Distributions, Differential Equations, and Zeros...

Québec-Maine... September 2020 \checkmark

Paul Garrett, University of Minnesota Partly joint work with E. Bombieri, IAS

Simple case:

 $\Gamma = SL_2(\mathbb{Z}), \text{ invariant Laplacian } \land \land \Delta = y^2(\partial_x^2 + \partial_y^2) \text{ on } \mathfrak{H}, \text{ descending to } \Gamma \setminus \mathfrak{H}. \checkmark$

Let θ be a compactly-supported distribution on $\Gamma \setminus \mathfrak{H}$. Abbreviate $\lambda_s = s(s-1)$. Let

$$\sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} (\operatorname{Im} \gamma z)^{s} = \frac{1}{2} \sum_{\substack{g \in G(c,d) = 1}} \frac{y^{s}}{|cz+d|^{2s}}$$

Theorem 1: For $\operatorname{Re}(s) = \frac{1}{2}$, $(\Delta - \lambda_s)u = \theta$ has an L^2 solution $\Longrightarrow \theta(E_s) = 0$. This is interesting because periods of Eisenstein series are *sometimes* zeta-functions of σ

L-functions: (Hecke-Maaß, *et al*): for $\underline{\theta}$ the automorphic Dirac $\underline{\delta}$ at $i \in \Gamma \setminus \mathfrak{H}$,

 $\theta(E_s) = \frac{\zeta_{\mathbb{Q}(i)}(s)}{\zeta_{\mathbb{Q}(i)}(s)} \text{ on } \operatorname{Rels} = \frac{1}{2}$ edge $\mathbf{2}$

More generally, for fundamental discriminant d < 0 with associated Heegner points z_j , $\sum_j E_s(z_j) = \frac{\xi_{\mathbb{Q}}(\sqrt{d})(s)}{\xi_{\mathbb{Q}}(2s)}$

For fundamental discriminant d > 0 with associated geodesic cycles C_j ,

 $\sum_{i} \int_{C_{i}} E_{s}(h) dh = \frac{\xi_{\mathbb{Q}(\sqrt{d})}(s)}{\xi_{\mathbb{O}}(2s)}$

Caution: Many periods $\theta(E_s)$ have off-line zeros.

In fact, by the theorem, via Fourier Inversion in place of spectral synthesis of automorphic forms, if there were an L^2 solution for some $\operatorname{Re}(s) = 0$, then $\delta(x \to e^{sx}) = 0$, so 1 = 0, impossible. Anyway, we did not expect to prove that

-m [0, 2] Continuing in the trivial context... The Sturm-Liouville problem (reformulated) $u'' - s^2 u = \underbrace{-\delta_1 + \delta_0}_{\ell} \qquad \text{(on } \mathbb{R})$ Mon-clussical ? has an L^2 solution for infinitely-many eigenvalues $s^2 \leq 0$. The inhomogeneity supported at $\{0,1\}$ reflects non-smoothness at the boundary of [0, 1], described otherwise in classical discussions. For $s \in i\mathbb{R}$ and a solution $u \in L^2(\mathbb{R})$, the theorem gives

$$(\delta_1 - \delta_0)(x \to e^{sx}) = 0$$

5

Thus,

exemplue The Anthe-check ! Remark: Of course, explicit solutions $u(x) = \begin{cases} \sin(2\pi i n x) & (\text{for } 0 \le x \le 1) \\ 0 & (\text{otherwise}) \end{cases}$ corroborate the conclusion. The auto-duality of \mathbb{R} makes this example nearly tautological. Somple Technicalities?) This trivial example does illustrate certain technicalities:

A compactly supported distribution θ is tempered, so has a Fourier transform $\hat{\theta}$. How to compute it? $\hat{\theta}(\xi) = \theta(x \to e^{-i\xi x})$ is natural, but $x \to e^{i\xi x}$ is not Schwartz. It is smooth. Compactly supported distributions

Fourier inversion and $\theta \in \mathcal{E}^*$ (M For $u \in \mathscr{S}(\mathbb{R})$, by Fourier inversion Serve $u(x) = \int_{\mathbb{R}} e^{2\pi i \xi x} \hat{u}(\xi) d\xi$ In fact, with $\psi_{\xi}(x) = e^{2\pi i \xi x}$, $u = \int_{\mathbb{R}} \psi_{\xi} \widehat{u}(\xi) d\xi$ (*E*-valued integral) The integrand is not \mathscr{L} -valued. For $\theta \in \mathcal{E}^*$, by properties of Gelfand-Pettis integrals, [930'5

 $G = GL_2 \text{ over } k,$ $K_v \text{ standard local maximal compact in}$ $G_v = GL_2(k_v), K = \prod_{v \le \infty} K_v.$

Let Ω be among the G_{∞} -invariant elements $(U\mathfrak{g})^G$ of the universal enveloping algebra $U\mathfrak{g}$ of the Lie algebra of G_{∞} . Let $\lambda_{s,\omega}$ be the eigenvalue of Ω on the \underline{s}, ω principal series of $G_{\infty} = \prod_{v \mid \infty} G_v \longrightarrow \overline{E}_{\underline{s}, \omega}$ For unramified Hecke character $\widehat{\omega}$ of k, let $E_{s,\omega}$ be the (level-one) Eisenstein series. \neg

For example, $\underline{H^r(\mathbb{R})}$ is the Hilbert-space completion of $C_c^{\infty}(\mathbb{R})$ with respect to the norm $\underline{Pamhael}$

 $H^{(\infty)}(\mathbb{R}) = \bigcup_{r \in \mathbb{R}} H^r = \operatorname{colim}_r H^r$

 $|f|_{H^{r}}^{2} = \int_{\mathbb{R}} |\hat{f}(\xi)|^{2} \left((1+\xi^{2})^{r} d\xi \right)$

Sobolev's imbedding/inequality is (clobal ean)

 $H^{k+\frac{1}{2}+\epsilon}(\mathbb{R}) \subset C^{k}(\mathbb{R}) \quad (\text{for every } \varepsilon > 0)$ Thus, $H^{\infty} = \bigcap_{r} H^{r} = \bigcap_{k} C^{k} = \underbrace{C^{\infty}}_{\mathbb{Z}} = \underbrace{C^{\infty}}_{\mathbb{Z}}$ $\left\{ \begin{array}{l} \text{As a corollary, compactly supported distributions are in } H^{-\infty}. \end{array} \right\}$ 9

Global automorphic) Sobolev spaces:

In the simplest case of waveforms on $\Gamma \setminus \mathfrak{H}$ with $\Gamma = SL_2(\mathbb{Z})$, the spectral decomposition/synthesis assertion for $f \in L^2(\Gamma \setminus \mathfrak{H})$ is

where F runs over an orthonormal basis of cuspforms. The pairings are suggested by the L^2 pairing, but since $E_s \notin L^2(\Gamma \setminus \mathfrak{H})$, as $e^{i\xi x} \notin L^2(\mathbb{R})$, there are subtleties.

Sobolev norms are

 $|f|_{H^r}^2 = \sum_{\text{cfm } F} |\langle f, F \rangle|^2 \cdot (1 + |\lambda_F|) + \frac{\langle f, 1 \rangle \cdot 1}{\langle 1, 1 \rangle}$ $\operatorname{cfm} F$ $+\frac{1}{4\pi i} \int_{\left(\frac{1}{2}\right)} |\langle f, E_s \rangle| \cdot (1 + |\lambda_s|)^r \, ds$ $\exists \text{Planched for } r = 0$ 10

... and
$$H^r = H^r(\Gamma \setminus \mathfrak{H})$$
 is the H^r -norm
Hilbert space completion of $C_c^{\infty}(\Gamma \setminus \mathfrak{H})$.
 $H^{-\infty} = \bigcup H^r = \operatorname{colim} H^r$
By design, every generalized function in $H^{-\infty}$
admits a spectral expansion of the same
shape as for L^2 . Luckily, $\mathcal{E}^* \subset H^{-\infty}$: by
an automorphic version of Sobolev's lemma,
 $H^{\infty} \subset C^{\infty}(\Gamma \setminus \mathfrak{H}) = \mathcal{E}(\Gamma \setminus \mathfrak{H})$. Dualizing,
 $\mathcal{E}^* \subset H^{-\infty}$.
Theorem 2: For $\operatorname{Re}(s) = \frac{1}{2}$ and θ compactly
supported, if $(\Omega - \lambda_{s,\omega})\psi = \theta$ has an $H^{-\infty}$
solution, then $\theta(E_{s,\omega}) = 0$.

Not se cref ptnike!!! Conveye in H^{oo} (31?)

Recall: for quadratic ℓ/k , the $GL_1(\ell)$ periods / of $GL_2(k)$ Eisenstein series are $\int_{\mathbb{C}^{\times} \setminus \mathbb{J}_{\ell}} \chi(h) \cdot E_{s,\omega}(h) \ dh \approx \frac{\Lambda_{\ell}(s, \chi \cdot (\omega \circ N_{k}^{\ell}))}{\Lambda_{k}(2s, \omega)} \right)^{\leq}$ $\mathbb{J}_k \ell^{\times} \setminus \mathbb{J}_\ell$ for Hecke character χ on \mathbb{J}_{ℓ} trivial on \mathbb{J}_k . But not every period is a genuinely arithmetic object: generic Epstein zetas.) ez-see "bosh" do not Set. Ent R4 Stat. ?!._ 12

one Spend Stille m 13

$$(\Delta - \lambda_s)u$$

$$= \dots + \frac{1}{4\pi i} \int_{(\frac{1}{2})} \widehat{u}(w) \cdot (\Delta - \lambda_s) E_w dw$$

$$= \dots + \frac{1}{4\pi i} \int_{(\frac{1}{2})} \widehat{u}(w) \cdot (\lambda_w - \lambda_s) E_w dw$$
From $(\Delta - \lambda_s)u = \theta$, equating spectral coefficients,
$$(\lambda_w - \lambda_s) \cdot \widehat{u}(w) = (\widehat{\theta}(w)) = \theta(E_w) \int C_{auful}$$
Since \widehat{u} is locally L^2 , $\theta(E_w)$ vanishes in a strong sense at $w = s$, as claimed.

After straightening out the complex conjugations... Solvio of DE's mon-the-line + $0'_{S}$ 14

Faddeev-Pavlov/Lax-Phillips example: FP (1967) and LP (1976) showed that (the Friedrichs extension of) Δ restricted to waveforms with constant term vanishing above height $a \ge 1$ has *purely discrete* spectrum.

In particular, a significant part of the orthogonal complement to cuspforms now decomposes *discretely*, *in addition to* being integrals of Eisenstein series!

Let θ be constant-term-evaluated-at-height $a \gg 1$. By the theorem, for $\lambda_s < -\frac{1}{4}$, new λ_s -eigenfunctions u can occur only when

$$0 = \theta E_s = a^s + \frac{\xi(2s-1)}{\xi(2s)}a^{1-s}$$

Cont. Im.

Unfortunately, the on-the-line zeros of θE_s refer to $\zeta(s)$ at the *edges* of the critical strip. This *does* show that for $\lambda_{\xi} = -\frac{1}{4}$ the new/exotic eigenfunctions are *truncated Eisenstein series* $\wedge^a E_s$ with $\theta E_s = 0$ and $\operatorname{Re}(s) = \frac{1}{2}$.

Not all truncated Eisenstein series...

The fact that this incarnation of Δ has nonsmooth eigenfunctions seems to contradict elliptic regularity. In fact, this extension-ofa-restriction of Δ is not an elliptic differential operator.

This is abstractly similar to Sturm-Liouville

1980

C.

Hejhal (1981) and CdV (1981,82,83) considered $(\Delta - \lambda_s)u = \delta_{\omega}^{\text{afc}}$ and similar, with $\omega = e^{2\pi i/3}$. From earlier computations (Fay 1978, et al), Hejhal observed that there is a *pseudo-cuspform* solution for $\text{Re}(s) = \frac{1}{2}$ if and only if $E_s(\omega) = 0$.

(A pseudo-cuspform has eventually vanishing constant term, and eventually is an eigenfunction of Δ .)

CdV looked at Sobolev space aspects of this, to try to legitimately use Friedrichs extensions to convert $(\Delta - \lambda_s)u = \delta$ to a homogeneous equation. This resembles P. Dirac's and H. Bethe's work c. 1930, on singular potentials:

 $\left((\Delta - \delta \otimes \delta) - \lambda_s \right) u = 0$

Attempting to construct solutions: O's a the

The FP/LP and Hejhal/CdV examples are inspirational, and/but we hope for more. Our project has clarified CdV's 1982-3 further speculations a bit...

For *negative* fundamental discriminants (we proved) at most 94% of the on-line zeros of $\zeta(s)$ enter as discrete spectrum s(s - 1). Without assuming things in violent contrast to current belief systems, probably none. Also, *construction* of PDE solutions by *physical* means is unclear.

For *positive* discriminants, there is more hope to construct PDE solutions physically,

Physic

A too-simple attempt! Take $k = Q(\sqrt{d})$ with d > 0 and narrow class number one. Imbed $\mathbb{Q}(\sqrt{d}) \to M_2(\mathbb{Q})$ by a nice rational representation. Let $\Gamma = SL_2(\mathbb{Z})$, and let $U \subset SL_2(\mathbb{Z})$ be the image of units in \mathfrak{o} . Let Hbe the real Lie group (a circle) whose rational points are the image of norm-one elements of $\mathbb{Q}(\sqrt{d}).$ $H/\eta \approx O$

The quotient $U \setminus \mathfrak{H}$, a cylinder, naturally maps to the modular curve $\Gamma \setminus \mathfrak{H}$. The subgroup U is conjugate in $SL_2(\mathbb{R})$ to the subgroup

$$U \neq \{ \begin{pmatrix} \eta^n & 0 \\ 0 & \eta^{-n} \end{pmatrix} : n \in \mathbb{Z} \}$$

U' has a convenient

$F = \{ z \in \mathfrak{H} : 1 \le |z| < 2 |\log \eta| \}$

chech for low have of print

Compatibly with the choice of fundamental domain F for U', in polar coordinates on \mathfrak{H}

$$\Delta^{\mathbb{R}^2} = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial}{\partial r} + \frac{1}{r^2} \cdot \frac{\partial^2}{\partial \theta^2}$$

$$\Delta = \Delta^{5} = \sin^2 \theta \cdot \left(r^2 \frac{\partial^2}{\partial r^2} + r \cdot \frac{\partial}{\partial r} + \frac{\partial^2}{\partial \theta^2}\right)$$
Separate variables: take $u(r, \theta) = A(r) \cdot B(\theta)$,
and require $\sin^2 \theta \cdot B'' = \mu \cdot B$ for $\mu < 0$. The eigenvalue equation $\Delta u = \lambda \cdot u$ becomes
 $r^2 \cdot A'' + r \cdot A' + (\mu - \lambda) \cdot A = 0$

This Euler-type equation has solutions r^{α} for $\alpha(\alpha - 1) + \alpha + (\mu - \lambda) = 0$. The simplest sequel takes $\alpha = 0$, so $\lambda = \mu$.

-to wind We want a compactly-supported function uon F that is radially invariant and satisfies $\sin^2\theta \cdot u''(\theta) = \lambda \cdot u(\theta) + C^+$

... where, for fixed $0 < a < \frac{\pi}{2}$ (continuum?!), C^{\pm} are (integrals over) cycles $C^{\pm} = \{z : \arg z = \frac{\pi}{2} \pm a, \ 1 \le |z| \le 2|\log \eta|\}$

We want $B(\frac{\pi}{2} \pm a) = 0$, and symmetry of uunder $\theta \to \frac{\pi}{2} - \theta$.

That is, the values $\mu = \lambda < 0$ are such that an *even* solution $B = B_{\lambda}$ of $\sin^2 \theta \cdot B'' = \lambda \cdot B$ has zeros at $\theta = \frac{\pi}{2} \pm a$.

Being a Sturm-Liouville problem, there are infinitely-many such λ (by alternation of roots), and an asymptotic (Weyl's Law).

For such λ .

$$u(r,\theta) = \begin{cases} B_{\lambda}(\theta) & (\text{for } \frac{\pi}{2} - a \le \theta \le \frac{\pi}{2} + a) \\ 0 & (\text{otherwise}) \end{cases}$$

Winding-up/automorphizing this compactlysupported u, and changing coordinates, gives a function on $\Gamma \setminus \mathfrak{H}$ (still denoted u) such that (up to a multiplicative constant)

$$(\Delta - \lambda)u = C^+ + C^-$$

By the theorem,

$$(C^+ + C^-)(E_s) = 0$$

 $(C^{\pm}E_s)$ are Euler products, and differ from $\xi_k(s)/\xi(2s)$ only at the archimedean factor. Good so far.

con complete compar

