Vanishing of twisted L-functions of elliptic curves over function fields

Joint work with
A. Comeau-Lapointe (Concordia University),
M. Lalin (Université de Montréal) and W. Li
(Washington University)

Chantal David, Concordia University, Montreal
Québec-Maine Number Theory Conference in honor of Andrew Granville October 2022

Elliptic curves over \mathbb{Q}

Let E be an elliptic curve over \mathbb{Q} with conductor N_{E} and L-function

$$
L(E, s)=\prod_{p \nmid N_{E}}\left(1-\alpha_{p} p^{-s}\right)^{-1}\left(1-\bar{\alpha}_{p} p^{-s}\right)^{-1} \prod_{p \mid N_{E}}\left(1-a_{p} p^{-s}\right)^{-1},
$$

where for each $p \nmid N_{E}, E / \mathbb{F}_{p}$ is an elliptic curve with $p+1-\left(\alpha_{p}+\bar{\alpha}_{p}\right)$ points, with $\left|\alpha_{p}\right|=\sqrt{p}$, and $\left|a_{p}\right|=\left|\alpha_{p}+\bar{\alpha}_{p}\right| \leq 2 \sqrt{p}$ (Hasse bound).
$L(E, s)$ satisfies the functional equation (Wiles, 1995)

$$
\Lambda(E, s)=\left(\frac{\sqrt{N_{E}}}{2 \pi}\right)^{s} \Gamma(s) L(E, s)=\omega_{E} \Lambda(E, 2-s), \omega_{E}= \pm 1 .
$$

Vanishing at $s=1$ is related to the rational solutions of E / \mathbb{Q} via the Birch and Swinnerton-Dyer conjecture:

$$
\operatorname{ord}_{s=1} L(E, s)=\operatorname{rank}(E(\mathbb{Q})) .
$$

The order of vanishing of $L(E, s)$ at $s=1$ is the analytic rank of E.

Twisted L-functions of elliptic curves

Let χ be a Dirichlet character over \mathbb{Q}, and consider the twisted L-function

$$
\begin{aligned}
L(E, \chi, s)= & \prod_{p \nmid N_{E}}\left(1-\chi(p) \alpha_{p} p^{-s}\right)^{-1}\left(1-\chi(p) \bar{\alpha}_{p} p^{-s}\right)^{-1} \\
& \times \prod_{p \mid N_{E}} \times\left(1-\chi(p) a_{p} p^{-s}\right)^{-1}=\sum_{n} a_{n} \chi(n) n^{-s} .
\end{aligned}
$$

Suppose that χ has prime order ℓ, and K / \mathbb{Q} is the cyclic extension of order ℓ associated with χ. Then,

$$
\zeta_{K}(s)=\zeta(s) \prod_{\substack{\psi \in G \operatorname{GII}(K / \mathbb{Q}) \\ \psi \neq \psi_{0}}} L(s, \psi)=\zeta(s) \prod_{j=1}^{\ell-1} L\left(s, \chi^{j}\right) .
$$

Also,

$$
L(E / K, s)=L(E, s) \prod_{j=1}^{\ell-1} L\left(E, \chi^{j}, s\right)
$$

Rank growth in cyclic extensions of order $\ell \geq 3$

Heuristics based on the distribution of modular symbols and random matrix theory (D-Fearnley-Kisilevsky 2007 and Mazur-Rubin 2015) predict that the vanishing of $L(E, \chi, s)$ at $s=1$ is a very rare event as χ ranges over characters of prime order $\ell \geq 3$.

Diophantine Stability: Mazur-Rubin (2020) conjectured that if K / \mathbb{Q} is an abelian extension such that K contains only finitely many subfields of degree $2,3,5$ over \mathbb{Q}, then $E(K)$ is finitely generated.

Larsen-Mazur-Rubin (2018) proved that for a positive proportion of primes ℓ, there are infinitely many ℓ-cyclic extensions K / \mathbb{Q} of order ℓ such that $E(K)=E(\mathbb{Q})$.

Rank growth in quadratic extensions

For quadratic twists, $L\left(E, \chi_{D}, s\right)=L\left(E_{D}, s\right)$ where

$$
E: y^{2}=x^{3}+A x+B, \quad E_{D}: D y^{2}=x^{3}+A x+B .
$$

If $D \nmid N_{E}$,

$$
\omega_{E_{D}}=\omega_{E} \chi_{D}\left(N_{E}\right),
$$

and for half of the quadratic twists, $L\left(E, \chi_{D}, 1\right)=L\left(E_{D}, 1\right)=0$.
Goldfeld (1974) conjectured that half of the twists E_{D} / \mathbb{Q} have analytic rank zero, and half have analytic rank one (asymptotically).

- Heath-Brown (2004): a positive proportion of the twists have analytic rank 0 and analytic rank 1 (assuming GRH).
- Smith (2022): almost all elliptic curves satisfy Goldfeld conjecture (assuming BSD), generalizing Heath-Brown (1994).
- Gouvea and Mazur (1991): the analytic rank of E_{D} is at least two for $\gg X^{1 / 2-\epsilon}$ discriminants $|D| \leq X$.

Rank growth in non-abelian extensions

For the case of extensions K / \mathbb{Q} of degree d with Galois group S_{d}, Lemke Oliver and Thorne (2021) showed that there are infinitely many such extensions where $\operatorname{rank}(E(K))>\operatorname{rank}(E(\mathbb{Q}))$, for each $d \geq 2$.

Fornea (2019) has shown that for some curves E / \mathbb{Q}, the analytic rank of E increases for a positive proportion of the quintic fields with Galois group S_{5}.

Under certain conditions on E, Keliher (2022) has showed that there are infinitely many K / \mathbb{Q} with Galois group S_{4} such that the rank does not increase.

Number fields and function fields

Let q power of a prime, \mathbb{F}_{q} finite field with q elements.

\mathbb{Q}	\leftrightarrow	$\mathbb{F}_{q}(T)$
\mathbb{Z}	\leftrightarrow	$\mathbb{F}_{q}[T]$

p positive prime $\leftrightarrow P(T)$ irreducible polynomial, or P_{∞}

$$
|n|=|\mathbb{Z} / n \mathbb{Z}|=n \quad \leftrightarrow \quad|F(T)|=\left|\mathbb{F}_{q}[T] /(F(T))\right|=q^{\operatorname{deg} F}
$$

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \leftrightarrow \quad \zeta_{q}(s)=\sum_{\substack{F \in \mathbb{F}_{q}[T] \\ F \text { monic }}} \frac{1}{|F|^{s}}=\frac{1}{1-q^{s-1}}
$$

Riemann Hypothesis ??? $\leftrightarrow \quad$ Riemann Hypothesis !!!

Vanishing of L-functions over function fields

Before considering the L-functions $\mathcal{L}(E, \chi, u)$, let's discuss the L-functions $\mathcal{L}(\chi, u)$. We use the change of variable $u=q^{-s}$.

Let χ be a Dirichlet character of order ℓ over $\mathbb{F}_{q}(t)$ with conductor $F_{\chi} \in \mathbb{F}_{q}[t]$ and L-function

$$
\mathcal{L}(\chi, u)=\prod_{P}\left(1-\chi(P) u^{\operatorname{deg} P}\right)^{-1}\left(P \in \mathbb{F}_{q}[t] \text { or } P=P_{\infty}\right)
$$

It follows from the work of Weil that $\mathcal{L}(\chi, u)$ is a polynomial in u of degree $\operatorname{deg} F_{\chi}-2+\delta_{\chi}$, and

$$
\mathcal{L}(\chi, u)=\prod_{j=1}^{\operatorname{deg} F_{\chi}-2+\delta_{\chi}}\left(1-u q^{1 / 2} e^{i \theta_{j}}\right)
$$

Furthermore, $\mathcal{L}(\chi, u)$ satisfies the functional equation

$$
\mathcal{L}(\chi, u)=\omega_{\chi}(\sqrt{q} u)^{\operatorname{deg} F_{\chi}-2+\delta_{\chi}} \mathcal{L}(\bar{\chi}, 1 / q u),
$$

relating u to $1 / q u$ and then s to $1-s$.

Vanishing of L-functions over function fields

The vanishing of $\mathcal{L}(\chi, u)$ at $u=q^{-\frac{1}{2}}$ correspond to vanishing of $L(s, \chi)$ at $s=\frac{1}{2}$. Over \mathbb{Q}, Chowla conjectured that $L\left(\frac{1}{2}, \chi\right) \neq 0$.

Theorem (Li 2018, Donepudi-Li 2021)

- There are at least $\gg q^{\frac{n}{3}-\varepsilon}$ of the $C q^{n}$ quadratic characters of conductor of degree bounded by n such that $\mathcal{L}\left(\chi, q^{-\frac{1}{2}}\right)=0$. If $q=p^{2 e}$, this can be improved to $\gg q^{\frac{n}{2}-\varepsilon}$.
- If $q=p^{4 e}$, there are at least $q^{\frac{2 n}{3}-\varepsilon}$ of the $\approx q^{n}$ cubic characters of conductor of degree bounded by n such that $\mathcal{L}\left(\chi, q^{-\frac{1}{2}}\right)=0$.
- If $p \equiv-1 \bmod \ell$ and $q=p^{d}$ for d large enough, there are at least $q^{\frac{2 n}{3}-\varepsilon}$ of the $\approx q^{n}$ characters of order ℓ of conductor of degree bounded by n such that $\mathcal{L}\left(\chi, q^{-\frac{1}{2}}\right)=0$.

L-functions of elliptic curves over function fields

Let E be an elliptic curve over $\mathbb{F}_{q}(t)$, say

$$
E: y^{2}=x^{3}+A x+B, \quad A, B \in \mathbb{F}_{q}[t] .
$$

Let P be a prime of $\mathbb{F}_{q}(t)$ (including $P=P_{\infty}$), and

$$
\mathbb{F}_{P}=\mathbb{F}_{q}[t] /(P) \cong \mathbb{F}_{q^{\operatorname{deg}} P} .
$$

If P is a prime of good reduction $\left(P \nmid N_{E}\right)$

$$
\# E\left(\mathbb{F}_{P}\right)=q^{\operatorname{deg} P}+1-a_{P}, \quad a_{P}=\alpha_{P}+\bar{\alpha}_{P}, \quad\left|\alpha_{P}\right|=\sqrt{q^{\operatorname{deg} P}} .
$$

Let

$$
\mathcal{L}_{P}(E, u)=1-a_{P} u+q^{\operatorname{deg} P} u^{2}=\left(1-\alpha_{P} u\right)\left(1-\bar{\alpha}_{P} u\right)
$$

be the L-function of E / \mathbb{F}_{P}.

L-functions of elliptic curves over function fields

The L-function of $E / \mathbb{F}_{q}(t)$ is defined by

$$
\mathcal{L}(E, u)=\prod_{P \nmid N_{E}} \mathcal{L}_{P}\left(E, u^{\operatorname{deg} P}\right)^{-1} \prod_{P \mid N_{E}} \mathcal{L}_{P}\left(E, u^{\operatorname{deg} P}\right)^{-1} .
$$

From Deligne (1981), if E a non-constant elliptic curve over $\mathbb{F}_{q}(t)$, $\mathcal{L}(E, u)$ is a polynomial of degree $\operatorname{deg} N_{E}-4$ and

$$
\mathcal{L}(E, u)=\prod_{j=1}^{\operatorname{deg} N_{E}-4}\left(1-q u e^{i \theta_{j}}\right)
$$

Then, $\mathcal{L}(E, u)$ satisfies the functional equation

$$
\mathcal{L}(E, u)=\omega_{E}(q u)^{\operatorname{deg}\left(N_{E}\right)-4} \mathcal{L}\left(E, 1 /\left(q^{2} u\right)\right), \quad \omega_{E}= \pm 1,
$$

relating u to $1 / q^{2} u$ and then s to $2-s$.
This comes from seeing $E / \mathbb{F}_{q}(t)$ as a surface over \mathbb{F}_{q}.

Elliptic curves L-functions twisted by Dirichlet characters

The twisted L-function $\mathcal{L}(E, \chi, u)$ is defined by

$$
\begin{aligned}
& \prod_{P \nmid N_{E}}\left(1-\chi(P) \alpha_{P} u^{\operatorname{deg}(P)}\right)^{-1}\left(1-\chi(P) \bar{\alpha}_{P} u^{\operatorname{deg}(P)}\right)^{-1} \\
& \quad \times \prod_{P \mid N_{E}}\left(1-\chi(P) a_{P} u^{\operatorname{deg}(P)}\right)^{-1} .
\end{aligned}
$$

If $\left(N_{E}, F_{\chi}\right)=1$, then $\mathcal{L}(E, \chi, u)$ is a polynomial of degree

$$
N:=\operatorname{deg} N_{E}+2 \operatorname{deg} F_{\chi}-4+2 \delta_{\chi}
$$

and satisfy the functional equation

$$
\mathcal{L}(E, \chi, u)=\omega_{E \otimes \chi}(q u)^{N} \mathcal{L}\left(E, \bar{\chi}, 1 /\left(q^{2} u\right)\right), \quad \omega_{E \otimes \chi}=\omega_{\chi}^{2} \omega_{E} \chi\left(N_{E}\right) .
$$

If $K / \mathbb{F}_{q}(t)$ is the cyclic extension of order ℓ associated to χ,

$$
\mathcal{L}(E / K, u)=\mathcal{L}(E, u) \prod_{i=1}^{\ell-1} \mathcal{L}\left(E, \chi^{i}, u\right) .
$$

Characters, extensions $K / \mathbb{F}_{q}(t)$ and curves over \mathbb{F}_{q}

We can associate characters $\chi / \mathbb{F}_{q}(t)$ with abelian extensions $K / \mathbb{F}_{q}(t)$. We can associate extensions $K / \mathbb{F}_{q}(t)$ with curves C / \mathbb{F}_{q} by $K=\mathbb{F}_{q}(C)$, the function field of C.

For example, let C be the hyperelliptic curve $C: y^{2}=f(t), f(t) \in \mathbb{F}_{q}(t)$. Then,

$$
\mathbb{F}_{q}(C)=\mathbb{F}_{q}[t, y] /\left(y^{2}-f(t)\right)=\mathbb{F}_{q}(t)(\sqrt{f(t)})
$$

is a quadratic extension.
Characters of order ℓ are associated with ℓ-cyclic extensions K, which are associated with ℓ-cyclic covers C, for example

$$
C: y^{\ell}=f(t) \quad(q \equiv 1 \bmod \ell)
$$

and we have

$$
\mathcal{L}(C, u)=\prod_{i=1}^{\ell-1} \mathcal{L}\left(\chi^{i}, u\right), \quad \mathcal{Z}(C, u)=\mathcal{Z}(u) \mathcal{L}(C, u)
$$

Constant elliptic curves over $\mathbb{F}_{q}(t)$

Let C be a ℓ-cyclic cover over \mathbb{F}_{q} of genus g and L-function

$$
\mathcal{L}(C, u)=\prod_{j=1}^{2 g}\left(1-\beta_{j} u\right), \quad\left|\beta_{j}\right|=q^{1 / 2} .
$$

Let E_{0} be an elliptic curve over \mathbb{F}_{q} with L-function

$$
\mathcal{L}\left(E_{0}, u\right)=\left(1-\alpha_{1} u\right)\left(1-\alpha_{2} u\right), \quad\left|\alpha_{1}\right|,\left|\alpha_{2}\right|=q^{1 / 2} .
$$

Then $E=E_{0} \times_{\mathbb{F}_{q}} \mathbb{F}_{q}(t)$ is a constant elliptic curve over $\mathbb{F}_{q}(t)$.
Theorem (Milne, 1968)

$$
\begin{aligned}
\mathcal{L}\left(E / K_{C}, u\right) & =\mathcal{Z}\left(C, \alpha_{1} u\right) \mathcal{Z}\left(C, \alpha_{2} u\right) \\
& =\frac{\prod_{\substack{1 \leq i \leq 2 \\
1 \leq j \leq 2 g}}\left(1-\alpha_{i} \beta_{j} u\right)}{\prod_{1 \leq i \leq 2}\left(1-\alpha_{i} u\right)\left(1-\alpha_{i} q u\right)}
\end{aligned}
$$

L-functions of constant elliptic curves

Corollary

$$
\begin{aligned}
& \text { If } E=E_{0} \times_{\mathbb{F}_{q}} \mathbb{F}_{q}(t), \mathcal{L}\left(E / K_{C}, q^{-1}\right)=0 \text { if and only if } \\
& \mathcal{L}\left(C, \alpha_{1}^{-1}\right)=\mathcal{L}\left(C, \alpha_{2}^{-1}\right)=0 \text {. }
\end{aligned}
$$

We recall that

$$
\begin{aligned}
& \mathcal{L}(C, u)=\prod_{j=1}^{2 g}\left(1-\beta_{j} u\right)=\prod_{i=1}^{\ell-1} \mathcal{L}\left(\chi^{i}, u\right), \\
& \mathcal{L}\left(E / K_{C}, u\right)=\mathcal{L}(E, u) \prod_{i=1}^{\ell-1} \mathcal{L}\left(E, \chi^{i}, u\right) .
\end{aligned}
$$

The vanishing of $\mathcal{L}(E, \chi, u)$ at $u=q^{-1}$ reduces to: The vanishing of $\mathcal{L}(\chi, u)$ at $u=\alpha^{-1}$ where $\mathcal{L}\left(E_{0}, u\right)=(1-\alpha)(1-\bar{\alpha})$.

Vanishing for constant elliptic curves

We generalize the work of Donepudi-Li to general ℓ-cyclic cover C / \mathbb{F}_{q} (and not only the Kummer ones where $q \equiv 1 \bmod \ell$), using the work of Bary-Soroker and Meisner (2019).

Theorem

If there is one ℓ-cyclic cover C_{0} / \mathbb{F}_{q} such that $\mathcal{L}\left(C_{0}, u_{0}\right)=0$, then there are at least $q^{2 n / d_{0}}$ of the $\approx q^{n} \ell$-cyclic cover C / \mathbb{F}_{q} with conductor of degree bounded by n such that $\mathcal{L}\left(C, u_{0}\right)=0$, where d_{0} is the degree of the conductor of C_{0}.

Theorem

Let E_{0} be an elliptic curve over \mathbb{F}_{q}, and let $E=E_{0} \times_{\mathbb{F}_{q}} \mathbb{F}_{q}(t)$. If there is one Dirichlet character χ_{0} of order ℓ over $\mathbb{F}_{q}(t)$ with conductor of degree d_{0} such that $\mathcal{L}\left(E, \chi_{0}, q^{-1}\right)=0$, there are at least $\gg q^{2 n / d_{0}}$ Dirichlet characters of order ℓ over $\mathbb{F}_{q}(t)$ with conductor of degree bounded by n such that $\mathcal{L}\left(E, \chi, q^{-1}\right)=0$.

Geometric vanishing criterion

Tate-Honda theory: There is a one-to-one correspondance between conjucacy classes of q-Weil numbers and isogeny classes of simple Abelian varieties over \mathbb{F}_{q}. Furthermore, B is isogenous to a sub-abelian variety of A if and only if $P_{B}(x)$ divides $P_{A}(x)$, where $P_{A}(x)$ is the characteristic polynomial of Frobenius.

Theorem (Li, 2018)

Let u_{0} be a q-Weil number and let A_{0} be the unique (isogeny class of) simple Abelian variety over \mathbb{F}_{q} having u_{0} as a Frobenius eigenvalue, as guaranteed by the theorem of Honda-Tate.
Suppose that $A_{0}=\operatorname{Jac}\left(C_{0}\right)$ for some curve C_{0} / \mathbb{F}_{q}. Let C be a curve over \mathbb{F}_{q}.
Then, $\mathcal{L}\left(C, u_{0}^{-1}\right)=0$ if and only if there exists a non-trivial map
$C \rightarrow C_{0}$ if and only if $\mathcal{L}\left(C_{0}, u\right)$ divides $\mathcal{L}(C, u)$.

Kummer ℓ-cyclic covers

If $q \equiv 1 \bmod \ell$, let C_{0} be the ℓ-cyclic cover

$$
C_{0}: y^{\ell}=f(t), f(t)=f_{1} f_{2}^{2} \ldots f_{\ell-1}^{\ell-1}
$$

where $F_{0}=f_{1} f_{2} \ldots f_{\ell-1}$ is square-free and $d_{0}:=\operatorname{deg}\left(f_{1} \ldots f_{\ell-1}\right)$.
Let $h(t) \in \mathbb{F}_{q}[t]$, and let C be the curve

$$
C: y^{\ell}=f(h(t)),
$$

where $F(t)=F_{0}(h(t))=f_{1}(h(t)) f_{2}(h(t)) \ldots f_{\ell-1}(h(t))$ is square-free, and $\operatorname{deg} F=d_{0} \cdot \operatorname{deg} h$.

There is a non-trivial map of curves

$$
\begin{aligned}
\phi: \quad C & \rightarrow C_{0} \\
(t, y) & \mapsto(h(t), y)
\end{aligned}
$$

and we have to count the square-free values $\left(f_{1} \ldots f_{\ell-1}\right)(h(t))$.

Square-free values of polynomials over $\mathbb{F}_{q}[t]$

Proposition (Poonen, 2003)

Let $f \in \mathbb{F}_{q}[t]\left[x_{1}, \ldots, x_{m}\right]$ be a polynomial that is square-free as an element of $\mathbb{F}_{q}(t)\left[x_{1}, \ldots, x_{m}\right]$. Let

$$
\begin{aligned}
S_{f} & :=\left\{a \in \mathbb{F}_{q}[t]^{m}: f(a) \text { is square-free }\right\} \\
\|a\| & :=\max _{1 \leq i \leq m}\left|a_{i}\right| \\
\mu\left(S_{f}\right) & :=\lim _{N \rightarrow \infty} \frac{\left|\left\{a \in S_{f}:\|a\|<N\right\}\right|}{\left|\left\{a \in \mathbb{F}_{q}[t]^{m}:||a||<N\right\}\right|}
\end{aligned}
$$

For each nonzero prime \mathfrak{p} of $\mathbb{F}_{q}[t]$, let $c_{\mathfrak{p}}$ be the number of $x \in\left(\mathbb{F}_{q}[t] / \mathfrak{p}^{2}\right)^{m}$ that satisfy $f(x)=0$ in A / \mathfrak{p}^{2}. The limit $\mu\left(S_{f}\right)$ exists and is equal to $\prod_{\pi}\left(1-c_{\mathfrak{p}} /|\mathfrak{p}|^{2 m}\right)$.

For square-free values of polynomials over \mathbb{Z}, Poonen proved the same result assuming the abc-conjecture, following the work of Granville (1998).

General ℓ-cyclic covers

Let n_{q} be the multiplicative order of $q \bmod \ell$.
The conductors of characters of order ℓ are square-free $F \in \mathbb{F}_{q}[t]$ supported on prime polynomials $P \in \mathbb{F}_{q}[t]$ with $n_{q} \mid \operatorname{deg} P$, or equivalently, P which split completely in $\mathbb{F}_{q^{n} q}(t) / \mathbb{F}_{q}(t)$.

Writing F as a product of n_{q} conjugates in $\mathbb{F}_{q^{n_{q}}}(t)$,

$$
F=\mathfrak{F}_{1} \ldots \mathfrak{F}_{n_{q}}, \phi_{q}\left(\mathfrak{F}_{i}\right)=\mathfrak{F}_{i+1} \Rightarrow N_{q}\left(\mathfrak{F}_{i}\right)=F
$$

one can write the equation of C in terms of $\mathfrak{F}_{1}, \ldots \mathfrak{F}_{n_{q}}$ (Bary-Soroker-Meisner, 2019).

For example, if $\ell=3$ and $q \equiv 2 \bmod 3\left(\right.$ and $\left.n_{q}=2\right)$

$$
C_{F}: y^{3}-3 \mathfrak{F}_{1} \mathfrak{F}_{2} y-\mathfrak{F}_{1} \mathfrak{F}_{2}\left(\mathfrak{F}_{1}+\mathfrak{F}_{2}\right)=0
$$

General ℓ-cyclic covers

For general ℓ-cyclic covers, using the result of Poonen about square-free values of multi-variable polynomials over $\mathbb{F}_{q}[t]$, we can show that

Theorem

Let E_{0} be an elliptic curve over \mathbb{F}_{q}, and let $E=E_{0} \times_{\mathbb{F}_{q}} \mathbb{F}_{q}(t)$. If there is one Dirichlet character χ_{0} of order ℓ over $\mathbb{F}_{q}(t)$ with conductor of degree d_{0} such that $\mathcal{L}\left(E, \chi_{0}, q^{-1}\right)=0$, there are at least $\gg q^{2 n / d_{0}}$ Dirichlet characters of order ℓ over $\mathbb{F}_{q}(t)$ with conductor of degree bounded by n such that $\mathcal{L}\left(E, \chi, q^{-1}\right)=0$.

Remark: The d_{0} comes from the initial curve C_{0}. The 2 comes from the fact that we use $h(t)=u(t) / v(t)$ in the map from C to C_{0} by homegenizing the equations, so we use Poonen's sieve with $m=2$ for the tuples $(u(t), v(t))$.

Let $E=E_{0} \times_{\mathbb{F}_{q}} \mathbb{F}_{q}(t)$. How do you produce a ℓ-cyclic cover C_{0} over \mathbb{F}_{q} such that $\mathcal{L}\left(E / K_{C_{0}}, q^{-1}\right)=0$?

Examples for constant curves

- Over \mathbb{F}_{13}, the 7 -cyclic cover $C_{0}\left(n_{q}=2\right)$ with equation

$$
\begin{aligned}
& y^{7}+\left(6 t^{4}+6 t^{3}+6 t^{2}+12 t+1\right) y^{5}+ \\
& \left(t^{8}+2 t^{7}+3 t^{6}+6 t^{5}+t^{4}+5 t+4\right) y^{3}+ \\
& \left(6 t^{12}+5 t^{11}+10 t^{10}+7 t^{8}+2 t^{7}+\cdots+2 t^{3}+6 t^{2}+t+4\right) y+ \\
& 11 t^{14}+6 t^{13}+12 t^{12}+10 t^{11}+\cdots+7 t^{4}+12 t^{3}+3 t^{2}+3 t+9=0
\end{aligned}
$$

has $\mathcal{L}\left(C_{0}, u\right)=\left(1+13 u^{2}\right)^{6}=\mathcal{L}\left(E_{0}, u\right)^{6}$ where E_{0} is a supersingular elliptic curve over \mathbb{F}_{13}. Then, $\mathcal{L}\left(C_{0}, \alpha_{0}\right)=0$ and $\mathcal{L}\left(E / K_{C_{0}}, q^{-1}\right)=0$ for $E=E_{0} \times_{\mathbb{F}_{q}} \mathbb{F}_{q}(t)$, and there are infinitely many such 7 -cyclic covers C.

- Let E_{0} / \mathbb{F}_{73} be a supersingular elliptic curve, and $E=E_{0} \times_{\mathbb{F}_{q}} \mathbb{F}_{q}(t)$.

There is a character χ_{0} of order 37 over $\mathbb{F}_{73}[t]$ such that $\mathcal{L}\left(E, \chi, q^{-1}\right)=0$, and there are infinitely many such χ of order 37 .

Numerical data for non-constant curves

We also computed numerically $\mathcal{L}(E, \chi, u)$ for non-constant E and χ of order ℓ. Let F_{χ} be the conductor of χ. The twisted L-functions are polynomials of degree $N=\operatorname{deg} N_{E}+2 \operatorname{deg} F_{\chi}-4+2 \delta_{\chi}$

$$
\mathcal{L}(E, \chi, u)=\sum_{n=0}^{N}\left(\sum_{f \in \mathcal{M}_{n}} a_{f} \chi(f)\right) u^{n}=\sum_{n=0}^{N} c_{n} u^{n} .
$$

Using the functional equation,

$$
c_{n}=\omega_{E \otimes \chi} p^{2(n-\lfloor N / 2\rfloor-1)} \overline{c_{N-n}}, \quad 0 \leq n \leq N,
$$

and it suffices to compute c_{i} for $0 \leq i \leq\lfloor N / 2\rfloor$.
The next slide shows data for the analytic rank of $\mathcal{L}(E, \chi, u)$ at $u=q^{-1}$, for twists of order 3 and

$$
E: y^{2}=(x-1)\left(x-2 t^{2}-1\right)\left(x-t^{2}\right) .
$$

Numerical data for non-constant curves

p	n_{p}	deg(conductor χ)	rank 0	rank 1	rank 2	rank 3
5	2	2	8	2	0	0
		4	214	26	0	0
		6	5780	280	0	0
		8	149222	2136	20	2
7	1	1	4	0	0	0
		2	30	2	0	0
		3	264	22	2	0
		4	2299	49	4	0
		5	18670	240	2	0
		6	148537	1343	32	0

