Distributions,

Differential Equations,

and Zeros...

Québec-Maine... September 2020
Paul Garrett, University of Minnesota Partly joint work with E. Bombieri, IAS \exists

Some technical and historical background: Designed Pseudo-Laplacians
E. Bombieri, P. Garrett
arXiv:2002.07929v1, 18 Feb $2020 \subset$ (since 2013) or, equivalently,
http://www.math.umn.edu/~garrett/m/v/
Bombieri-Garrett_current_version.pdf
I "book" (7 on-line)

Simple case:

$\Gamma=S L_{2}(\mathbb{Z})$, invariant Laplacian $\Delta=y^{2}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)$ on \mathfrak{H}, descending to $\Gamma \backslash \mathfrak{H}$.

Let θ be a compactly-supported distribution on $\Gamma \backslash \mathfrak{H}$. Abbreviate $\lambda_{s}=s(s-1)$. Let
$E_{s}(z)=\sum(\operatorname{Im} \gamma z)^{s}=\frac{1}{2} \sum$

$$
\operatorname{gcd}(c, d)=1
$$

$\gamma \in \Gamma_{\infty} \backslash \Gamma$

Theorem 1: For $\operatorname{Re}(s)=\frac{1}{2},\left(\Delta-\lambda_{s}\right) u=\theta$ has an L^{2} solution $\Longrightarrow\left(\theta\left(E_{s}\right)=0\right.$. This is interesting because periods of Eisenstein series are sometimes zeta-functions \&f or L-functions: (Hecke-Maaß, et $\overrightarrow{a l) \text { : for } \theta \text { the }}$ automorphic Dirac $\underset{\underset{z}{*}}{\delta}$ at $i \in \Gamma \backslash \mathfrak{H}$,

$$
\text { Logic } \ldots \because \because
$$

More generally, for fundamental discriminant $d<0$ with associated Heegner points z_{j},

$$
\sum_{j} E_{s}\left(z_{j}\right)=\frac{\text { (completed }}{\xi_{\mathbb{Q}(\sqrt{d})}(s)-}
$$

For fundamental discriminant $d>0$ with associated geodesic cycles C_{j},

$$
\sum_{j} \int_{C_{j}} E_{s}(h) d h=\frac{\xi_{\mathbb{Q}(\sqrt{d})}(s)}{\xi_{\mathbb{Q}}(2 s)}
$$

Caution: Many periods $\theta\left(E_{s}\right)$ have off-line zeros.

For example, Epstein zetas $\delta_{z_{o}}\left(E_{s}\right)=E_{s}\left(z_{o}\right)$ have off-the-line zeros (Potter-Titchmarsh, Stark, et al).

$$
\begin{aligned}
& 1930^{\circ} \text { s } \\
& 1970^{\circ} \mathrm{S} \quad \mathrm{SL}_{2}(\mathbb{C}), \mathrm{SU}(2) \text {-periods } \\
& \frac{\zeta_{B}(s)}{3} \underbrace{\zeta(2 s) \zeta(2 s-1)}_{\text {Laudian }}
\end{aligned}
$$

granting spectral decoupin of? - firs

 Trivial analogue: For perspective, consider $\begin{gathered}\text { dint? }\end{gathered}$ $u^{\prime \prime}-s^{2} u=\delta$ on \mathbb{R}. By Fourier transform, for ${ }^{\text {a }}$, every $\operatorname{Re}(s)^{2}>0$, there is an L^{2} solution

$$
u(x)=\frac{e^{s|x|}}{-2 \beta}
$$

But at $\operatorname{Re}(s)=0$ the meromorphic continuaction gives functions not in \underline{V}^{2}.
∇

In fact, by the theorem, via Fourier Inversion in place of spectral synthesis of automorphic forms, if there were an L^{2} solution for some

Anyway, we did not expect to prove that $x \rightarrow e^{s x}$ had zeros.
hah

Continuing in the trivial context...

The $\underbrace{\text { problem }}_{\text {Sturm-Liouville }}$ (reformulated)

$$
u^{\prime \prime}-s^{2} u=\underbrace{\underbrace{\prime}_{0} \delta_{1}+\delta_{0}} \text { non-clussical D. }
$$

has an L^{2} solution for infinitely-many eigenvalues $s^{2} \leq 0$. The inhomogeneity supported at $\{0,1\}$ reflects non-smoothness at the boundary of $[0,1]$, described otherwise in classical discussions.

Z

For $s \in i \mathbb{R}$ and a solution $u \in L^{2}(\mathbb{R})$, the theorem gives

$$
\underbrace{\left(\delta_{1}-\delta_{0}\right)}(\underbrace{x \rightarrow e^{s x}})=0
$$

Thus,

$$
e^{s}-e^{0}=0
$$

which constrains s.

Dinble-checki
Remark: Of course, explicit solutions

$$
u(x)=\left\{\begin{array}{cl}
\sin (2 \pi i n x) & (\text { for } 0 \leq x \leq 1) \\
0 & \text { (otherwise) }
\end{array}\right.
$$

corroborate the conclusion. The auto -duality of \mathbb{R} makes this example nearly tautological. Sample
Technicalities?) This trivial example (does illustrate certain technicalities:

A compactly supported distribution θ is tempered, so has a Fourier transform $\widehat{\theta}$. How to compute it? $\widehat{\theta}(\xi)=\theta\left(x \rightarrow e^{-i} \xi x\right)$ is natural, but $x \rightarrow e^{i \xi x}$ is not Schwartz. It is smooth. Compactly supported distributions are (demonstrably) the dual \mathcal{E}^{*} of $\mathcal{E}=C^{\infty}(\mathbb{R})$, so $\theta\left(x \rightarrow e^{-i \xi x}\right)$ makes sense,\cdots but why) does it correctly compute the Fourier transform?

Fourier inversion and $\theta \in \mathcal{E}^{*}$

For $u \in \mathscr{S}(\mathbb{R})$, by Fourier inversion wheat
sender $u(x) \Theta \int_{\mathbb{R}} e^{2 \pi i \xi x} \widehat{u}(\xi) d \xi$ 上
In fact, with $\psi_{\xi}(x)=e^{2 \pi i \xi x}$,
 ε-valued
The integrand is not \mathscr{S}-valued. For $\theta \in \mathcal{E}^{*}$, by properties of $\underbrace{\text { Gelfand-Pettis integrals, }}_{\text {E-valfed }}$

$$
\begin{aligned}
& \theta(u)=\theta\left(\int_{\mathbb{R}} \psi_{\xi} \widehat{u}(\xi) d \xi\right) \\
& \pi=\left(\mathbb{R}_{\varepsilon} \varepsilon-\operatorname{vand} d\right) \\
& =\int_{\mathbb{R}} \frac{\partial}{\theta}(\psi_{\xi} \underbrace{\widehat{u}(\xi))}) d \xi \stackrel{\text { dm. }}{=} \int_{\mathbb{R}} \theta\left(\psi_{\xi}\right) \widehat{u}(\xi) d \xi
\end{aligned}
$$

By uniqueness $(\hat{\theta}$ is a pointwise-valued function and $\hat{\theta}(\xi)=\theta\left(x \rightarrow e^{-2 \pi \tau \zeta x}\right)$.

A little more generally:

k a number field

$G=G L_{2}$ over κ,
K_{v} standard local maximal compact in
$G_{v}=G L_{2}\left(k_{v}\right), K=\prod_{v \leq \infty} K_{v}$.
(Let Ω be among the G_{∞}-invariant elements $(U \mathfrak{g})^{G}$ of the universal enveloping algebra $U \mathfrak{g}$ of the Lie algebra of $G_{\infty} \quad-2$ not jut $\int_{N} \Delta$
Let $\lambda_{s, \omega}$ be the eigenvalue of Ω on the s, ω principal series of $G_{\infty}=\prod_{v \mid \infty} G_{v} \leadsto E_{s, \omega}^{S}$
For unramified Heck character Θ) of k, let $E_{s, \omega}$ be the (level-one) Eisenstein series. _

Let θ be a compactly supported distribution on $Z_{\mathbb{A}} \backslash G_{\mathbb{A}} / K$.

$$
\text { or } \frac{1 \sqrt{n}}{T} \text { @ } \infty \text { " }
$$

Global Sobolev spaces:

We need large spaces of (generalized) tunstons in which spectral expansions make sense and can be manipulated. Spectral expansion characterizations are convenient.

For example, $\underline{H}^{r}(\mathbb{R})$ is the Hilbert-space completion of $C_{c}^{\infty}(\mathbb{R})$ with respect to the norm Planhenal

$$
|f|_{\frac{L^{2}}{2}}^{2}=\int_{\mathbb{R}} \widehat{|\hat{f}(\xi)|^{2}}\left(\left(1+\xi^{2}\right)^{r}\right) d \xi
$$

$B_{i y}=\underset{\sim}{H-\infty}(\mathbb{R})=\bigcup_{r \in \mathbb{R}} H^{r}=\operatorname{colim}_{r} H^{r}$
Sobolev's imbedding/inequality is (global! "ear') $H_{\tilde{3}-\frac{1}{2}+g}^{-}(\mathbb{R}) \subset C_{z}^{k}(\mathbb{R}) \quad($ for every $\varepsilon>0)$
Thus, $H_{\square}^{\infty}=\bigcap_{r} H^{r}=\bigcap_{k} C^{k}=C_{i}^{\infty}=\mathcal{E}$
\int As a corollary, compactly supported distribueasy lions are in $H^{-\infty}$.

Global automorphic Sobolev spaces:

In the simplest case of waveforms on $\Gamma \backslash \mathfrak{H}$ with $\Gamma=S L_{2}(\mathbb{Z})$, the spectral decomposition/synthesis assertion for $f \in L^{2}(\Gamma \backslash \mathfrak{H})$ is

where F runs over an orthonormal basis of cuspforms. The pairings are suggested by the L^{2} pairing, but since $E_{s} \notin L^{2}(\Gamma \backslash \mathfrak{H})$, as $e^{i \xi x} \notin L^{2}(\mathbb{R})$, there are subtleties.

Sobolev norms are

$$
\begin{aligned}
\overline{|f|_{H^{r}}^{2}=} & \left.\frac{\sum_{\operatorname{cfm} F}|\langle f, F\rangle|^{2} \cdot\left(1+\left|\lambda_{F}\right|\right)^{\prime}}{}\right)+\frac{\langle f, 1\rangle \cdot 1}{\langle 1,1\rangle^{\gamma}} \sim \\
& +\frac{1}{4 \pi i} \int_{\left(\frac{1}{2}\right)}\left|\left\langle f, E_{s}\right\rangle\right| \cdot \underbrace{\left(1+\left|\lambda_{s}\right|\right)^{r}} d s \\
& \exists \text { planchet }\langle\text { fur } r=0
\end{aligned}
$$

... and $H^{r}=H^{r}(\Gamma \backslash \mathfrak{H})$ is the H^{r}-norm
Hilbert space completion of $C_{c}^{\infty}(\Gamma \backslash \mathfrak{H})$.
$H^{-\infty}=\bigcup H^{r}=\operatorname{colim} H^{r}$
$\widehat{\text { By design, every generalized function in } H^{-\infty}}$ admits a spectral expansion of the same shape as for L^{2}. Luckily, $\overline{\mathcal{E}}^{*} \subset H^{-\infty}$: by an automorphic version of Sobolev's lemma, $\begin{aligned} & H^{\infty} \subset C^{\infty}(\Gamma \backslash \mathfrak{H}) \\ & \mathcal{E}^{*} \subset H^{-\infty} .\end{aligned}=\begin{gathered}\mathcal{E}(\Gamma \backslash \mathfrak{H}) . \\ \stackrel{\prime}{\circ}\end{gathered}$
Theorem 2: For $\underbrace{\operatorname{Re}(s)}=\frac{1}{2}$ and θ compactly supported, if $\left(\Omega-\lambda_{s, \omega}\right) d=\theta$ has an $H t^{-\infty}$ solution, then $\theta\left(E_{s, \omega}\right)=0$.

Not eco st phase!!

Recall: for quadratic ℓ / k, the $\psi L_{1}(\ell)$ periods of $G L_{2}(k)$ Eisenstein series are

$$
\int_{\mathbb{J}_{k} \ell \times \backslash \mathbb{J}_{\ell}} E_{s, \omega}(h) d h \approx \frac{\Lambda_{\ell}\left(s, \omega \circ N_{k}^{\ell}\right)}{\Lambda_{k}(2 s, \omega)}
$$

$$
\left.\int_{\ell \times \backslash \mathbb{J}_{\ell}} \chi(h) \cdot E_{s, \omega}(h) d h \approx \frac{\Lambda_{\ell}\left(s, \chi \cdot\left(\omega \circ N_{k}^{\ell}\right)\right)}{\Lambda_{k}(2 s, \omega)}\right)
$$

$$
\mathbb{J}_{k} e^{x} \times \mathbb{J}_{\ell}
$$

for Hecke character χ on \mathbb{J}_{ℓ} trivial on \mathbb{J}_{k}.

But not every period is a genuinely arithmetic object: generic Epstein zetas,

$$
\left(e g, s e e ~ " b o h^{\prime} "-\right)
$$

do not
sat.
RH

$$
(\text { stat .3!- })
$$

12
"Proof of theorem 1: Write a spectral expansion of θ, but only pay attention to the continuous-spectrum part:
prong

Since θ is compactly supported and E_{w} is smooth, one can show that $\widehat{\theta}(w)=\theta\left(E_{1-w}\right)$. Also,

$$
\stackrel{\breve{u}}{ }=\ldots+\frac{1}{4 \pi i} \int_{\left(\frac{1}{2}\right)} \widehat{u}(w) \cdot E_{w} d w
$$

and by properties of vector-valued integrals, the differentiation passes inside the integral:

$$
\begin{aligned}
& =\ldots+\frac{1}{4 \pi i} \int_{\left(\frac{1}{2}\right)} \widehat{u}(w) \cdot\left(\Delta-\lambda_{s}\right) E_{w} d w \\
& =\ldots+\frac{1}{4 \pi i} \int_{\left(\frac{1}{2}\right)} \widehat{u}(w) \cdot\left(\lambda_{w}-\lambda_{s}\right) E_{\pi y} d w
\end{aligned}
$$

From $\left(\Delta-\lambda_{s}\right) u=\theta$, equating spectral coefficients,

$$
\left(\lambda_{w}-\lambda_{s}\right) \cdot \widehat{u}(w)=\widehat{\theta}(w)=\theta\left(E_{w}\right) \text { Capful }
$$

Since \widehat{u} is locally $L^{2}, \theta\left(E_{w}\right)$ vanishes in a strong sense at $w=s$, as claimed.

$$
\begin{gathered}
\pm \sqrt{ } \text { solis of DE'S } \\
\Rightarrow \text { on-the-line } \\
\mathcal{O}^{\prime} \leq!
\end{gathered}
$$

Faddeev-Pavlov/Lax-Phillips example:
FP (1967) and LP (1976) showed that (the Friedrich extension of) Δ restricted to waveforms with constant term vanishing above height $a \geq 1$ has purely discrete spectrum.

In particular, a significant part of the orthogonal complement to cuspforms now decomposes discretely, in addition to being integrals of Eisenstein series!

Let θ be constant-term-evaluated-at-height$a \gg 1$. By the theorem, for $\lambda_{s}<-\frac{1}{4}$, new λ_{s}-eigenfunction u can occur only when

$$
0=\theta E_{s}=\underbrace{a^{s}+\frac{\xi(2 s-1)}{\xi(2 s)} a^{1-s}}_{\text {cont . Lem } \text {. }}
$$

Unfortunately, the on-the-line zeros of θE_{s} refer to $\zeta(s)$ at the edges of the critical strip.
) Join
This does show that for $\lambda_{6}<-\frac{1}{4}$ the new/exotic eigenfunction are/truncated Eisenstein series $\wedge^{a} E_{s}$ with $\theta E_{s}=0$ and $\operatorname{Re}(s)=\frac{1}{2}$.

Not all truncated Eisenstein series...
The fact this incarnation of Δ has nonsmooth eigenfunction seems to contradict elliptic regularity. In fact, this extension-of-a-restriction of Δ is not an elliptic differential operator.

This is abstractly similar to Sturm-Liouville problems...

Hejhal (1981) and CdV (1981,82,83)

 considered $\left(\Delta-\lambda_{s}\right) u=\delta_{\omega}^{\text {atc }}$ and similar, with $\omega=e^{2 \pi i / 3}$. From earlier computations (Fay 1978, et al), Hejhal observed that there is a pseudo-cuspform solution for $\operatorname{Re}(s)=\frac{1}{2}$ if and only if $E_{s}(\omega)=0$.(A pseudo-cuspform has eventually vanishing constant term, and eventually is an eigenfunctimon of Δ.)

CdV looked at Sobolev space aspects of this, to try to legitimately use Friedrich extensions to convert $\left.\left(\Delta-\lambda_{s}\right) u=(9)\right]$ to a homogeneous equation. This resembles P. Dirac's and H. Bethe's work c. 1930, on (/singular potentials:

$$
\left((\Delta-\delta \otimes \delta)-\lambda_{s}\right) u=0
$$

Attempting to construct solutions: O's a
The FP/LP and Hejhal/CdV examples are inspirational, and/but we hope for more. Our project has clarified CdV's 1982-3 further speculations a bit...

For negative fundamental discriminants (we proved) at most 94% of the on-line zeros of $\zeta(s)$ enter as discrete spectrum $s(s-$ 1). Without assuming things in violent contrast to current belief systems, probably 0% none. Also, construction of PDE solutions by physical meAns is unclear. phyinal
For positive discriminants, there is more hope to construct PDE solutions physically, since the Hecke-Maaß functional involve integration over codimension-one cycles...

A too-simple attempt. Take $k=\mathbb{Q}(\sqrt{d})$ with $d>0$ and narrow class number one. Imbed $\mathbb{Q}(\sqrt{d}) \rightarrow \widetilde{M_{2}(\mathbb{Q}) \text { by a nice rational }}$ representation. Let $\mathrm{T}=S L_{2}(\mathbb{Z})$, and let $U \subset S L_{2}(\mathbb{Z})$ be the image of units in \mathfrak{o}. Let \underline{H} $\overrightarrow{\text { be the real Lie group (act circle) whose rational }}$ points are the image of norm-one elements of $\mathbb{Q}(\sqrt{d})$.
$H / u \approx$ ©
The quotient $U \backslash \mathfrak{H}$, a cylinder, naturally maps to the modular curve $\overline{\mathrm{V}}$. The subgroup \underline{U} is conjugate in $S L_{2}(\mathbb{R})$ to the subgroup

$$
\mathscr{U}^{\prime} \neq\left\{\left(\begin{array}{cc}
\eta^{n} & 0 \\
0 & \eta^{-n}
\end{array}\right): n \in \mathbb{Z}\right\}
$$

for suitable $\eta \in \mathfrak{o}^{\times} \dot{\boldsymbol{r}}$ (U^{T} has a convenient fundamental domain

$$
F=\{z \in \mathfrak{H}: 1 \leq|z|<2|\log \eta|\}
$$

Pictures:

check for

lon hanging frit
Compatibly with the choice of fundamental domain F for U^{\prime}, in polar coordinates on \mathfrak{H}

$$
\Delta^{\boxed{\mathbb{R}^{2}}}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial}{\partial r}+\frac{1}{r^{2}} \cdot \frac{\partial^{2}}{\partial \theta^{2}}
$$

$\Delta=\widehat{\Delta^{\mathfrak{H}}}=\sin ^{2} \theta \cdot\left(r^{2} \frac{\partial^{2}}{\partial r^{2}}+r \cdot \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial \theta^{2}}\right)$
Separate variables: take $u(r, \theta)=A(r) \cdot B(\theta)$, and require $\sin ^{2} \theta \cdot B^{\prime \prime}=\mu \cdot B$ for $\mu<0$. The eigenvalue equation $\Delta u=\lambda \cdot u$ becomes

$$
r^{2} \cdot A^{\prime \prime}+r \cdot A^{\prime}+(\mu-\lambda) \cdot A=0
$$

This Euler-type equation has solutions r^{α} for $\alpha(\alpha-1)+\alpha+(\mu-\lambda)=0$. The simplest sequel takes $\alpha=0$, so $\lambda=\mu$.
to mind
We want a compactly-supported function u on \bar{F} that is radially invariant and satisfies

$$
\sin ^{2} \theta \cdot u^{\prime \prime}(\theta)=\lambda \cdot u(\theta)+C^{+}+C
$$

... where, for fixed $0<a<\frac{2}{2}$ (continuum?.) $C^{ \pm}$are (integrals over)

$C^{ \pm}=\{z: \underbrace{\left.\arg z=\frac{\pi}{2} \pm a, 1 \leq|z| \leq 2| | \log \eta \mid\right\}}$
We want $B\left(\frac{\pi}{2} \pm a\right)=0$, and symmetry of u under $\theta \rightarrow \frac{\pi}{2}-\theta$.

That is, the values $\mu=\lambda<0$ are such that an evên solution $B=B_{\lambda}$ of $\sin ^{2} \theta \cdot B^{\prime \prime}=\lambda \cdot B$ has zeros at $\theta=\frac{\pi}{2} \pm a$.

Being a Sturm-Liouville problem, there are infinitely-many such λ (by alternation of roots), and an asymptotic (Weyl's Law).

For such λ,

$$
u(r, \theta)=\left\{\begin{array}{cl}
B_{\lambda}(\theta) & \left(\text { for } \frac{\pi}{2}-a \leq \theta \leq \frac{\pi}{2}+a\right) \\
0 & (\text { otherwise })
\end{array}\right.
$$

Winding-up/automorphizing this compactlysupported u, and changing coordinates, gives a function on $\Gamma \backslash \mathfrak{H}$ (still denoted u) such that (up to a multiplicative constant)

$$
(\Delta-\lambda) u=C^{+}+C^{-}
$$

By the theorem,

$$
\left(C^{+}+C^{-}\right)\left(E_{s}\right)=0
$$

$C^{ \pm} E_{s}$ are Euler products, and differ from $\xi_{k}(s) / \int(2 s)$ only at the archimedean factor.

Good so far.
ominous
(com complete compos)

However, the archimedean factors are perturbed enough so that their sym can account for the forced zeros of the altered version (s) of $\xi_{k}(s)$.

The $\underbrace{\text { continuum of choices of } a}_{\text {ominous, too. }}$ should have Also, inhages of geodesics are not relay the, same things as subgroup orbits...

