Exceptional Howe correspondences and Arthur packets for G_2

Petar Bakić, University of Utah

joint w/ G. Savin

Québec, 16 October 2022

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contents

What is theta correspondence

Exceptional theta

Howe duality

Applications: constructing Arthur packets

$\mathbb{F}=$ non-Archimedean local field, char 0

$\mathbb{F}=$ non-Archimedean local field, char 0

Groups: $G(\mathbb{F})$, where G is an algebraic group

$\mathbb{F}=$ non-Archimedean local field, char 0

Groups: $G(\mathbb{F})$, where G is an algebraic group

Representations: complex, smooth

W = symplectic space (over \mathbb{F})

Sp(W) = group of isometries of the symplectic form on W.

Mp(W) = metaplectic group

W = symplectic space (over \mathbb{F})

Sp(W) = group of isometries of the symplectic form on W.

Mp(W) = metaplectic group

Key ingredients for theta correspondence:

W = symplectic space (over \mathbb{F})

Sp(W) = group of isometries of the symplectic form on W.

Mp(W) = metaplectic group

Key ingredients for theta correspondence:

• Weil representation ω of Mp(W)

W =symplectic space (over \mathbb{F})

Sp(W) = group of isometries of the symplectic form on W.

Mp(W) = metaplectic group

Key ingredients for theta correspondence:

- Weil representation ω of Mp(W)
- Dual pair $G \times G' \hookrightarrow Mp(W)$

 $G \xleftarrow{\text{centralizer}} G'$

 $W = \mathsf{symplectic space} \ (\mathsf{over} \ \mathbb{F})$

Sp(W) = group of isometries of the symplectic form on W.

Mp(W) = metaplectic group

Key ingredients for theta correspondence:

- Weil representation ω of Mp(W)
- Dual pair $G \times G' \hookrightarrow \mathsf{Mp}(W)$

 $G \xleftarrow{\text{centralizer}} G'$

Problem: Describe the restriction of ω to $G \times G'$.

Fix $\pi \in Irr(G)$. The maximal π -isotypic quotient of ω is of the form $\pi \otimes \Theta(\pi)$,

where $\Theta(\pi)$ is a smooth representation of G'.

Fix $\pi \in Irr(G)$. The maximal π -isotypic quotient of ω is of the form $\pi \otimes \Theta(\pi)$,

where $\Theta(\pi)$ is a smooth representation of G'.

Theorem (Howe duality)

- $\Theta(\pi)$ is either 0 or an admissible representation of finite length.
- If non-zero, $\Theta(\pi)$ has a unique irreducible quotient, $\theta(\pi)$.
- Injectivity:

$$\theta(\pi) \cong \theta(\pi') \neq \mathbf{0} \Rightarrow \pi \cong \pi'.$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Fix $\pi \in Irr(G)$. The maximal π -isotypic quotient of ω is of the form $\pi \otimes \Theta(\pi)$,

where $\Theta(\pi)$ is a smooth representation of G'.

Theorem (Howe duality)

- $\Theta(\pi)$ is either 0 or an admissible representation of finite length.
- If non-zero, $\Theta(\pi)$ has a unique irreducible quotient, $\theta(\pi)$.
- Injectivity:

$$\theta(\pi) \cong \theta(\pi') \neq \mathbf{0} \Rightarrow \pi \cong \pi'.$$

Correspondence: $\pi \leftrightarrow \theta(\pi)$.

Exceptional theta

We'd like to look at similar constructions in other groups. We need:

Exceptional theta

We'd like to look at similar constructions in other groups. We need:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

• dual pairs

We'd like to look at similar constructions in other groups. We need:

- dual pairs
- a suitable replacement for the Weil representation

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

 \mathbb{O} = algebra of octonions over *F* $J = 3 \times 3$ hermitian matrices with octonion entries *J* comes equipped with det.

 \mathbb{O} = algebra of octonions over *F* $J = 3 \times 3$ hermitian matrices with octonion entries *J* comes equipped with det.

The isogenies of det form a (split) reductive group of type E_6 . Inside E_6 , we have

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 \mathbb{O} = algebra of octonions over *F* $J = 3 \times 3$ hermitian matrices with octonion entries *J* comes equipped with det.

The isogenies of det form a (split) reductive group of type E_6 . Inside E_6 , we have

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 G_2 , the automorphism group of $\mathbb O$

 \mathbb{O} = algebra of octonions over *F* $J = 3 \times 3$ hermitian matrices with octonion entries *J* comes equipped with det.

The isogenies of det form a (split) reductive group of type E_6 . Inside E_6 , we have

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 G_2 , the automorphism group of \mathbb{O} PGL₃, acting on *J* by conjugation

 \mathbb{O} = algebra of octonions over *F* $J = 3 \times 3$ hermitian matrices with octonion entries *J* comes equipped with det.

The isogenies of det form a (split) reductive group of type E_6 . Inside E_6 , we have

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 G_2 , the automorphism group of \mathbb{O} PGL₃, acting on J by conjugation

We get a dual pair $G_2 \times PGL_3 \subset E_6$

 \mathbb{O} = algebra of octonions over *F* $J = 3 \times 3$ hermitian matrices with octonion entries *J* comes equipped with det.

The isogenies of det form a (split) reductive group of type E_6 . Inside E_6 , we have

 G_2 , the automorphism group of \mathbb{O} PGL₃, acting on J by conjugation

We get a dual pair $G_2 \times PGL_3 \subset E_6$

We consider the quasi split version: dual pair $G_2 \times PU_3 \subset E_{6,4}$.

A replacement for Weil?

A replacement for Weil?

The minimal representation.

Theta lifts

Let Π be the minimal representation of H. Restrict Π to the dual pair $G \times G' \subset H$. Given $\pi \in Irr(G)$, the maximum π -isotypic quotient of Π is of the form

$$\pi \otimes \Theta(\pi).$$

We would like to prove Howe duality:

Theta lifts

Let Π be the minimal representation of H. Restrict Π to the dual pair $G \times G' \subset H$. Given $\pi \in Irr(G)$, the maximum π -isotypic quotient of Π is of the form

$$\pi \otimes \Theta(\pi).$$

We would like to prove Howe duality:

- $\Theta(\pi)$ is either 0 or a representation of finite length
- If non-zero, $\Theta(\pi)$ has a unique irreducible quotient, $\theta(\pi)$.
- Injectivity: for $\pi,\pi'\in {\rm Irr}({\it G})$ we have

$$\theta(\pi) \cong \theta(\pi') \neq \mathbf{0} \Rightarrow \pi \cong \pi'.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Howe duality — proof strategy

Main ideas:

(1) describe Jacquet modules of minimal rep

(2) play period ping-pong

Periods

Consider the theta correspondence for the dual pair $G \times G'$. Let π = a representation of GH = a subgroup of G χ = a character of H

We refer to

 $\operatorname{Hom}_{H}(\pi,\chi)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

as a χ -period of π .

Periods

Consider the theta correspondence for the dual pair $G \times G'$. Let π = a representation of GH = a subgroup of G χ = a character of H

We refer to

 $\operatorname{Hom}_{H}(\pi,\chi)$

as a χ -period of π .

General principle: theta correspondence transfers a period on G to a period on G' (and vice versa).

Coinvariants

B = TU = Borel in G_2 .

Consider ψ_U -coinvariants of minimal rep:

$$\exists_{U,\psi_U} \cong \operatorname{c-ind}_{\mathcal{S}}^{\mathcal{G}'}\psi_{\mathcal{S}}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

S = Shalika subgroup of $G' = PU_3(K)$

Coinvariants

B = TU = Borel in G_2 .

Consider ψ_U -coinvariants of minimal rep:

$$\Pi_{U,\psi_U} \cong \operatorname{c-ind}_{\mathcal{S}}^{\mathcal{G}'}\psi_{\mathcal{S}}.$$

$$S =$$
 Shalika subgroup of $G' = PU_3(K)$

We also look at Π_{S,ψ_S} . Crucial:

Coinvariants

 $B = TU = Borel in G_2.$

Consider ψ_U -coinvariants of minimal rep:

$$\Pi_{U,\psi_U} \cong \operatorname{c-ind}_{\mathcal{S}}^{\mathcal{G}'}\psi_{\mathcal{S}}.$$

$$S =$$
Shalika subgroup of $G' = PU_3(K)$

We also look at Π_{S,ψ_S} . Crucial:

For $\pi \in Irr(G)$ we have

dim Hom_G(Π_{S,ψ_S},π) ≤ 1 .

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Ping-pong

Let $\pi \in Irr(G)$, $\tau \in Irr(G')$ be tempered such that

$$\operatorname{Hom}_{G\times G'}(\Pi,\pi\boxtimes \tau)\neq 0.$$

Then

$$\begin{split} \operatorname{Hom}_{U}(\pi,\psi_{U}) &\stackrel{(1)}{\subseteq} \operatorname{Hom}_{U}(\Theta(\tau),\psi_{U}) \stackrel{(2)}{\cong} \operatorname{Hom}_{S}(\tau^{\vee},\overline{\psi}_{S}) \\ &\stackrel{(3)}{\subseteq} \operatorname{Hom}_{S}(\Theta(\pi^{\vee}),\overline{\psi}_{S}) \stackrel{(4)}{\cong} \operatorname{Hom}_{G}(\Pi_{S,\overline{\psi}_{S}},\pi^{\vee}). \end{split}$$

If π is generic, then all of the above spaces are one-dimensional.

Proposition

Let $\pi \in Irr(G)$ be tempered and generic. Then $\Theta(\pi)$ cannot have two irreducible tempered quotients. In particular, the cuspidal part of $\Theta(\pi)$ is either 0, or irreducible.

Proposition

Let $\pi \in Irr(G)$ be tempered and generic. Then $\Theta(\pi)$ cannot have two irreducible tempered quotients. In particular, the cuspidal part of $\Theta(\pi)$ is either 0, or irreducible.

Proof.

Let τ_1, τ_2 be irreducible and tempered, such that $\Theta(\pi) \twoheadrightarrow \tau_1 \oplus \tau_2$. Then

 $1 = \dim \operatorname{Hom}_{\mathcal{S}}(\tau_1, \psi_{\mathcal{S}}) = \dim \operatorname{Hom}_{\mathcal{S}}(\Theta(\pi), \psi_{\mathcal{S}}) = \dim \operatorname{Hom}_{\mathcal{S}}(\tau_2, \psi_{\mathcal{S}}).$

・ロト ・ 戸 ・ ・ 三 ・ ・ 三 ・ うへつ

$$\begin{split} \operatorname{Hom}_{U}(\pi,\psi_{U}) &\stackrel{(1)}{\subseteq} \operatorname{Hom}_{U}(\Theta(\tau),\psi_{U}) \stackrel{(2)}{\cong} \operatorname{Hom}_{S}(\tau^{\vee},\overline{\psi}_{S}) \\ &\stackrel{(3)}{\subseteq} \operatorname{Hom}_{S}(\Theta(\pi^{\vee}),\overline{\psi}_{S}) \stackrel{(4)}{\cong} \operatorname{Hom}_{G}(\Pi_{S,\overline{\psi}_{S}},\pi^{\vee}). \end{split}$$

・ロト ・ 西 ・ ・ ヨ ・ ・ 日 ・ う へ ()・

Proposition

Let $\pi \in Irr(G)$ be tempered and generic. Then $\Theta(\pi)$ cannot have two irreducible tempered quotients. In particular, the cuspidal part of $\Theta(\pi)$ is either 0, or irreducible.

Proof.

Let τ_1, τ_2 be irreducible and tempered, such that $\Theta(\pi) \twoheadrightarrow \tau_1 \oplus \tau_2$. Then

 $1 = \dim \operatorname{Hom}_{\mathcal{S}}(\tau_1, \psi_{\mathcal{S}}) = \dim \operatorname{Hom}_{\mathcal{S}}(\Theta(\pi), \psi_{\mathcal{S}}) = \dim \operatorname{Hom}_{\mathcal{S}}(\tau_2, \psi_{\mathcal{S}}).$

But $\tau_1 \oplus \tau_2$ is a quotient of $\Theta(\pi)$, so

 $1 = \dim \operatorname{Hom}_{\mathcal{S}}(\Theta(\pi), \psi_{\mathcal{S}}) \geqslant \dim \operatorname{Hom}_{\mathcal{S}}(\tau_1, \psi_{\mathcal{S}}) + \dim \operatorname{Hom}_{\mathcal{S}}(\tau_2, \psi_{\mathcal{S}}) = 2.$

Contradiction!

Idea (proposed by Wee Teck Gan at the 2022 AWS): Use this correspondence to construct Arthur packets on G_2 .

Idea (proposed by Wee Teck Gan at the 2022 AWS): Use this correspondence to construct Arthur packets on G_2 .

Arthur parameters for G_2

 $\psi: WD_F \times SL_2 \rightarrow G_2$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

How does the Arthur SL_2 map into G_2 ?

Idea (proposed by Wee Teck Gan at the 2022 AWS): Use this correspondence to construct Arthur packets on G_2 .

Arthur parameters for G_2

 $\psi: WD_F \times SL_2 \rightarrow G_2$

How does the Arthur SL_2 map into G_2 ?

For "long root" Arthur packets, ψ factors through

 $SL_3 \rtimes \mathbb{Z}/2\mathbb{Z} \subset G_2$,

which is the dual group for PU_3 .

Idea (proposed by Wee Teck Gan at the 2022 AWS): Use this correspondence to construct Arthur packets on G_2 .

Arthur parameters for G_2

 $\psi: WD_F \times SL_2 \rightarrow G_2$

How does the Arthur SL_2 map into G_2 ?

For "long root" Arthur packets, ψ factors through

$$SL_3 \rtimes \mathbb{Z}/2\mathbb{Z} \subset G_2$$
,

which is the dual group for PU_3 .

 \Rightarrow we can use the $G_2 \times PU_3$ correspondence to construct these G_2 packets by lifting from PU₃!

Thanks!