Plane models of modular curves

S. Anni, E. Assaf, E. Lorenzo García

Conférence de théorie des nombres Québec-Maine, Université Laval
Octobre 2022

Modular curves

- The upper half plane is $\mathfrak{H}=\{z \in \mathbb{C}: \Im(z)>0\}$.
- It admits an action of $\mathrm{GL}_{2}^{+}(\mathbb{R})$ by Möbius transformations

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \mathfrak{H} \rightarrow \mathfrak{H}, \quad z \mapsto \gamma z=\frac{a z+b}{c z+d}
$$

- For a discrete $\Gamma \leq \mathrm{GL}_{2}^{+}(\mathbb{R})$, can form $Y(\Gamma)=\Gamma \backslash \mathfrak{H}$.
- Specific groups 「 of interest

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \bmod N\right\}
$$

- Compactify using cusps

$$
X(\Gamma)=Y(\Gamma) \cup\left(\Gamma \backslash \mathbb{P}^{1}(\mathbb{Q})\right), \quad X_{0}(N)=X\left(\Gamma_{0}(N)\right)
$$

Models for modular curves

Theorem (Shimura (1994))

There exists a smooth projective curve X_{Γ} over $\mathbb{Q}\left(\zeta_{n}\right)$ such that $X_{\Gamma}(\mathbb{C})=X(\Gamma) . X_{\Gamma}$ is called a model for $X(\Gamma)$.

Theorem (Galbraith (1996))

There exists an algorithm to compute a model over \mathbb{Q} for $X_{0}(N)$.
Example (Freitas, Le Hung, and Siksek (2015))
Explicit models for $X_{0}(15), X_{0}(35), X_{0}(75), X_{0}(225)$ were used to complete the proof of modularity of elliptic curves over real quadratic fields.

Question

When does X_{Γ} admit a smooth plane model defined over \mathbb{Q} ?

Reducing to finite computation

Theorem (Anni, A. and García, (2022))

Finitely many modular curves admit a smooth plane model over \mathbb{Q}.

Proof.

X_{Γ} is an orientable compact Riemann surface of genus g. Denote by γ the gonality of X_{Γ}, i.e. the minimum degree of a non-constant map $X_{\Gamma} \rightarrow \mathbb{P}^{1}$.
Using the Yang-Yau inequality for the first eigenvalue of a compact Riemann surface (Li and Yau (1982)), one bounds the first eigenvalue of the Laplacian on X_{Γ} by $\lambda_{1}<\frac{24 \gamma}{\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]}$. On the other hand, Selberg's inequality, improved by Kim and Sarnak (2003), yields a lower bound $\lambda_{1} \geq \frac{975}{4096}$. For a smooth plane curve of degree d we have $\gamma=d-1$ and $g=\frac{1}{2}(d-1)(d-2)$. From Gauss-Bonnet we get $g \leq \frac{1}{12}\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]+1$ hence the inequality yields $d \leq 18$. Finally, the number of Γ of a given genus is finite, by Cox and Parry (1984).

Canonical models

Theorem (Noether-Enriques-Petri)

Let C be a smooth projective curve of genus $g \geq 2$, which is not hyperelliptic. Then the canonical divisor K induces an embedding $\phi_{K}: C \rightarrow \mathbb{P}^{g-1}$, and the ideal defining $\phi_{K}(C)$ is generated by elements of degree 2, except in the following cases where an element of degree 3 is also needed.

- $g=3$, so C is a smooth plane quartic.
- $g \geq 4$ and C is a trigonal curve.
- $g=6$ and C is a smooth plane quintic.

Theorem (Box (2021), Zywina (2020))

Let $G \subseteq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ be such that $\operatorname{det}(G)=(\mathbb{Z} / N \mathbb{Z})^{\times},-1 \in G$ and $\eta G \eta^{-1}=G$, where $\eta=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$. Then there exists an algorithm to compute a canonical model over \mathbb{Q} for X_{G}.

Groups of Shimura type

Problem

Long running time! Polynomial in N, but of high degree.

Solution

(1) Compute what we can.
(2) Restrict to a family which is easier to compute.

Definition (Group of Shimura type)

Let $H \subseteq(\mathbb{Z} / N \mathbb{Z})^{\times}$be a subgroup, $t \mid N$, and consider

$$
G(H, t)=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}): a \in H, t \mid b\right\}
$$

Its pullback to $\mathrm{SL}_{2}(\mathbb{Z})$ is a congruence subgroup of Shimura type.

Smooth plane models

(1) For $d \leq 3, g \in\{0,1\}$, there is always a smooth plane model.
(2) For $d=4, g=3$, so either hyperelliptic or a smooth plane quartic, which is the canonical model.
(3) For $d=5$, if C is a smooth plane quintic, the degree 2 elements of the canonical ideal I_{C} define a \mathbb{P}^{2}. Evaluating a parametrization at a degree 3 generator recovers the model.
(9) In general, we are looking for a g_{d}^{2}-linear series on C. Write $\phi_{K}(C)=\operatorname{Proj} S_{C}$, and consider the minimal free resolution

$$
0 \rightarrow F_{g-2} \rightarrow \ldots \rightarrow F_{1} \rightarrow S \rightarrow S_{C} \rightarrow 0
$$

Noether proved that F_{i} is generated in degrees $i+1$ and $i+2$. We write $\beta_{i, j}$ for the number of generators of degree j.

Theorem (Green (1984))

If C is a smooth curve that has a g_{d}^{2}-linear series, $\beta_{d-4, d-2} \neq 0$.

Results

Congruence subgroups

For $g \leq 24$ (hence $d \leq 8$) Cummins and Pauli (2003) classified all congruence subgroups Γ having such genera.

Theorem (Anni, A. and García, (2022))
There is no modular curve of Shimura type which admits a smooth plane model of degree $d \in\{5,6,7\}$. Moreover, a modular curve of Shimura type which admits a smooth plane model of degree 8 must be a twist of one of four curves.

Proof (cases $d=5,6$).

For $d=5$, all have a canonical model generated by quadrics. For $d=6$, all but one curve have $\beta_{2,4}=0$.

Atkin-Lehner involutions

Definition (Atkin-Lehner involution)

For $Q \mid N$ s.t. $(Q, N / Q)=1$, choose $x, y, z, w \in \mathbb{Z}$ with $y \equiv 1 \bmod Q, x \equiv 1 \bmod N / Q$ and $Q x w-(N / Q) y z=1$. Then $W_{Q}=\left(\begin{array}{cc}Q x & y \\ N z & Q w\end{array}\right)$ normalizes $\Gamma_{0}(N)$, hence induces an Atkin-Lehner involution on $X_{0}(N)$. If W_{Q} normalizes $\Gamma \subseteq \Gamma_{0}(N)$, it also induces an involution on X_{Γ}.

Theorem (Harui, Kato, Komeda, and Ohbuchi (2010))
An involution on a smooth plane curve of degree d has $d+\frac{1-(-1)^{d}}{2}$ fixed points, and the quotient has gonality [d/2].

Finishing the proof

Proof (cont.)

For $d \in\{7,8\}$ computing $\beta_{d-4, d-2}$ is beyond us.
But we can look at Atkin-Lehner quotients.
For $d=7$ all but 6 curves are a degree 4 cover of a hyperelliptic Atkin-Lehner quotient, giving a degree 8 map to \mathbb{P}^{1}, which is impossible by (Greco and Raciti, 1991). For the rest, we use Riemann-Hurwitz to get

$$
2 g_{x}-2=2\left(2 g_{X /\langle w\rangle}-2\right)+\# X^{w}
$$

for any involution w. Since $g_{X}=15$, and for smooth plane curves $\# X^{w}=8$, we get $g_{X /\langle w\rangle}=6$. We find for each curve an AL involution such that the quotient has $g \neq 6$.
This method also works for $d=8$ for all but 5 curves. One can use the Betti numbers of the quotient to rule out $X_{0}(256)$ as well.

A trigonal superelliptic modular curve

- We also computed models for groups not of Shimura type.
- Among the curves of genus 6 we have found one (18A6) canonical model which is not generated by quadrics.
- This yields a trigonal superelliptic modular curve, with the equation

$$
y^{3}=(x-3)(x+1)\left(x^{2}+3\right)(x+3)^{2}\left(x^{2}+6 x+21\right)^{2}
$$

Anni, Samuele, Eran Assaf, and Elisa Lorenzo García. 2022. On smooth plane models for modular curves of Shimura type, arXiv preprint arXiv:2203.06370.
Assaf, Eran. 2021. Computing classical modular forms for arbitrary congruence subgroups, Arithmetic Geometry, Number Theory, and Computation, pp. 43-104.
Badr, Eslam, Francesc Bars, and Elisa Lorenzo García. 2019. On twists of smooth plane curves, Math. Comp. 88, no. 315, 421-438, DOI
10.1090/mcom/3317.

Box, Josha. 2021. Computing models for quotients of modular curves, Res.
Number Theory 7, no. 3, Paper No. 51, 34, DOI 10.1007/s40993-021-00276-8.

Cox, David A. and Walter R. Parry. 1984. Genera of congruence subgroups in Q-quaternion algebras, J. Reine Angew. Math. 351, 66-112.

Cummins, C. J. and S. Pauli. 2003. Congruence subgroups of PSL(2, $\mathbb{Z})$ of genus less than or equal to 24, Experiment. Math. 12, no. 2, 243-255.

Freitas, Nuno, Bao V. Le Hung, and Samir Siksek. 2015. Elliptic curves over real quadratic fields are modular, Invent. Math. 201, no. 1, 159-206, DOI 10.1007/s00222-014-0550-z.

Galbraith, Steven D. 1996. Equations for modular curves. 1996, Ph.D. Thesis, University of Oxford.
Greco, S. and G. Raciti. 1991. The Lüroth semigroup of plane algebraic curves, Pacific J. Math. 151, no. 1, 43-56.

Green, Mark L. 1984. Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19, no. 1, 125-171. MR739785

Harui, Takeshi, Takao Kato, Jiryo Komeda, and Akira Ohbuchi. 2010.
Quotient curves of smooth plane curves with automorphisms, Kodai Math. J. 33, no. 1, 164-172, DOI 10.2996/kmj/1270559164.
Kim, Henry H. and Peter Sarnak. 2003. Functoriality for the exterior square of GL_{4} and the symmetric fourth of GL_{2}, Appendix 2, J. Amer. Math. Soc. 16, no. 1, 139-183, DOI 10.1090/S0894-0347-02-00410-1.
Li, Peter and Shing Tung Yau. 1982. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69, no. 2, 269-291, DOI 10.1007/BF01399507.

Shimura, Goro. 1994. Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ. Reprint of the 1971 original; Kanô Memorial Lectures, 1.

Zywina, David. 2020. Computing actions on cusp forms, arXiv preprint arXiv:2001.07270.

