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Simple case:

� = SL2(Z), invariant Laplacian
� = y

2(@2
x
+ @

2
y
) on H, descending to �\H.

Let ✓ be a compactly-supported distribution
on �\H. Abbreviate �s = s(s� 1). Let

Es(z) =
X

�2�1\�

(Im�z)s = 1
2

X

gcd(c,d)=1

y
s

|cz + d|2s

Theorem 1: For Re(s) = 1
2 , (� � �s)u = ✓

has an L
2 solution =) ✓(Es) = 0.

This is interesting because periods of Eisen-
stein series are sometimes zeta-functions of
L-functions: (Hecke-Maaß, et al): for ✓ the
automorphic Dirac � at i 2 �\H,

✓(Es) =
⇣Q(i)(s)

⇣(2s)
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More generally, for fundamental discriminant
d < 0 with associated Heegner points zj ,

X

j

Es(zj) =
⇠Q(

p
d)(s)

⇠Q(2s)

For fundamental discriminant d > 0 with
associated geodesic cycles Cj ,

X

j

Z

Cj

Es(h) dh =
⇠Q(

p
d)(s)

⇠Q(2s)

Caution: Many periods ✓(Es) have o↵-line
zeros.

For example, Epstein zetas �zo(Es) = Es(zo)
have o↵-the-line zeros (Potter-Titchmarsh,
Stark, et al).
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Trivial analogue: For perspective, consider
u
00� s

2
u = � on R. By Fourier transform, for

every Re(s) > 0, there is an L
2 solution

u(x) =
e
s|x|

�2s

But at Re(s) = 0 the meromorphic continu-
ation gives functions not in L

2.

In fact, by the theorem, via Fourier Inversion
in place of spectral synthesis of automorphic
forms, if there were an L

2 solution for some
Re(s) = 0, then �(x ! e

sx) = 0, so 1 = 0,
impossible.

Anyway, we did not expect to prove that
x ! e

sx had zeros.
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Continuing in the trivial context...

The Sturm-Liouville problem (reformulated)

u
00 � s

2
u = ��1 + �0 (on R)

has an L
2 solution for infinitely-many eigen-

values s
2  0. The inhomogeneity sup-

ported at {0, 1} reflects non-smoothness at
the boundary of [0, 1], described otherwise in
classical discussions.

For s 2 iR and a solution u 2 L
2(R), the

theorem gives

(�1 � �0)(x ! e
sx) = 0

Thus,
e
s � e

0 = 0

which constrains s.
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Remark: Of course, explicit solutions

u(x) =

⇢
sin(2⇡inx) (for 0  x  1)

0 (otherwise)

corroborate the conclusion. The auto-duality
of R makes this example nearly tautological.

Technicalities? This trivial example does
illustrate certain technicalities:

A compactly supported distribution ✓ is
tempered, so has a Fourier transform b✓. How
to compute it? b✓(⇠) = ✓(x ! e

�i⇠x) is
natural, but x ! e

i⇠x is not Schwartz. It is
smooth. Compactly supported distributions
are (demonstrably) the dual E⇤ of
E = C

1(R), so ✓(x ! e
�i⇠x) makes sense, ...

but why does it correctly compute the Fourier
transform?
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Fourier inversion and ✓ 2 E⇤

For u 2 S (R), by Fourier inversion

u(x) =

Z

R
e
2⇡i⇠x bu(⇠) d⇠

In fact, with  ⇠(x) = e
2⇡i⇠x,

u =

Z

R
 ⇠ bu(⇠) d⇠ (E-valued integral)

The integrand is not S -valued. For ✓ 2 E⇤,
by properties of Gelfand-Pettis integrals,

✓(u) = ✓
� Z

R
 ⇠ bu(⇠) d⇠

�

=

Z

R
✓
�
 ⇠ bu(⇠)

�
d⇠ =

Z

R
✓( ⇠) bu(⇠) d⇠

By uniqueness, b✓ is a pointwise-valued func-
tion and b✓(⇠) = ✓(x ! e

�2⇡i⇠x).
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A little more generally:

k a number field

G = GL2 over k,
Kv standard local maximal compact in
Gv = GL2(kv), K =

Q
v1 Kv.

Let ⌦ be among the G1-invariant elements
(Ug)G of the universal enveloping algebra Ug

of the Lie algebra of G1.

Let �s,! be the eigenvalue of ⌦ on the s,!

principal series of G1 =
Q

v|1 Gv

For unramified Hecke character ! of k, let
Es,! be the (level-one) Eisenstein series.

Let ✓ be a compactly supported distribution
on ZA\GA/K.
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Global Sobolev spaces:

We need large spaces of (generalized) func-
tions in which spectral expansions make sense
and can be manipulated. Spectral expansion
characterizations are convenient.

For example, H
r(R) is the Hilbert-space

completion of C
1
c
(R) with respect to the

norm

|f |2
Hr =

Z

R
| bf(⇠)|2 · (1 + ⇠

2)r d⇠

H
�1(R) =

[

r2R
H

r = colimrH
r

Sobolev’s imbedding/inequality is

H
k+ 1

2+"(R) ⇢ C
k(R) (for every " > 0)

Thus, H1 =
T

r
H

r =
T

k
C

k = C
1.

As a corollary, compactly supported distribu-
tions are in H

�1.
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Global automorphic Sobolev spaces:

In the simplest case of waveforms on �\H
with � = SL2(Z), the spectral decomposi-
tion/synthesis assertion for f 2 L

2(�\H) is

f =
X

cfm F

hf, F i · F +
hf, 1i · 1
h1, 1i

+
1

4⇡i

Z

( 1
2 )
hf,Esi · Es ds

where F runs over an orthonormal basis of
cuspforms. The pairings are suggested by
the L

2 pairing, but since Es 62 L
2(�\H), as

e
i⇠x 62 L

2(R), there are subtleties.

Sobolev norms are

|f |2
Hr =

X

cfm F

|hf, F i|2 ·(1+|�F |)r+
hf, 1i · 1
h1, 1i

+
1

4⇡i

Z

( 1
2 )
|hf,Esi| · (1 + |�s|)r ds
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... and H
r = H

r(�\H) is the H
r-norm

Hilbert space completion of C1
c
(�\H).

H
�1 =

S
H

r = colimH
r

By design, every generalized function inH
�1

admits a spectral expansion of the same
shape as for L

2. Luckily, E⇤ ⇢ H
�1: by

an automorphic version of Sobolev’s lemma,
H

1 ⇢ C
1(�\H) = E(�\H). Dualizing,

E⇤ ⇢ H
�1.

Theorem 2: For Re(s) = 1
2 and ✓ compactly

supported, if (⌦ � �s,!)u = ✓ has an H
�1

solution, then ✓(Es,!) = 0.
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Recall: for quadratic `/k, theGL1(`) periods
of GL2(k) Eisenstein series are

Z

Jk`⇥\J`
Es,!(h) dh ⇡ ⇤`(s,! �N `

k
)

⇤k(2s,!)

Z

Jk`⇥\J`

�(h) ·Es,!(h) dh ⇡ ⇤`(s,� · (! �N `

k
))

⇤k(2s,!)

for Hecke character � on J` trivial on Jk.

But not every period is a genuinely
arithmetic object: generic Epstein zetas.
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Proof of theorem 1: Write a spectral
expansion of ✓, but only pay attention to the
continuous-spectrum part:

✓ = ...+
1

4⇡i

Z

( 1
2 )

b✓(w) · Ew dw

Since ✓ is compactly supported and Ew is
smooth, one can show that b✓(w) = ✓(E1�w).
Also,

u = ...+
1

4⇡i

Z

( 1
2 )

bu(w) · Ew dw

and by properties of vector-valued integrals,
the di↵erentiation passes inside the integral:
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(�� �s)u

= ...+
1

4⇡i

Z

( 1
2 )

bu(w) · (�� �s)Ew dw

= ...+
1

4⇡i

Z

( 1
2 )

bu(w) · (�w � �s)Ew dw

From (� � �s)u = ✓, equating spectral
coe�cients,

(�w � �s) · bu(w) = b✓(w) = ✓(Ew)

Since bu is locally L
2, ✓(Ew) vanishes in a

strong sense at w = s, as claimed.

After straightening out the complex conjuga-
tions... ///
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Faddeev-Pavlov/Lax-Phillips example:

FP (1967) and LP (1976) showed that (the
Friedrichs extension of) � restricted to wave-
forms with constant term vanishing above
height a � 1 has purely discrete spectrum.

In particular, a significant part of the
orthogonal complement to cuspforms now
decomposes discretely, in addition to being
integrals of Eisenstein series!

Let ✓ be constant-term-evaluated-at-height-
a � 1. By the theorem, for �s < � 1

4 , new
�s-eigenfunctions u can occur only when

0 = ✓Es = a
s +

⇠(2s� 1)

⇠(2s)
a
1�s
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Unfortunately, the on-the-line zeros of ✓Es

refer to ⇣(s) at the edges of the critical strip.

This does show that for �s < � 1
4 the

new/exotic eigenfunctions are truncated
Eisenstein series ^a

Es with ✓Es = 0 and
Re(s) = 1

2 .

Not all truncated Eisenstein series...

The fact that this incarnation of � has non-
smooth eigenfunctions seems to contradict
elliptic regularity. In fact, this extension-of-
a-restriction of � is not an elliptic di↵erential
operator.

This is abstractly similar to Sturm-Liouville
problems...
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Hejhal (1981) and CdV (1981,82,83)

considered (���s)u = �
afc
!

and similar, with
! = e

2⇡i/3. From earlier computations (Fay
1978, et al), Hejhal observed that there is a
pseudo-cuspform solution for Re(s) = 1

2 if
and only if Es(!) = 0.

(A pseudo-cuspform has eventually vanishing
constant term, and eventually is an eigenfunc-
tion of �.)

CdV looked at Sobolev space aspects of
this, to try to legitimately use Friedrichs
extensions to convert (� � �s)u = � to a
homogeneous equation. This resembles P.
Dirac’s and H. Bethe’s work c. 1930, on
singular potentials:

�
(�� � ⌦ �)� �s)u = 0
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Attempting to construct solutions:

The FP/LP and Hejhal/CdV examples are
inspirational, and/but we hope for more. Our
project has clarified CdV’s 1982-3 further
speculations a bit...

For negative fundamental discriminants (we
proved) at most 94% of the on-line zeros
of ⇣(s) enter as discrete spectrum s(s �
1). Without assuming things in violent
contrast to current belief systems, probably
none. Also, construction of PDE solutions by
physical means is unclear.

For positive discriminants, there is more
hope to construct PDE solutions physically,
since the Hecke-Maaß functionals involve
integration over codimension-one cycles...
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A too-simple attempt: Take k = Q(
p
d)

with d > 0 and narrow class number one.
Imbed Q(

p
d) ! M2(Q) by a nice rational

representation. Let � = SL2(Z), and let
U ⇢ SL2(Z) be the image of units in o. LetH
be the real Lie group (a circle) whose rational
points are the image of norm-one elements of
Q(

p
d).

The quotient U\H, a cylinder, naturally maps
to the modular curve �\H. The subgroup U

is conjugate in SL2(R) to the subgroup

U
0 = {

✓
⌘
n 0
0 ⌘

�n

◆
: n 2 Z}

for suitable ⌘ 2 o
⇥. U

0 has a convenient
fundamental domain

F = {z 2 H : 1  |z| < 2| log ⌘|}
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Pictures:
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Compatibly with the choice of fundamental
domain F for U 0, in polar coordinates on H

�R2

=
@
2

@r2
+

1

r
· @
@r

+
1

r2
· @

2

@✓2

� = �H = sin2 ✓ ·
⇣
r
2 @

2

@r2
+ r · @

@r
+

@
2

@✓2

⌘

Separate variables: take u(r, ✓) = A(r) ·B(✓),
and require sin2 ✓ ·B00 = µ ·B for µ < 0. The
eigenvalue equation �u = � · u becomes

r
2 ·A00 + r ·A0 + (µ� �) ·A = 0

This Euler-type equation has solutions r↵ for
↵(↵ � 1) + ↵ + (µ � �) = 0. The simplest
sequel takes ↵ = 0, so � = µ.

We want a compactly-supported function u

on F that is radially invariant and satisfies

sin2 ✓ · u00(✓) = � · u(✓) + C
+ + C

�
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... where, for fixed 0 < a <
⇡

2 (continuum?!),
C

± are (integrals over) cycles

C
± = {z : arg z =

⇡

2
± a, 1  |z|  2| log ⌘|}

We want B(⇡2 ± a) = 0, and symmetry of u
under ✓ ! ⇡

2 � ✓.

That is, the values µ = � < 0 are such that
an even solution B = B� of sin2 ✓ ·B00 = � ·B
has zeros at ✓ = ⇡

2 ± a.

Being a Sturm-Liouville problem, there are
infinitely-many such � (by alternation of
roots), and an asymptotic (Weyl’s Law).

For such �,

u(r, ✓) =

⇢
B�(✓) (for ⇡

2 � a  ✓  ⇡

2 + a)
0 (otherwise)
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Winding-up/automorphizing this compactly-
supported u, and changing coordinates, gives
a function on �\H (still denoted u) such that
(up to a multiplicative constant)

(�� �)u = C
+ + C

�

By the theorem,

(C+ + C
�)(Es) = 0

C
±
Es are Euler products, and di↵er from

⇠k(s)/⇠(2s) only at the archimedean factor.

Good so far.
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However, the archimedean factors are
perturbed enough so that their sum can
account for the forced zeros of the altered
version(s) of ⇠k(s).

The continuum of choices of a should have
been ominous, too.

Also, images of geodesics are not reliably the
same things as subgroup orbits...
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