ(n + ar ) < 0 < · · · < τ(n + ak), or let r = 0.
Then:

|τ(n + ai )| > |τ(n + aj)|, σ(n + ai ) = σ(n + aj) = −1 for 1 ≤ i < j ≤ r

|τ(n+ai )| < |τ(n+aj)|, σ(n+ai ) = σ(n+aj) = +1 for r + 1 ≤ i < j ≤ k

Questions to address:

How often do inequalities |τ(n + ai )| > |τ(n + ai+1)| occur for
1 ≤ i ≤ r − 1 (and same question in reverse for r + 1 ≤ i < k)?

How often is (σ(n + a1), . . . , σ(n + ak)) = ε, for ε ∈ {−1,+1}k with
εj = −1 for 1 ≤ j ≤ r , εj = +1 otherwise?

How often do these conditions occur simultaneously?



Arrangement Problem with |τ |

Theorem (Bilu-Deshouillers-Gun-Luca, ’17)

Let k ≥ 1. If a is admissible then

|{n ≤ X : 0 < |τ(n + a1)| < · · · < |τ(n + ak)|}| �k X/(logX )k ;

in particular, |τ(n + a1)| < · · · < |τ(n + ak)| i.o.

Theorem (Klurman-M., ’20+)

If a is admissible then

|{n ≤ X : 0 < |τ(n + a1)| < · · · < |τ(n + ak)|}|
|{n ≤ X : n + aj ∈ Nτ ∀j}|

=
1

k!
+ oX→∞(1).

Idea: Apply Erdős-Kac theorem to study random vector
(log |τ(n + a1)|, . . . , log |τ(n + ak)|) for n ∈ [1, x ] randomly chosen with
n + aj ∈ Nτ , being careful with very small values of |τ(p)|
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Proof Ideas: Patterns of sign(n + aj)

Sato-Tate ⇒ σ(n + aj) = ±1 with equal probability 1/2

If signs are independent, (σ(n + a1), . . . , σ(n + ak)) = ε should
occur with probability 1/2k for each ε ∈ {−1,+1}k

Since

1σ(n+aj )=εj =
1

2
(1 + εjσ(n + aj)),

we can control sign patterns via correlations:

|{n ≤ X : σ(n+aj) = εj ∀1 ≤ j ≤ k}| =
∑
n≤X

∏
1≤j≤k

1

2
(1+εjσ(n+aj))

= 2−k
∑

S⊆{1,...,k}

∏
j∈S

εj

∑
n≤X

∏
j∈S

σ(n + aj).

Question: Are the sums o(X ) for all S 6= ∅?
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Correlations of Multiplicative Functions

Question: For which f : N→ U multiplicative is it the case that∑
n≤X

f (n)f (n + a) 6= o(X )? (2)

Example 1: f (n) is a Dirichlet character χ modulo a

Example 2: f (n) is smooth and slowly-varying, e.g., f (n) = nit , t ∈ R
Heuristic: (2) holds iff f “behaves like” some χ(n)nit .

Conjecture (Elliott’s Conjecture)

Let X be large. Assume that for each fixed Dirichlet character χ we have

min
|t|≤X

∑
p≤X

1− Re(f (p)χ(p)p−it)

p
→∞ as X →∞.

Then for any distinct non-negative integers a1, . . . , ak ,∑
n≤X

f (n + a1) · · · f (n + ak) = o(X ).
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Partial Results Towards Elliott

By changing how we count, we have partial results for k = 2, 3:

Theorem (Tao, ’15)

If a ≥ 1 and f satisfies the condition in Elliott’s conjecture then∑
n≤X

f (n)f (n + a)/n = o(logX ).

Theorem (Tao-Teräväinen, ’17)

If ∑
p≤X

(1− Re(f (p)3χ(p)))/p � log logX

for all fixed Dirichlet characters χ then for any a1, a2 distinct positive
integers, ∑

n≤X

f (n)f (n + a1)f (n + a2)/n = o(logX ).



Proof Ideas: Handling Correlations of σ(n)

In the conditional and unconditional results, need to establish that sums∑
p≤X

1− Re(σ(p)χ(p)p−it)

p

are growing with X (uniformly in |t| ≤ X ).
Since σ is real-valued, it (roughly-speaking) suffices to consider t = 0
and χ real-valued.
Question: How does σ(p) = sign(τ(p)) behave in arithmetic progressions?

Answer: Using the breakthrough work of Newton-Thorne on automorphy
of L(s, symn∆), we establish quantitative Sato-Tate in arithmetic
progressions, i.e., asymptotic for

{p ≤ X : p ≡ a (mod q), a ≤ τ(p)p−11/2 ≤ b},

for q ≤ (log logX )A, [a, b] ⊆ [−2, 2] (possibly tending to 0 with X ).
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Thanks for listening!



Proof Ideas: Distribution of |τ(n + aj)|s

For n + aj ∈ Nτ for all j ,

|τ(n + a1)| < · · · < |τ(n + ak)| ⇒ log |τ(n + a1)| < · · · < log |τ(n + ak)|

gτ (n) := log |τ(n)n−11/2| is additive, i.e., gτ (mn) = gτ (m) + gτ (n), for
(m, n) = 1; have lots of tools available!
By a covering argument, it is enough to consider

{n ≤ X : n + aj ∈ N ∀j , gτ (n + aj) ∈ Ij} : Ij ⊆ R intervals

Rough Heuristic: Provided |gτ (p)| is not “typically” too large on the
primes, then g satisfies the Erdős-Kac theorem, i.e.,

1

X
|{n ≤ X : g̃(n) ∈ I}| =

1√
2π

∫
I

e−u
2/2du + oX→∞(1),

where g̃(n) is a centred and normalized version of g(n).



Sieving with Sato-Tate

Problem: Very small values of |τ(p)|p−11/2 may occur...
Idea: Say ξ(X )→ 0 with X . We want to control

|{p ≤ X : 0 < |τ(p)|p−11/2 < ξ(X )}|.

Theorem (Thorner, ’20+): Recent breakthrough of Newton-Thorne on
automorphy for L-functions of all Symn∆ implies quantitative Sato-Tate!
Corollary: For all but o(X ) integers n ≤ X ,

log |τ(n)n−11/2| ∼ log |τ̃y (n)|,

where τ̃y (pk) = 1 if |τ(p)| ≤ 1/(log log p) or p > y , and
τ̃y (pk) = τ(pk)p−11k/2 otherwise.



Erdős-Kac type theorem for
(log |τ(n + a1)|, . . . , log |τ(n + ak)|)

Theorem (Klurman-M., ’20+)

Let k ≥ 1. If a is admissible then

1

X
|{n ≤ X : n + aj ∈ Nτ ,

log |τ̃y (n + aj)|+ 1
2 log logX√

(1 + π2/6) log logX
∈ Ij ∀j}|

= (2π)−k/2

∫
I1

· · ·
∫
Ik

e−
1
2‖u‖

2

du + oX→∞(1),

where ‖u‖2 :=
∑

j u
2
j .

proof uses the moment method

case k = 1 due to Luca, Radziwi l l and Shparlinski

log |τ(n + aj)| (suitably normalized) are roughly independent
Gaussians, and 1/k! is probability of independent Gaussians
X1, . . .Xk satisfying X1 < · · · < Xk


