Vanishing of twisted L-functions of elliptic curves over function fields

Joint work with A. Comeau-Lapointe (Concordia University), M. Lalin (Université de Montréal) and W. Li (Washington University)

Chantal David, Concordia University, Montreal Québec-Maine Number Theory Conference in honor of Andrew Granville October 2022

Elliptic curves over \mathbb{Q}

Let E be an elliptic curve over $\mathbb Q$ with conductor N_E and L-function

$$L(E,s) = \prod_{p \nmid N_E} \left(1 - \alpha_p p^{-s} \right)^{-1} \left(1 - \overline{\alpha}_p p^{-s} \right)^{-1} \prod_{p \mid N_E} \left(1 - a_p p^{-s} \right)^{-1},$$

where for each $p \nmid N_E$, E/\mathbb{F}_p is an elliptic curve with $p + 1 - (\alpha_p + \overline{\alpha}_p)$ points, with $|\alpha_p| = \sqrt{p}$, and $|a_p| = |\alpha_p + \overline{\alpha}_p| \le 2\sqrt{p}$ (Hasse bound).

L(E, s) satisfies the functional equation (Wiles, 1995)

$$\Lambda(E,s) = \left(rac{\sqrt{N_E}}{2\pi}
ight)^s \Gamma(s)L(E,s) = \omega_E \ \Lambda(E,2-s), \ \ \omega_E = \pm 1.$$

Vanishing at s = 1 is related to the rational solutions of E/\mathbb{Q} via the **Birch and Swinnerton-Dyer conjecture:**

$$\operatorname{ord}_{s=1}L(E,s) = \operatorname{rank}(E(\mathbb{Q})).$$

The order of vanishing of L(E, s) at s = 1 is the analytic rank of E.

Twisted L-functions of elliptic curves

Let χ be a Dirichlet character over $\mathbb Q$, and consider the twisted L-function

$$L(E,\chi,s) = \prod_{\substack{p \nmid N_E}} (1-\chi(p)\alpha_p p^{-s})^{-1} (1-\chi(p)\overline{\alpha}_p p^{-s})^{-1}$$
$$\times \prod_{\substack{p \mid N_E}} \times (1-\chi(p)a_p p^{-s})^{-1} = \sum_n a_n \chi(n) n^{-s}.$$

Suppose that χ has prime order ℓ , and K/\mathbb{Q} is the cyclic extension of order ℓ associated with χ . Then,

$$\zeta_{\kappa}(s) = \zeta(s) \prod_{\substack{\psi \in \widehat{\mathsf{Gal}}(\kappa/\mathbb{Q})\\ \psi \neq \psi_0}} L(s,\psi) = \zeta(s) \prod_{j=1}^{\ell-1} L(s,\chi^j).$$

Also,

$$L(E/K,s) = L(E,s) \prod_{j=1}^{\ell-1} L(E,\chi^j,s).$$

Heuristics based on the distribution of modular symbols and random matrix theory (D-Fearnley-Kisilevsky 2007 and Mazur-Rubin 2015) predict that the vanishing of $L(E, \chi, s)$ at s = 1 is a very rare event as χ ranges over characters of prime order $\ell \geq 3$.

Diophantine Stability: Mazur-Rubin (2020) conjectured that if K/\mathbb{Q} is an abelian extension such that K contains only finitely many subfields of degree 2, 3, 5 over \mathbb{Q} , then E(K) is finitely generated.

Larsen-Mazur-Rubin (2018) proved that for a positive proportion of primes ℓ , there are infinitely many ℓ -cyclic extensions K/\mathbb{Q} of order ℓ such that $E(K) = E(\mathbb{Q})$.

Rank growth in quadratic extensions

For quadratic twists, $L(E, \chi_D, s) = L(E_D, s)$ where $E: y^2 = x^3 + Ax + B, \quad E_D: Dy^2 = x^3 + Ax + B.$

If $D \nmid N_E$,

$$\omega_{E_D} = \omega_E \, \chi_D(N_E),$$

and for half of the quadratic twists, $L(E, \chi_D, 1) = L(E_D, 1) = 0$.

Goldfeld (1974) conjectured that half of the twists E_D/\mathbb{Q} have analytic rank zero, and half have analytic rank one (asymptotically).

• Heath-Brown (2004): a positive proportion of the twists have analytic rank 0 and analytic rank 1 (assuming GRH).

- Smith (2022): almost all elliptic curves satisfy Goldfeld conjecture (assuming BSD), generalizing Heath-Brown (1994).
- Gouvea and Mazur (1991): the analytic rank of E_D is at least two for $\gg X^{1/2-\epsilon}$ discriminants $|D| \leq X$.

For the case of extensions K/\mathbb{Q} of degree d with Galois group S_d , Lemke Oliver and Thorne (2021) showed that there are infinitely many such extensions where $\operatorname{rank}(E(K)) > \operatorname{rank}(E(\mathbb{Q}))$, for each $d \ge 2$.

Fornea (2019) has shown that for some curves E/\mathbb{Q} , the analytic rank of E increases for a positive proportion of the quintic fields with Galois group S_5 .

Under certain conditions on E, Keliher (2022) has showed that there are infinitely many K/\mathbb{Q} with Galois group S_4 such that the rank does not increase.

Number fields and function fields

Let q power of a prime, \mathbb{F}_q finite field with q elements.

Number Fields Function Fields

- \mathbb{Q} \leftrightarrow $\mathbb{F}_q(T)$ \mathbb{Z} \leftrightarrow $\mathbb{F}_q[T]$
- p positive prime $\leftrightarrow P(T)$ irreducible polynomial, or P_{∞}
- $|n| = |\mathbb{Z}/n\mathbb{Z}| = n \qquad \leftrightarrow \quad |F(T)| = |\mathbb{F}_q[T]/(F(T))| = q^{\deg F}$

 \leftrightarrow

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

$$\zeta_q(s) = \sum_{\substack{F \in \mathbb{F}_q[T] \\ F \text{ monic}}} \frac{1}{|F|^s} = \frac{1}{1 - q^{s-1}}$$

Riemann Hypothesis !!!

Riemann Hypothesis ??? \leftrightarrow

7/24

Vanishing of L-functions over function fields

Before considering the *L*-functions $\mathcal{L}(E, \chi, u)$, let's discuss the *L*-functions $\mathcal{L}(\chi, u)$. We use the change of variable $u = q^{-s}$.

Let χ be a Dirichlet character of order ℓ over $\mathbb{F}_q(t)$ with conductor $F_{\chi} \in \mathbb{F}_q[t]$ and *L*-function

$$\mathcal{L}(\chi, u) = \prod_{P} (1 - \chi(P) u^{\deg P})^{-1} \ (P \in \mathbb{F}_q[t] \text{ or } P = P_{\infty}).$$

It follows from the work of Weil that $\mathcal{L}(\chi, u)$ is a polynomial in u of degree deg $F_{\chi} - 2 + \delta_{\chi}$, and

$$\mathcal{L}(\chi, u) = \prod_{j=1}^{\deg F_{\chi}-2+\delta_{\chi}} \left(1-uq^{1/2}e^{i\theta_j}\right).$$

Furthermore, $\mathcal{L}(\chi, u)$ satisfies the functional equation

$$\mathcal{L}(\chi, u) = \omega_{\chi} \; (\sqrt{q}u)^{\deg F_{\chi} - 2 + \delta_{\chi}} \; \mathcal{L}(\overline{\chi}, 1/qu),$$

relating u to 1/qu and then s to 1 - s.

The vanishing of $\mathcal{L}(\chi, u)$ at $u = q^{-\frac{1}{2}}$ correspond to vanishing of $\mathcal{L}(s, \chi)$ at $s = \frac{1}{2}$. Over \mathbb{Q} , Chowla conjectured that $\mathcal{L}(\frac{1}{2}, \chi) \neq 0$.

Theorem (Li 2018, Donepudi-Li 2021)

- There are at least ≫ q^{n/2}-ε of the Cqⁿ quadratic characters of conductor of degree bounded by n such that L(χ, q^{-1/2}) = 0. If q = p^{2e}, this can be improved to ≫ q^{n/2}-ε.
- If q = p^{4e}, there are at least q^{2n/3}-ε of the ≈ qⁿ cubic characters of conductor of degree bounded by n such that L(χ, q^{-1/2}) = 0.
- If p ≡ -1 mod ℓ and q = p^d for d large enough, there are at least q^{2n/3}-ε of the ≈ qⁿ characters of order ℓ of conductor of degree bounded by n such that L(χ, q^{-1/2}) = 0.

Let *E* be an elliptic curve over $\mathbb{F}_q(t)$, say

$$E: y^2 = x^3 + Ax + B, \ A, B \in \mathbb{F}_q[t].$$

Let P be a prime of $\mathbb{F}_q(t)$ (including $P = P_{\infty}$), and

$$\mathbb{F}_P = \mathbb{F}_q[t]/(P) \cong \mathbb{F}_{q^{\deg P}}.$$

If P is a prime of good reduction $(P \nmid N_E)$

$$\#\mathcal{E}(\mathbb{F}_P) = q^{\deg P} + 1 - a_P, \ a_P = \alpha_P + \overline{\alpha}_P, \ |\alpha_P| = \sqrt{q^{\deg P}},$$

Let

$$\mathcal{L}_P(E, u) = 1 - a_P u + q^{\deg P} u^2 = (1 - \alpha_P u)(1 - \overline{\alpha}_P u)$$

be the *L*-function of E/\mathbb{F}_P .

L-functions of elliptic curves over function fields

The *L*-function of $E/\mathbb{F}_q(t)$ is defined by

$$\mathcal{L}(E, u) = \prod_{P \nmid N_E} \mathcal{L}_P(E, u^{\deg P})^{-1} \prod_{P \mid N_E} \mathcal{L}_P(E, u^{\deg P})^{-1}.$$

From Deligne (1981), if *E* a non-constant elliptic curve over $\mathbb{F}_q(t)$, $\mathcal{L}(E, u)$ is a polynomial of degree deg $N_E - 4$ and

$$\mathcal{L}(E,u) = \prod_{j=1}^{\deg N_E-4} \left(1-que^{i\theta_j}\right).$$

Then, $\mathcal{L}(E, u)$ satisfies the functional equation

$$\mathcal{L}(E, u) = \omega_E \; (qu)^{\deg(N_E)-4} \mathcal{L}(E, 1/(q^2 u)), \; \; \omega_E = \pm 1,$$

relating u to $1/q^2 u$ and then s to 2 - s.

This comes from seeing $E/\mathbb{F}_q(t)$ as a surface over \mathbb{F}_q .

Elliptic curves L-functions twisted by Dirichlet characters

The twisted *L*-function $\mathcal{L}(E, \chi, u)$ is defined by

$$\prod_{P \nmid N_E} (1 - \chi(P) \alpha_P u^{\deg(P)})^{-1} (1 - \chi(P) \overline{\alpha}_P u^{\deg(P)})^{-1} \times \prod_{P \mid N_E} (1 - \chi(P) a_P u^{\deg(P)})^{-1}.$$

If $(N_E, F_{\chi}) = 1$, then $\mathcal{L}(E, \chi, u)$ is a polynomial of degree

$$N := \deg N_E + 2 \deg F_{\chi} - 4 + 2\delta_{\chi}$$

and satisfy the functional equation

$$\mathcal{L}(E,\chi,u) = \omega_{E\otimes\chi} \; (qu)^N \; \mathcal{L}(E,\overline{\chi},1/(q^2u)), \quad \omega_{E\otimes\chi} = \omega_\chi^2 \; \omega_E \; \chi(N_E).$$

If $K/\mathbb{F}_q(t)$ is the cyclic extension of order ℓ associated to χ ,

$$\mathcal{L}(E/K, u) = \mathcal{L}(E, u) \prod_{i=1}^{\ell-1} \mathcal{L}(E, \chi^i, u).$$

Characters, extensions $K/\mathbb{F}_q(t)$ and curves over \mathbb{F}_q

We can associate characters $\chi/\mathbb{F}_q(t)$ with abelian extensions $K/\mathbb{F}_q(t)$. We can associate extensions $K/\mathbb{F}_q(t)$ with curves C/\mathbb{F}_q by $K = \mathbb{F}_q(C)$, the function field of C.

For example, let C be the hyperelliptic curve $C: y^2 = f(t), f(t) \in \mathbb{F}_q(t)$. Then,

$$\mathbb{F}_q(C) = \mathbb{F}_q[t, y]/(y^2 - f(t)) = \mathbb{F}_q(t)(\sqrt{f(t)})$$

is a quadratic extension.

Characters of order ℓ are associated with ℓ -cyclic extensions K, which are associated with ℓ -cyclic covers C, for example

$$C: y^{\ell} = f(t) \quad (q \equiv 1 \mod \ell),$$

and we have

$$\mathcal{L}(C,u) = \prod_{i=1}^{\ell-1} \mathcal{L}(\chi^i, u), \quad \mathcal{Z}(C, u) = \mathcal{Z}(u)\mathcal{L}(C, u).$$
13/24

Constant elliptic curves over $\mathbb{F}_q(t)$

Let C be a ℓ -cyclic cover over \mathbb{F}_q of genus g and L-function

$$\mathcal{L}(C, u) = \prod_{j=1}^{2g} (1 - \frac{\beta_j}{\mu}u), \ |\beta_j| = q^{1/2}.$$

Let E_0 be an elliptic curve over \mathbb{F}_q with *L*-function

$$\mathcal{L}(E_0, u) = (1 - \alpha_1 u)(1 - \alpha_2 u), \ |\alpha_1|, |\alpha_2| = q^{1/2}.$$

Then $E = E_0 \times_{\mathbb{F}_q} \mathbb{F}_q(t)$ is a constant elliptic curve over $\mathbb{F}_q(t)$. **Theorem (Milne, 1968)**

$$\mathcal{L}(E/K_{C}, u) = \mathcal{Z}(C, \alpha_{1}u)\mathcal{Z}(C, \alpha_{2}u)$$

$$= \frac{\prod_{\substack{1 \leq i \leq 2\\1 \leq j \leq 2g}} (1 - \alpha_{i}\beta_{j}u)}{\prod_{1 \leq i \leq 2} (1 - \alpha_{i}u)(1 - \alpha_{i}qu)}.$$

14/24

L-functions of constant elliptic curves

Corollary

If
$$E = E_0 \times_{\mathbb{F}_q} \mathbb{F}_q(t)$$
, $\mathcal{L}(E/K_C, q^{-1}) = 0$ if and only if $\mathcal{L}(C, \alpha_1^{-1}) = \mathcal{L}(C, \alpha_2^{-1}) = 0$.

We recall that

$$\mathcal{L}(C,u) = \prod_{j=1}^{2g} (1-\beta_j u) = \prod_{i=1}^{\ell-1} \mathcal{L}(\chi^i, u),$$

$$\mathcal{L}(E/K_{C}, u) = \mathcal{L}(E, u) \prod_{i=1}^{\ell-1} \mathcal{L}(E, \chi^{i}, u).$$

The vanishing of $\mathcal{L}(E, \chi, u)$ at $u = q^{-1}$ reduces to: The vanishing of $\mathcal{L}(\chi, u)$ at $u = \alpha^{-1}$ where $\mathcal{L}(E_0, u) = (1 - \alpha)(1 - \overline{\alpha})$.

Vanishing for constant elliptic curves

We generalize the work of Donepudi-Li to general ℓ -cyclic cover C/\mathbb{F}_q (and not only the Kummer ones where $q \equiv 1 \mod \ell$), using the work of Bary-Soroker and Meisner (2019).

Theorem

If there is one ℓ -cyclic cover C_0/\mathbb{F}_q such that $\mathcal{L}(C_0, u_0) = 0$, then there are at least q^{2n/d_0} of the $\approx q^n \ell$ -cyclic cover C/\mathbb{F}_q with conductor of degree bounded by n such that $\mathcal{L}(C, u_0) = 0$, where d_0 is the degree of the conductor of C_0 .

Theorem

Let E_0 be an elliptic curve over \mathbb{F}_q , and let $E = E_0 \times_{\mathbb{F}_q} \mathbb{F}_q(t)$. If there is one Dirichlet character χ_0 of order ℓ over $\mathbb{F}_q(t)$ with conductor of degree d_0 such that $\mathcal{L}(E, \chi_0, q^{-1}) = 0$, there are at least $\gg q^{2n/d_0}$ Dirichlet characters of order ℓ over $\mathbb{F}_q(t)$ with conductor of degree bounded by n such that $\mathcal{L}(E, \chi, q^{-1}) = 0$.

Geometric vanishing criterion

Tate-Honda theory: There is a one-to-one correspondance between conjucacy classes of *q*-Weil numbers and isogeny classes of simple Abelian varieties over \mathbb{F}_q . Furthermore, *B* is isogenous to a sub-abelian variety of *A* if and only if $P_B(x)$ divides $P_A(x)$, where $P_A(x)$ is the characteristic polynomial of Frobenius.

Theorem (Li, 2018)

Let u_0 be a q-Weil number and let A_0 be the unique (isogeny class of) simple Abelian variety over \mathbb{F}_q having u_0 as a Frobenius eigenvalue, as guaranteed by the theorem of Honda–Tate.

Suppose that $A_0 = Jac(C_0)$ for some curve C_0/\mathbb{F}_q . Let C be a curve over \mathbb{F}_q .

Then, $\mathcal{L}(C, u_0^{-1}) = 0$ if and only if there exists a non-trivial map $C \to C_0$ if and only if $\mathcal{L}(C_0, u)$ divides $\mathcal{L}(C, u)$.

Kummer *l*-cyclic covers

If $q\equiv 1 \, \mathrm{mod} \, \ell$, let C_0 be the ℓ -cyclic cover

$$C_0: y^{\ell} = f(t), \ f(t) = f_1 f_2^2 \dots f_{\ell-1}^{\ell-1},$$

where $F_0 = f_1 f_2 \dots f_{\ell-1}$ is square-free and $d_0 := \text{deg}(f_1 \dots f_{\ell-1})$.

Let $h(t) \in \mathbb{F}_q[t]$, and let C be the curve

$$C: y^{\ell} = f(h(t)),$$

where $F(t) = F_0(h(t)) = f_1(h(t))f_2(h(t)) \dots f_{\ell-1}(h(t))$ is square-free, and deg $F = d_0 \cdot \deg h$.

There is a non-trivial map of curves

$$egin{array}{rcl} \phi & : & C &
ightarrow & C_0 \ (t,y) & \mapsto & (h(t),y) \end{array}$$

and we have to count the square-free values $(f_1 \dots f_{\ell-1})(h(t))$.

Proposition (Poonen, 2003)

Let $f \in \mathbb{F}_q[t][x_1, \ldots, x_m]$ be a polynomial that is square-free as an element of $\mathbb{F}_q(t)[x_1, \ldots, x_m]$. Let

$$S_{f} := \{a \in \mathbb{F}_{q}[t]^{m} : f(a) \text{ is square-free} \}$$
$$||a|| := \max_{1 \le i \le m} |a_{i}|$$
$$u(S_{f}) := \lim_{N \to \infty} \frac{|\{a \in S_{f} : ||a|| < N\}|}{|\{a \in \mathbb{F}_{q}[t]^{m} : ||a|| < N\}|}$$

For each nonzero prime \mathfrak{p} of $\mathbb{F}_q[t]$, let $c_\mathfrak{p}$ be the number of $x \in (\mathbb{F}_q[t]/\mathfrak{p}^2)^m$ that satisfy f(x) = 0 in A/\mathfrak{p}^2 . The limit $\mu(S_f)$ exists and is equal to $\prod_{\pi} (1 - c_\mathfrak{p}/|\mathfrak{p}|^{2m})$.

For square-free values of polynomials over \mathbb{Z} , Poonen proved the same result assuming the abc-conjecture, following the work of Granville (1998).

General *l*-cyclic covers

Let n_q be the multiplicative order of $q \mod \ell$.

The conductors of characters of order ℓ are square-free $F \in \mathbb{F}_q[t]$ supported on prime polynomials $P \in \mathbb{F}_q[t]$ with $n_q \mid \deg P$, or equivalently, P which split completely in $\mathbb{F}_{q^{n_q}}(t)/\mathbb{F}_q(t)$.

Writing *F* as a product of n_q conjugates in $\mathbb{F}_{q^{n_q}}(t)$,

$$F = \mathfrak{F}_1 \dots \mathfrak{F}_{n_q}, \ \phi_q(\mathfrak{F}_i) = \mathfrak{F}_{i+1} \Rightarrow N_q(\mathfrak{F}_i) = F,$$

one can write the equation of C in terms of $\mathfrak{F}_1, \ldots \mathfrak{F}_{n_q}$ (Bary-Soroker-Meisner, 2019).

For example, if $\ell = 3$ and $q \equiv 2 \mod 3$ (and $n_q = 2$)

$$C_F : y^3 - 3\mathfrak{F}_1\mathfrak{F}_2 y - \mathfrak{F}_1\mathfrak{F}_2(\mathfrak{F}_1 + \mathfrak{F}_2) = 0.$$

General *l*-cyclic covers

For general ℓ -cyclic covers, using the result of Poonen about square-free values of multi-variable polynomials over $\mathbb{F}_{a}[t]$, we can show that

Theorem

Let E_0 be an elliptic curve over \mathbb{F}_q , and let $\mathbf{E} = \mathbf{E}_0 \times_{\mathbb{F}_q} \mathbb{F}_q(t)$. If there is one Dirichlet character χ_0 of order ℓ over $\mathbb{F}_q(t)$ with conductor of degree d_0 such that $\mathcal{L}(E, \chi_0, q^{-1}) = 0$, there are at least $\gg q^{2n/d_0}$ Dirichlet characters of order ℓ over $\mathbb{F}_q(t)$ with conductor of degree bounded by n such that $\mathcal{L}(E, \chi, q^{-1}) = 0$.

Remark: The d_0 comes from the initial curve C_0 . The 2 comes from the fact that we use h(t) = u(t)/v(t) in the map from C to C_0 by homegenizing the equations, so we use Poonen's sieve with m = 2 for the tuples (u(t), v(t)).

Let $E = E_0 \times_{\mathbb{F}_q} \mathbb{F}_q(t)$. How do you produce a ℓ -cyclic cover C_0 over \mathbb{F}_q such that $\mathcal{L}(E/K_{C_0}, q^{-1}) = 0$?

Examples for constant curves

• Over \mathbb{F}_{13} , the 7-cyclic cover C_0 $(n_q = 2)$ with equation

$$y^{7} + (6t^{4} + 6t^{3} + 6t^{2} + 12t + 1)y^{5} + (t^{8} + 2t^{7} + 3t^{6} + 6t^{5} + t^{4} + 5t + 4)y^{3} + (6t^{12} + 5t^{11} + 10t^{10} + 7t^{8} + 2t^{7} + \dots + 2t^{3} + 6t^{2} + t + 4)y + 11t^{14} + 6t^{13} + 12t^{12} + 10t^{11} + \dots + 7t^{4} + 12t^{3} + 3t^{2} + 3t + 9 = 0$$

has $\mathcal{L}(C_0, u) = (1 + 13u^2)^6 = \mathcal{L}(E_0, u)^6$ where E_0 is a supersingular elliptic curve over \mathbb{F}_{13} . Then, $\mathcal{L}(C_0, \alpha_0) = 0$ and $\mathcal{L}(E/K_{C_0}, q^{-1}) = 0$ for $E = E_0 \times_{\mathbb{F}_q} \mathbb{F}_q(t)$, and there are infinitely many such 7-cyclic covers C.

• Let E_0/\mathbb{F}_{73} be a supersingular elliptic curve, and $E = E_0 \times_{\mathbb{F}_q} \mathbb{F}_q(t)$. There is a character χ_0 of order 37 over $\mathbb{F}_{73}[t]$ such that $\mathcal{L}(E, \chi, q^{-1}) = 0$, and there are infinitely many such χ of order 37.

Numerical data for non-constant curves

We also computed numerically $\mathcal{L}(E, \chi, u)$ for non-constant E and χ of order ℓ . Let F_{χ} be the conductor of χ . The twisted *L*-functions are polynomials of degree $N = \deg N_E + 2 \deg F_{\chi} - 4 + 2\delta_{\chi}$

$$\mathcal{L}(E,\chi,u) = \sum_{n=0}^{N} \left(\sum_{f \in \mathcal{M}_n} a_f \chi(f) \right) u^n = \sum_{n=0}^{N} c_n u^n.$$

Using the functional equation,

$$c_n = \omega_{E\otimes\chi} \ p^{2(n-\lfloor N/2 \rfloor -1)} \ \overline{c_{N-n}}, \ \ 0 \le n \le N,$$

and it suffices to compute c_i for $0 \le i \le \lfloor N/2 \rfloor$.

The next slide shows data for the analytic rank of $\mathcal{L}(E, \chi, u)$ at $u = q^{-1}$, for twists of order 3 and

$$E: y^2 = (x-1)(x-2t^2-1)(x-t^2).$$

Numerical data for non-constant curves

р	n _p	deg(conductor χ)	rank 0	rank 1	rank 2	rank 3
5	2	2	8	2	0	0
		4	214	26	0	0
		6	5780	280	0	0
		8	149222	2136	20	2
7	1	1	4	0	0	0
		2	30	2	0	0
		3	264	22	2	0
		4	2299	49	4	0
		5	18670	240	2	0
		6	148537	1343	32	0