Torsion points and concurrent exceptional curves on Del Pezzo surfaces of degree 1

Julie Desjardins on a joint work with R. Winter
Québec-Maine Number Theory Conference

15 October 2022

In ultima rex

X del Pezzo of degree 1.
\mathscr{E} rational elliptic surface obtained from X by blowup.
$P \in X$ point at the intersection of many exceptional curves.

Q: When is $P \in X$ a torsion point on its fibre of \mathscr{E} ?

Plan of the talk

0 . In ultima res

1. Misty opening, our protagonists and initial set up
2. Flash back to the inciting incident
3. The resolution and a cliffhanger

1. Set up

Our main protagonist:

An elliptic surface \mathscr{E} with base \mathbb{P}_{k}^{1} is:

- a smooth, projective surface
- fibered in elliptic curves:
- $\pi: \mathscr{E} \longrightarrow \mathbb{P}_{k}^{1}$ is such that a fiber $\mathscr{E}_{t}:=\pi^{-1}(t)$ has genus 1 (finitely many exception)
- there exists a section to π

Equivalently: there exists a Weierstrass equation
$y^{2}=x^{3}+F(T) x+G(T)$, with $F, G \in \mathbb{Q}[T]$, describing the surface.

Misty opening:

Silverman's Specialization Theorem

Let \mathscr{E}_{T} be an elliptic surface with base \mathbb{P}^{1} over k extension of \mathbb{Q}, then for all $t \in k[T]$ except finitely many:

$$
r_{k[T]}\left(\mathscr{E}_{T}\right) \leq r_{k}\left(\mathscr{E}_{t}\right)
$$

(1) When do we have a rank fall? $t \in k$ such that $r_{k[T]}\left(E_{T}\right)>r_{k}\left(E_{t}\right)$.
(2) When do we have a rank jump? $t \in k$ such that $r_{k[T]}\left(E_{T}\right)<r_{k}\left(E_{t}\right)$.

"Rank fall" : misty questioning

(1) When do we have a rank fall? $t \in K$ such that $r_{K}\left(E_{T}\right)>r_{k}\left(E_{t}\right)$.

- Specialized sections are dependant points.

"Rank fall" : misty questioning

(1) When do we have a rank fall? $t \in K$ such that $r_{K}\left(E_{T}\right)>r_{k}\left(E_{t}\right)$.

- Specialized sections are dependant points.
- Non-torsion sections intersect.

"Rank fall" : misty questioning

(1) When do we have a rank fall? $t \in K$ such that $r_{K}\left(E_{T}\right)>r_{k}\left(E_{t}\right)$.

- Specialized sections are dependant points.
- Non-torsion sections intersect.

- If many independant sections intersect, the rank fall could be even bigger!

"Rank fall" : misty questioning

(1) When do we have a rank fall? $t \in K$ such that $r_{K}\left(E_{T}\right)>r_{k}\left(E_{t}\right)$.

- Specialized sections are dependant points.
- Non-torsion sections intersect.

- If many independant sections intersect, the rank fall could be even bigger! Especially if the intersection point is torsion!

"Rank fall": misty questioning

(1) When do we have a rank fall? $t \in K$ such that $r_{K}\left(E_{T}\right)>r_{k}\left(E_{t}\right)$.

- Specialized sections are dependant points.
- Non-torsion sections intersect.

- If many independant sections intersect, the rank fall could be even bigger! Especially if the intersection point is torsion!
- Q: When is the intersection of many sections a torsion point?

"Rank fall": misty questioning

(1) When do we have a rank fall? $t \in K$ such that $r_{K}\left(E_{T}\right)>r_{k}\left(E_{t}\right)$.

- Specialized sections are dependant points.
- Non-torsion sections intersect.

- If many independant sections intersect, the rank fall could be even bigger! Especially if the intersection point is torsion!
- Q: When is the intersection of many sections a torsion point?

Warning: there could be non-torsion points on the fibers unrelated to the sections!

Our ally:

- X Del Pezzo surface
- smooth, projective, geometrically integral over k
- with ample $-K_{X}$
- $1 \leq$ degree ≤ 9 is $\left(K_{X} \cdot K_{X}\right)$

Equivalently if $d \neq 8$: isomorphic to blow up of \mathbb{P}_{k}^{2} in $9-d$ points in general position

Our ally:

- X Del Pezzo surface of degree 1
- smooth, projective, geometrically integral over k
- with ample $-K_{X}$
- $\left(K_{X} \cdot K_{X}\right)=1$

Equivalently: isomorphic to blow up of \mathbb{P}_{k}^{2} in 8 points in general position

Our ally:

- X Del Pezzo surface of degree 1
- smooth, projective, geometrically integral over k
- with ample $-K_{X}$
- $\left(K_{X} \cdot K_{X}\right)=1$

Equivalently: isomorphic to blow up of \mathbb{P}_{k}^{2} in 8 points in general position

- \mathscr{E} elliptic surface with base \mathbb{P}_{k}^{1}
- smooth, projective
- fibered in elliptic curves:
$\star \pi: \mathscr{E} \longrightarrow \mathbb{P}_{k}^{1}$ is such that a fiber $\mathscr{E}_{t}:=\pi^{-1}(t)$ has genus 1 (finitely many exception)
\star there exists a section to π
Equivalently: there exists a Weierstrass equation
$y^{2}=x^{3}+F(T) x+G(T)$, with $F, G \in \mathbb{Q}[T]$, describing the surface.

Our ally:

- X Del Pezzo surface of degree 1
- smooth, projective, geometrically integral over k
- with ample $-K_{X}$
- $\left(K_{X} \cdot K_{X}\right)=1$

Equivalently: isomorphic to blow up of \mathbb{P}_{k}^{2} in 8 points in general position

- \mathscr{E} rational elliptic surface with base \mathbb{P}_{k}^{1}
- smooth, projective, birational to \mathbb{P}_{k}^{2}
- fibered in elliptic curves:
$\star \pi: \mathscr{E} \longrightarrow \mathbb{P}_{k}^{1}$ is such that a fiber $\mathscr{E}_{t}:=\pi^{-1}(t)$ has genus 1 (finitely many exception)
* there exists a section to π

Equivalently: there exists a Weierstrass equation $y^{2}=x^{3}+F(T) x+G(T)$, with $F, G \in \mathbb{Q}[T]$, describing the surface.
$0 \leq \operatorname{deg} F \leq 4,0 \leq \operatorname{deg} G \leq 6,1 \leq \operatorname{deg} \Delta \leq 12$

Our ally:

- X Del Pezzo surface of degree 1
- smooth, projective, geometrically integral over k
- with ample $-K_{X}$
- $\left(K_{X} \cdot K_{X}\right)=1$

Equivalently: isomorphic to blow up of \mathbb{P}_{k}^{2} in 8 points in general position

- \mathscr{E} rational elliptic surface with base \mathbb{P}_{k}^{1}
- smooth, projective, birational to \mathbb{P}_{k}^{2}
- fibered in elliptic curves:
$\star \pi: \mathscr{E} \longrightarrow \mathbb{P}_{k}^{1}$ is such that a fiber $\mathscr{E}_{t}:=\pi^{-1}(t)$ has genus 1 (finitely many exception)
* there exists a section to π

Equivalently: there exists a Weierstrass equation $y^{2}=x^{3}+F(T) x+G(T)$, with $F, G \in \mathbb{Q}[T]$, describing the surface. $0 \leq \operatorname{deg} F \leq 4,0 \leq \operatorname{deg} G \leq 6,1 \leq \operatorname{deg} \Delta \leq 12$

- on a Del Pezzo surface of degree d, blow up $9-d$ points to obtain a rational elliptic surface.

DP1 $\rightarrow \mathscr{E}$

- Let S be a del Pezzo surface of degree one on a field k. Then S is isomorphic to a sextic hypersurface there is an equation of the form

$$
y^{2}=x^{3}+F(z, w) x+G(z, w)
$$

in $\mathbb{P}(1,1,2,3)$, where $\operatorname{deg} F=4, \operatorname{deg} G=6$.

DP1 $\rightarrow \mathscr{E}$

- Let S be a del Pezzo surface of degree one on a field k. Then S is isomorphic to a sextic hypersurface there is an equation of the form

$$
y^{2}=x^{3}+F(z, w) x+G(z, w)
$$

in $\mathbb{P}(1,1,2,3)$, where $\operatorname{deg} F=4, \operatorname{deg} G=6$.

- Blow-up $[0,0,1,0]$ on S : obtain a rational elliptic surface \mathscr{E} of equation

$$
y^{2}=x^{3}+F(z / w, 1) x+G(z / w, 1) .
$$

DP1 $\rightarrow \mathscr{E}$

- Let S be a del Pezzo surface of degree one on a field k. Then S is isomorphic to a sextic hypersurface there is an equation of the form

$$
y^{2}=x^{3}+F(z, w) x+G(z, w)
$$

in $\mathbb{P}(1,1,2,3)$, where $\operatorname{deg} F=4, \operatorname{deg} G=6$.

- Blow-up $[0,0,1,0]$ on S : obtain a rational elliptic surface \mathscr{E} of equation

$$
y^{2}=x^{3}+F(z / w, 1) x+G(z / w, 1)
$$

- reciprocal only if \mathscr{E} only has irreducible fibers (smoothness of $S!$)

DP1 $\rightarrow \mathscr{E}$

- Let S be a del Pezzo surface of degree one on a field k. Then S is isomorphic to a sextic hypersurface there is an equation of the form

$$
y^{2}=x^{3}+F(z, w) x+G(z, w)
$$

in $\mathbb{P}(1,1,2,3)$, where $\operatorname{deg} F=4, \operatorname{deg} G=6$.

- Blow-up $[0,0,1,0$] on S : obtain a rational elliptic surface \mathscr{E} of equation

$$
y^{2}=x^{3}+F(z / w, 1) x+G(z / w, 1) .
$$

- reciprocal only if \mathscr{E} only has irreducible fibers (smoothness of $S!$)

Example: Isotrivial rational elliptic surfaces: $\mathscr{E}: y^{2}=x^{3}+\tilde{G}(T)$ where $\tilde{G}(T)$ is squarefree and $\operatorname{deg} \tilde{G}=5,6$.

DP1 $-\rightarrow \mathscr{E}$

$\left(E_{8} \leftrightarrow\right)$ Exceptional curves \longleftrightarrow sections of minimal height

- The root system E_{8} is in correspondance with the set of exceptional curves of a dP1.

$\left(E_{8} \leftrightarrow\right)$ Exceptional curves \longleftrightarrow sections of minimal height

- The root system E_{8} is in correspondance with the set of exceptional curves of a dP1.
- Respectively for dP of degree $d=6,5,4,3,2,1$ respectively the exceptional curves are in correspondance with:

$$
A_{1} \times A_{2}, A_{4}, D_{5}, E_{6}, E_{7}, E_{8}
$$

Thus

$d(X)$	7	6	5	4	3	2	1
\# of exceptional curves	3	6	10	16	27	56	240

Table 1. Number of exceptional curves on X

$\left(E_{8} \leftrightarrow\right)$ Exceptional curves \longleftrightarrow sections of minimal height

- The root system E_{8} is in correspondance with the set of exceptional curves of a dP1.
- Respectively for dP of degree $d=6,5,4,3,2,1$ respectively the exceptional curves are in correspondance with:

$$
A_{1} \times A_{2}, A_{4}, D_{5}, E_{6}, E_{7}, E_{8}
$$

Thus

$d(X)$	7	6	5	4	3	2	1
\# of exceptional curves	3	6	10	16	27	56	240

Table 1. Number of exceptional curves on X

- Correspondance ($d=1,2$):
exceptional curves of $X \longleftrightarrow$ minimal sections on \mathscr{E}

DP1 $\rightarrow \mathscr{E}$

2. Inciting element

Our actual motivation:

(2) When do we have a rank jump? $t \in K$ such that $r_{K}\left(E_{T}\right)<r_{k}\left(E_{t}\right)$.

- Can we have this for infinitely many t ?

Our actual motivation:

(2) When do we have a rank jump? $t \in K$ such that $r_{K}\left(E_{T}\right)<r_{k}\left(E_{t}\right)$.

- Can we have this for infinitely many t ?

Theorem (D. 2018)
If $k=\mathbb{Q}$, suppose \mathscr{E} is non-isotrivial, then under analytical number theory conjectures on certain factors of $\Delta_{\mathscr{E}}$, we have $\#\left\{t \in \mathbb{Q}: W\left(\mathscr{E}_{t}\right)=-1\right\}=\infty$.

Our actual motivation:

(2) When do we have a rank jump? $t \in K$ such that $r_{K}\left(E_{T}\right)<r_{k}\left(E_{t}\right)$.

- Can we have this for infinitely many t ?

Theorem (D. 2018)

If $k=\mathbb{Q}$, suppose \mathscr{E} is non-isotrivial, then under analytical number theory conjectures on certain factors of $\Delta_{\mathscr{E}}$, we have $\#\left\{t \in \mathbb{Q}: W\left(\mathscr{E}_{t}\right)=-1\right\}=\infty$.By the Parity conjecture, this implies the Zariski-density of \mathscr{E}.

Our actual motivation:

(2) When do we have a rank jump? $t \in K$ such that $r_{K}\left(E_{T}\right)<r_{k}\left(E_{t}\right)$.

- Can we have this for infinitely many t ?

Theorem (D. 2018)

If $k=\mathbb{Q}$, suppose \mathscr{E} is non-isotrivial, then under analytical number theory conjectures on certain factors of $\Delta_{\mathscr{E}}$, we have $\#\left\{t \in \mathbb{Q}: W\left(\mathscr{E}_{t}\right)=-1\right\}=\infty$.By the Parity conjecture, this implies the Zariski-density of \mathscr{E}.

Isotrivial?

Our actual motivation:

(2) When do we have a rank jump? $t \in K$ such that $r_{K}\left(E_{T}\right)<r_{k}\left(E_{t}\right)$.

- Can we have this for infinitely many t ?

Theorem (D. 2018)

If $k=\mathbb{Q}$, suppose \mathscr{E} is non-isotrivial, then under analytical number theory conjectures on certain factors of $\Delta_{\mathscr{E}}$, we have $\#\left\{t \in \mathbb{Q}: W\left(\mathscr{E}_{t}\right)=-1\right\}=\infty$.By the Parity conjecture, this implies the Zariski-density of \mathscr{E}.

Isotrivial?

- Direct application: is $\mathscr{E}(k)$ Zariski-dense?

Our actual motivation:

(2) When do we have a rank jump? $t \in K$ such that $r_{K}\left(E_{T}\right)<r_{k}\left(E_{t}\right)$.

- Can we have this for infinitely many t ?

Theorem (D. 2018)

If $k=\mathbb{Q}$, suppose \mathscr{E} is non-isotrivial, then under analytical number theory conjectures on certain factors of $\Delta_{\mathscr{E}}$, we have $\#\left\{t \in \mathbb{Q}: W\left(\mathscr{E}_{t}\right)=-1\right\}=\infty$.By the Parity conjecture, this implies the Zariski-density of \mathscr{E}.

Isotrivial?

- Direct application: is $\mathscr{E}(k)$ Zariski-dense?

Theorem (Iskovskih)
A rational elliptic surface has a minimal model that either a DP or a conic bundle.

Our actual motivation:

(2) When do we have a rank jump? $t \in K$ such that $r_{K}\left(E_{T}\right)<r_{k}\left(E_{t}\right)$.

- Can we have this for infinitely many t ?

Theorem (D. 2018)

If $k=\mathbb{Q}$, suppose \mathscr{E} is non-isotrivial, then under analytical number theory conjectures on certain factors of $\Delta_{\mathscr{E}}$, we have $\#\left\{t \in \mathbb{Q}: W\left(\mathscr{E}_{t}\right)=-1\right\}=\infty$.By the Parity conjecture, this implies the Zariski-density of \mathscr{E}.

Isotrivial?

- Direct application: is $\mathscr{E}(k)$ Zariski-dense?

Theorem (Iskovskih)
A rational elliptic surface has a minimal model that either a DP or a conic bundle.
Theorem (Manin-Segree-Pieropan-Kollar)
A del Pezzo surface of degree $d \geq 3$ over a field k that has a k-rational point is unirational over k, (This implies Zariski-density of $X(k)$.)

Our actual motivation:

(2) When do we have a rank jump? $t \in K$ such that $r_{K}\left(E_{T}\right)<r_{k}\left(E_{t}\right)$.

- Can we have this for infinitely many t ?

Theorem (D. 2018)

If $k=\mathbb{Q}$, suppose \mathscr{E} is non-isotrivial, then under analytical number theory conjectures on certain factors of $\Delta_{\mathscr{E}}$, we have $\#\left\{t \in \mathbb{Q}: W\left(\mathscr{E}_{t}\right)=-1\right\}=\infty$.By the Parity conjecture, this implies the Zariski-density of \mathscr{E}.

Isotrivial?

- Direct application: is $\mathscr{E}(k)$ Zariski-dense?

Theorem (Iskovskih)
A rational elliptic surface has a minimal model that either a DP or a conic bundle.
Theorem (Manin-Segree-Pieropan-Kollar)
A del Pezzo surface of degree $d \geq 3$ over a field k that has a k-rational point is unirational over k, (This implies Zariski-density of $X(k)$.)

Unirationality

A variety X is unirational over a field k if there is a map $\mathbb{P}_{k}^{n} \rightarrow X$ for some n such that the image is dense in X.

Unirationality

A variety X is unirational over a field k if there is a map $\mathbb{P}_{k}^{n} \rightarrow X$ for some n such that the image is dense in X.

Theorem (Salgado-Testa-Várilly-Alvarado '14)
A del Pezzo surface of degree 2 over a field k, that contains a k-rational point outside the ramification locus and not contained in the intersection of 4 exceptional curves, is unirational over k.

Unirationality

A variety X is unirational over a field k if there is a map $\mathbb{P}_{k}^{n} \rightarrow X$ for some n such that the image is dense in X.

Theorem (Salgado-Testa-Várilly-Alvarado '14)
A del Pezzo surface of degree 2 over a field k, that contains a k-rational point outside the ramification locus and not contained in the intersection of 4 exceptional curves, is unirational over k.

Theorem (Kollár-Mella 2017)

An elliptic surface over a field k with char $k \neq 0$ that admits a conic bundle structure is unirational.
In particular, this also proves Zariski-density for del Pezzo surface of degree 1 that admits a conic bundle structure.

Unirationality

A variety X is unirational over a field k if there is a map $\mathbb{P}_{k}^{n} \rightarrow X$ for some n such that the image is dense in X.

Theorem (Salgado-Testa-Várilly-Alvarado '14)

A del Pezzo surface of degree 2 over a field k, that contains a k-rational point outside the ramification locus and not contained in the intersection of 4 exceptional curves, is unirational over k.

Theorem (Kollár-Mella 2017)

An elliptic surface over a field k with char $k \neq 0$ that admits a conic bundle structure is unirational.
In particular, this also proves Zariski-density for del Pezzo surface of degree 1 that admits a conic bundle structure.

Q: What about the del Pezzo surfaces of degree 1 with no conic bundle structure?

Zariski-density of Del Pezzo of degree 1

Let X be a del Pezzo surface of degree 1 over a field k with char $k \neq 2,3$.
Let \mathscr{E} be the corresponding elliptic surface.

Zariski-density of Del Pezzo of degree 1

Let X be a del Pezzo surface of degree 1 over a field k with char $k \neq 2,3$. Let \mathscr{E} be the corresponding elliptic surface.

Theorem (Salgado-van Luijk 2014)

Assuming $\exists P \in X$ with certain technical properties, one can construct a multisection $C \subset X$. If C has infinitely many points this proves the Zariski-density.

Zariski-density of Del Pezzo of degree 1

Let X be a del Pezzo surface of degree 1 over a field k with char $k \neq 2,3$. Let \mathscr{E} be the corresponding elliptic surface.

Theorem (Salgado-van Luijk 2014)

Assuming $\exists P \in X$ with certain technical properties, one can construct a multisection $C \subset X$. If C has infinitely many points this proves the Zariski-density.
(1) C is not generally a genus ≥ 1 curve.

Zariski-density of Del Pezzo of degree 1

Let X be a del Pezzo surface of degree 1 over a field k with char $k \neq 2,3$. Let \mathscr{E} be the corresponding elliptic surface.

Theorem (Salgado-van Luijk 2014)

Assuming $\exists P \in X$ with certain technical properties, one can construct a multisection $C \subset X$. If C has infinitely many points this proves the Zariski-density.
(1) C is not generally a genus ≥ 1 curve.
(2) Their construction of C fails in several examples. In all cases, P is contained in at least 6 lines, and in all cases it is torsion.

Zariski-density of Del Pezzo of degree 1

Let X be a del Pezzo surface of degree 1 over a field k with char $k \neq 2,3$. Let \mathscr{E} be the corresponding elliptic surface.

Theorem (Salgado-van Luijk 2014)

Assuming $\exists P \in X$ with certain technical properties, one can construct a multisection $C \subset X$. If C has infinitely many points this proves the Zariski-density.
(1) C is not generally a genus ≥ 1 curve.
(2) Their construction of C fails in several examples. In all cases, P is contained in at least 6 lines, and in all cases it is torsion.

Theorem (D.-Winter 2022)

For a certain (isotrivial!) family, the rational points are dense assuming $\exists P \in S$ non-torsion on its fiber.

3. Resolution

Initial question

X del Pezzo of degree 1.
\mathscr{E} rational elliptic surface obtained from X by blow up.
$P \in X$ point at the intersection of many exceptional curves.
If $P \in X$ is contained in 'many' exceptional curves, is it a torsion point on its fibre of \mathscr{E} ?

Initial question

X del Pezzo of degree 1.
\mathscr{E} rational elliptic surface obtained from X by blow up.
$P \in X$ point at the intersection of many exceptional curves.
If $P \in X$ is contained in 'many' exceptional curves, is it a torsion point on its fibre of \mathscr{E} ?

Theorem (Kuwata 2005)
For del Pezzo surfaces of degree 2, if 'many' equals 4, then yes.

Some answer

Let X be a del Pezzo surface of degree 1, and \mathscr{E} the corresponding elliptic surface.
Theorem
If a point on X is contained in a least 9 exceptional curves, then it is torsion on its fiber on \mathscr{E}.

Some answer

Let X be a del Pezzo surface of degree 1, and \mathscr{E} the corresponding elliptic surface.

Theorem
If a point on X is contained in a least 9 exceptional curves, then it is torsion on its fiber on \mathscr{E}.
Moreover, for some X we can find a point contained in 7 exceptional curves that is non-torsion on its fiber.

Some answer

Let X be a del Pezzo surface of degree 1, and \mathscr{E} the corresponding elliptic surface.

Theorem
If a point on X is contained in a least 9 exceptional curves, then it is torsion on its fiber on \mathscr{E}.
Moreover, for some X we can find a point contained in 7 exceptional curves that is non-torsion on its fiber.

- The 240 lines on X are sections on \mathscr{E}. Those sections generate the group $\operatorname{MW}(\mathscr{E})$, which is torsion free and has rank at most 8 .

Some answer

Let X be a del Pezzo surface of degree 1 , and \mathscr{E} the corresponding elliptic surface.

Theorem

If a point on X is contained in a least 9 exceptional curves, then it is torsion on its fiber on \mathscr{E}.
Moreover, for some X we can find a point contained in 7 exceptional curves that is non-torsion on its fiber.

- The 240 lines on X are sections on \mathscr{E}. Those sections generate the group $M W(\mathscr{E})$, which is torsion free and has rank at most 8 .
- $\ln \mathbb{P}^{2}$, those exceptional curves correspond to:
- One of the pt P_{i}
- A line passing through two of the P_{i} 's
- A conic passing through five of the P_{i} 's
- A cubic passing through seven of the P_{i} 's (one double point)
- A quartic passing through eight of the P_{i} 's (three double points)
- A quintic passing through eight of the P_{i} 's (6 double points)
- A sextic through 8 of P_{i} 's (7 double points, 1 triple pt)

Sketch of the proof

If $n \geq 9$ lines intersect in a point $P \in X$, then the correspond to n sections on \mathscr{E}, say S_{1}, \ldots, S_{n} which all intersect in P.

Sketch of the proof

If $n \geq 9$ lines intersect in a point $P \in X$, then the correspond to n sections on \mathscr{E}, say S_{1}, \ldots, S_{n} which all intersect in P. Since $M W(\mathscr{E})$ has rank at most 8 and $n \geq 9$, there are integers $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ such that

$$
a_{1} S_{1}+\cdots+a_{n} S_{n}=0
$$

Sketch of the proof

If $n \geq 9$ lines intersect in a point $P \in X$, then the correspond to n sections on \mathscr{E}, say S_{1}, \ldots, S_{n} which all intersect in P.
Since $M W(\mathscr{E})$ has rank at most 8 and $n \geq 9$, there are integers $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ such that

$$
a_{1} S_{1}+\cdots+a_{n} S_{n}=0
$$

Specializing to the fiber of P, we get: $\left(a_{1}+\cdots+a_{n}\right) P=0$.

Sketch of the proof

If $n \geq 9$ lines intersect in a point $P \in X$, then the correspond to n sections on \mathscr{E}, say S_{1}, \ldots, S_{n} which all intersect in P.
Since $M W(\mathscr{E})$ has rank at most 8 and $n \geq 9$, there are integers $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ such that

$$
a_{1} S_{1}+\cdots+a_{n} S_{n}=0 .
$$

Specializing to the fiber of P, we get: $\left(a_{1}+\cdots+a_{n}\right) P=0$.
Show that we can choose a_{1}, \ldots, a_{n} such that their sum is non zero.

Sketch of the proof

If $n \geq 9$ lines intersect in a point $P \in X$, then the correspond to n sections on \mathscr{E}, say S_{1}, \ldots, S_{n} which all intersect in P.
Since $M W(\mathscr{E})$ has rank at most 8 and $n \geq 9$, there are integers $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ such that

$$
a_{1} S_{1}+\cdots+a_{n} S_{n}=0
$$

Specializing to the fiber of P, we get: $\left(a_{1}+\cdots+a_{n}\right) P=0$.
Show that we can choose a_{1}, \ldots, a_{n} such that their sum is non zero.
There is a height pairing \langle,\rangle_{h} on $M W(\mathscr{E})$, symmetric and bilinear.
Fact: if $\langle,\rangle_{h}=0$ then $S=0$ for all $S \in M W(\mathscr{E})$

Sketch of the proof

If $n \geq 9$ lines intersect in a point $P \in X$, then the correspond to n sections on \mathscr{E}, say S_{1}, \ldots, S_{n} which all intersect in P.
Since $M W(\mathscr{E})$ has rank at most 8 and $n \geq 9$, there are integers $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ such that

$$
a_{1} S_{1}+\cdots+a_{n} S_{n}=0
$$

Specializing to the fiber of P, we get: $\left(a_{1}+\cdots+a_{n}\right) P=0$.
Show that we can choose a_{1}, \ldots, a_{n} such that their sum is non zero.
There is a height pairing \langle,\rangle_{h} on $M W(\mathscr{E})$, symmetric and bilinear.
Fact: if $\langle,\rangle_{h}=0$ then $S=0$ for all $S \in M W(\mathscr{E})$
Let M be the height pairing matrix of S_{1}, \ldots, S_{n}. For $\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{ker}(M)$, we have $a_{1} S_{1}+\cdots+a_{n} S_{n}=0$.

Sketch of the proof

If $n \geq 9$ lines intersect in a point $P \in X$, then the correspond to n sections on \mathscr{E}, say S_{1}, \ldots, S_{n} which all intersect in P.
Since $M W(\mathscr{E})$ has rank at most 8 and $n \geq 9$, there are integers $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ such that

$$
a_{1} S_{1}+\cdots+a_{n} S_{n}=0
$$

Specializing to the fiber of P, we get: $\left(a_{1}+\cdots+a_{n}\right) P=0$.
Show that we can choose a_{1}, \ldots, a_{n} such that their sum is non zero.
There is a height pairing \langle,\rangle_{h} on $M W(\mathscr{E})$, symmetric and bilinear.
Fact: if $\langle,\rangle_{h}=0$ then $S=0$ for all $S \in M W(\mathscr{E})$
Let M be the height pairing matrix of S_{1}, \ldots, S_{n}. For $\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{ker}(M)$, we have $a_{1} S_{1}+\cdots+a_{n} S_{n}=0$.

Need to show that there is a vector $v \in \operatorname{ker} M$ that does not sum to 0 .

Key Ingredient: Configuration of exceptional curves

- The set of 240 exceptional curves are in bijection with the root system E_{8}.

Key Ingredient: Configuration of exceptional curves

- The set of 240 exceptional curves are in bijection with the root system E_{8}.
- Let e, f be exc. curves on X, corresponding to S, T sections on \mathscr{E}. We have:

$$
\langle S, T\rangle_{h}=1-\langle e, f\rangle=r_{e} \cdot r_{f}
$$

where \langle,$\rangle is on Pic X$, and $r_{e}, r_{f} \in E_{8}$ corresponding to e, f.

Key Ingredient: Configuration of exceptional curves

- The set of 240 exceptional curves are in bijection with the root system E_{8}.
- Let e, f be exc. curves on X, corresponding to S, T sections on \mathscr{E}. We have:

$$
\langle S, T\rangle_{h}=1-\langle e, f\rangle=r_{e} \cdot r_{f}
$$

where \langle,$\rangle is on Pic \mathrm{X}$, and $r_{e}, r_{f} \in E_{8}$ corresponding to e, f.

- The isomorphism type of a set of lines determines their Gram matrix.

Key Ingredient: Configuration of exceptional curves

- The set of 240 exceptional curves are in bijection with the root system E_{8}.
- Let e, f be exc. curves on X, corresponding to S, T sections on \mathscr{E}. We have:

$$
\langle S, T\rangle_{h}=1-\langle e, f\rangle=r_{e} \cdot r_{f}
$$

where \langle,$\rangle is on Pic \mathrm{X}$, and $r_{e}, r_{f} \in E_{8}$ corresponding to e, f.

- The isomorphism type of a set of lines determines their Gram matrix.
- (van Luijk - Winter 2021) List of all isomorphism type of maximal cliques in weighted graphs on E_{8}.

Key Ingredient: Configuration of exceptional curves

- The set of 240 exceptional curves are in bijection with the root system E_{8}.
- Let e, f be exc. curves on X, corresponding to S, T sections on \mathscr{E}. We have:

$$
\langle S, T\rangle_{h}=1-\langle e, f\rangle=r_{e} \cdot r_{f}
$$

where \langle,$\rangle is on Pic X$, and $r_{e}, r_{f} \in E_{8}$ corresponding to e, f.

- The isomorphism type of a set of lines determines their Gram matrix.
- (van Luijk - Winter 2021) List of all isomorphism type of maximal cliques in weighted graphs on E_{8}.
- As a consequence of their work:

Theorem (van Luijk - Winter 2021)

If chark $=0$, a point on X is contained in at 10 exceptional curves.

Putting everything together

Let e_{1}, \ldots, e_{n} be $n \geq 9$ exceptional curves on X, and assume that they meet in a point $P \in X$.
We want to show that P is torsion on its fiber of \mathscr{E}.

Putting everything together

Let e_{1}, \ldots, e_{n} be $n \geq 9$ exceptional curves on X, and assume that they meet in a point $P \in X$.
We want to show that P is torsion on its fiber of \mathscr{E}.

- We have $n \leq 10$.

Putting everything together

Let e_{1}, \ldots, e_{n} be $n \geq 9$ exceptional curves on X, and assume that they meet in a point $P \in X$.
We want to show that P is torsion on its fiber of \mathscr{E}.

- We have $n \leq 10$.
- van Luijk-Winter list tell us that up to isomorphism of intersection graph, we need to consider
- 11 maximal sets of size 9 ,
- 6 maximal sets of size 10 ,
- 1 maximal set of size 12 .

Putting everything together

Let e_{1}, \ldots, e_{n} be $n \geq 9$ exceptional curves on X, and assume that they meet in a point $P \in X$.
We want to show that P is torsion on its fiber of \mathscr{E}.

- We have $n \leq 10$.
- van Luijk-Winter list tell us that up to isomorphism of intersection graph, we need to consider
- 11 maximal sets of size 9 ,
- 6 maximal sets of size 10 ,
- 1 maximal set of size 12 .
- For each of these 18 sets, Winter found a vector in the kernel of Gram matrix which does not sum to 0 .

Putting everything together

Let e_{1}, \ldots, e_{n} be $n \geq 9$ exceptional curves on X, and assume that they meet in a point $P \in X$.
We want to show that P is torsion on its fiber of \mathscr{E}.

- We have $n \leq 10$.
- van Luijk-Winter list tell us that up to isomorphism of intersection graph, we need to consider
- 11 maximal sets of size 9 ,
- 6 maximal sets of size 10 ,
- 1 maximal set of size 12 .
- For each of these 18 sets, Winter found a vector in the kernel of Gram matrix which does not sum to 0 .
- So 'many' $=9$ implies yes to the question. What if many is smaller than 9 ?

Putting everything together

Let e_{1}, \ldots, e_{n} be $n \geq 9$ exceptional curves on X, and assume that they meet in a point $P \in X$.
We want to show that P is torsion on its fiber of \mathscr{E}.

- We have $n \leq 10$.
- van Luijk-Winter list tell us that up to isomorphism of intersection graph, we need to consider
- 11 maximal sets of size 9 ,
- 6 maximal sets of size 10 ,
- 1 maximal set of size 12 .
- For each of these 18 sets, Winter found a vector in the kernel of Gram matrix which does not sum to 0 .
- So 'many' $=9$ implies yes to the question. What if many is smaller than 9 ?
- To get all the isomorphism types of intersection graphs of 8 intersecting exceptional curves we need to aditionnally consider:
- 29 maximal sets of size 8 .

Approach for 7 and 8 lines

- There are 47 isomorphism types of intersection graphs of 8 exceptional curves.
- For 32 of them, the kernel of the Gram matrix has vector not summing to $0 \Rightarrow$ if concurrent, the curves would intersect in a torsion point.

Approach for 7 and 8 lines

- There are 47 isomorphism types of intersection graphs of 8 exceptional curves.
- For 32 of them, the kernel of the Gram matrix has vector not summing to $0 \Rightarrow$ if concurrent, the curves would intersect in a torsion point.
- For 2 of the remaining 15 types, each of these types has a representative that contains four lines $L_{1,2}, L_{3,4}, L_{5,6}, L_{7,8}$ and three cubics $C_{1,2}, C_{3,4}, C_{5,6}$. Can prove that these curves are not concurrent if P_{1}, \ldots, P_{8} are in general position.

Approach for 7 and 8 lines

- There are 47 isomorphism types of intersection graphs of 8 exceptional curves.
- For 32 of them, the kernel of the Gram matrix has vector not summing to $0 \Rightarrow$ if concurrent, the curves would intersect in a torsion point.
- For 2 of the remaining 15 types, each of these types has a representative that contains four lines $L_{1,2}, L_{3,4}, L_{5,6}, L_{7,8}$ and three cubics $C_{1,2}, C_{3,4}, C_{5,6}$. Can prove that these curves are not concurrent if P_{1}, \ldots, P_{8} are in general position.
- We constructed counter-examples from one of the 13 remaining types.

Approach for 7 and 8 lines

- There are 47 isomorphism types of intersection graphs of 8 exceptional curves.
- For 32 of them, the kernel of the Gram matrix has vector not summing to $0 \Rightarrow$ if concurrent, the curves would intersect in a torsion point.
- For 2 of the remaining 15 types, each of these types has a representative that contains four lines $L_{1,2}, L_{3,4}, L_{5,6}, L_{7,8}$ and three cubics $C_{1,2}, C_{3,4}, C_{5,6}$. Can prove that these curves are not concurrent if P_{1}, \ldots, P_{8} are in general position.
- We constructed counter-examples from one of the 13 remaining types.
- Let us construct first a DP1 with a point on 5 exceptional curves that is non-torsion on \mathscr{E}, from the type associated to the clique $\left\{L_{1,2}, L_{3,4}, L_{5,6}, L_{7,8}, C_{1,2}, Q_{2,3,5}, Q_{2,4,7}, Q_{3,6,8},\right\}$.
- $L_{i, j}=$ line through i and j,
- $C_{i, j}=$ cubic passing through all the points except P_{i} (P_{j} double),
- $Q_{i, j, k}=$ quartic passing through all the points (P_{i}, P_{j}, P_{k} triple).

5 exceptional curves meet at a non-torsion point

We take the following 8 points of \mathbb{P}^{2} :

$$
\begin{array}{ccc}
P_{1}:=[0,1,1] ; & P_{2}:=[0,1, a] ; & P_{3}:=[1,0,1] ;
\end{array} \quad P_{4}:=[1,0, b] ; ~ 子=\left[\begin{array}{ll}
P_{5}:=[1,1,1] ; & P_{6}:=[1,1, u] ;
\end{array} \quad P_{7}:=[m, 1, v] ; \quad P_{8}:=[m, 1, c] .\right.
$$

where $a, b, c, m, u, v \in Z$.

5 exceptional curves meet at a non-torsion point

We take the following 8 points of \mathbb{P}^{2} :

$$
\begin{array}{rrrr}
P_{1}:=[0,1,1] ; & P_{2}:=[0,1, a] ; & P_{3}:=[1,0,1] ; & P_{4}:=[1,0, b] ; \\
P_{5}:=[1,1,1] ; & P_{6}:=[1,1, u] ; & P_{7}:=[m, 1, v] ; & P_{8}:=[m, 1, c]
\end{array}
$$

where $a, b, c, m, u, v \in Z$. Note that $L_{1,2}, L_{3,4}, L_{5,6}, L_{7,8}$ all meet at

$$
Q:=[0,0,1] .
$$

5 exceptional curves meet at a non-torsion point

We take the following 8 points of \mathbb{P}^{2} :

$$
\begin{array}{ccc}
P_{1}:=[0,1,1] ; & P_{2}:=[0,1, a] ; & P_{3}:=[1,0,1] ; \\
P_{5}:=[1,1,1] ; & P_{6}:=[1,0, b] ; \\
:=[1,1, u] ; & P_{7}:=[m, 1, v] ; & P_{8}:=[m, 1, c]
\end{array}
$$

where $a, b, c, m, u, v \in Z$. Note that $L_{1,2}, L_{3,4}, L_{5,6}, L_{7,8}$ all meet at

$$
Q:=[0,0,1] .
$$

Let $C_{1,2}$ be a cubic singular at P_{1} and P_{2}. Force it to pass through Q :

$$
b:=-\frac{-c u v+c u+2 c v-2 c+u v-u-2 v+2}{c v-c m-c+u m^{2}-v m-v-m^{2}+2 m+1} .
$$

5 exceptional curves meet at a non-torsion point

We take the following 8 points of \mathbb{P}^{2} :

$$
\begin{array}{ccc}
P_{1}:=[0,1,1] ; & P_{2}:=[0,1, a] ; & P_{3}:=[1,0,1] ; \\
P_{5}:=[1,1,1] ; & P_{6}:=[1,0, b] ; \\
:=[1,1, u] ; & P_{7}:=[m, 1, v] ; & P_{8}:=[m, 1, c]
\end{array}
$$

where $a, b, c, m, u, v \in Z$. Note that $L_{1,2}, L_{3,4}, L_{5,6}, L_{7,8}$ all meet at

$$
Q:=[0,0,1] .
$$

Let $C_{1,2}$ be a cubic singular at P_{1} and P_{2}. Force it to pass through Q :

$$
b:=-\frac{-c u v+c u+2 c v-2 c+u v-u-2 v+2}{c v-c m-c+u m^{2}-v m-v-m^{2}+2 m+1} .
$$

Choose values $a, c, m, u, v \in \mathbb{Z}$ such that P_{1}, \ldots, P_{8} are in general position. E.g. $m=3 ; v=123 ; c=-13 ; a=2 ; u=-1$.

5 exceptional curves meet at a non-torsion point

We take the following 8 points of \mathbb{P}^{2} :

$$
\begin{aligned}
& P_{1}:=[0,1,1] ; \quad P_{2}:=[0,1, a] ; \quad P_{3}:=[1,0,1] ; \quad P_{4}:=[1,0, b] ; \\
& P_{5}:=[1,1,1] ; \quad P_{6}:=[1,1, u] ; \quad P_{7}:=[m, 1, v] ; \quad P_{8}:=[m, 1, c]
\end{aligned}
$$

where $a, b, c, m, u, v \in Z$. Note that $L_{1,2}, L_{3,4}, L_{5,6}, L_{7,8}$ all meet at

$$
Q:=[0,0,1] .
$$

Let $C_{1,2}$ be a cubic singular at P_{1} and P_{2}. Force it to pass through Q :

$$
b:=-\frac{-c u v+c u+2 c v-2 c+u v-u-2 v+2}{c v-c m-c+u m^{2}-v m-v-m^{2}+2 m+1} .
$$

Choose values $a, c, m, u, v \in \mathbb{Z}$ such that P_{1}, \ldots, P_{8} are in general position. E.g. $m=3 ; v=123 ; c=-13 ; a=2 ; u=-1$. After the ninth blow up, the point Q is $\left[\frac{92809336826218}{264084460780997}, \frac{47033967023563}{792253382342991}\right]$ which is non-torsion on the fiber

$$
\mathscr{E}_{0}=x^{3}+\frac{404107}{74298} x^{2} y-\frac{1537}{2562} x^{2} z-\frac{118214}{12383} x y^{2}+\frac{305177}{74298} x y z-\frac{1025}{2562} x z^{2}+\frac{28956}{12383} y^{3}-\frac{43434}{12383} y^{2} z+\frac{14478}{12383} y z^{2} .
$$

5 exceptional curves meet at a non-torsion point

We take the following 8 points of \mathbb{P}^{2} :

$$
\begin{aligned}
& P_{1}:=[0,1,1] ; \quad P_{2}:=[0,1, a] ; \quad P_{3}:=[1,0,1] ; \quad P_{4}:=[1,0, b] ; \\
& P_{5}:=[1,1,1] ; \quad P_{6}:=[1,1, u] ; \quad P_{7}:=[m, 1, v] ; \quad P_{8}:=[m, 1, c]
\end{aligned}
$$

where $a, b, c, m, u, v \in Z$. Note that $L_{1,2}, L_{3,4}, L_{5,6}, L_{7,8}$ all meet at

$$
Q:=[0,0,1] .
$$

Let $C_{1,2}$ be a cubic singular at P_{1} and P_{2}. Force it to pass through Q :

$$
b:=-\frac{-c u v+c u+2 c v-2 c+u v-u-2 v+2}{c v-c m-c+u m^{2}-v m-v-m^{2}+2 m+1} .
$$

Choose values $a, c, m, u, v \in \mathbb{Z}$ such that P_{1}, \ldots, P_{8} are in general position. E.g. $m=3 ; v=123 ; c=-13 ; a=2 ; u=-1$. After the ninth blow up, the point Q is $\left[\frac{92809336826218}{264084460780997}, \frac{47033967023563}{792253382342991}\right]$ which is non-torsion on the fiber

$$
\mathscr{E}_{0}=x^{3}+\frac{404107}{74298} x^{2} y-\frac{1537}{2562} x^{2} z-\frac{118214}{12383} x y^{2}+\frac{305177}{74298} x y z-\frac{1025}{2562} x z^{2}+\frac{28956}{12383} y^{3}-\frac{43434}{12383} y^{2} z+\frac{14478}{12383} y z^{2} .
$$

(Thanks Magma! \because)

7 exceptional curves meet at a non-torsion point

Example (Desjardins-Winter)

Let X be the blow-up of \mathbb{P}^{2} in the eight points:

$$
\begin{aligned}
& P_{1}=[0,1,1] \quad P_{2}=[0,3861,1957] \quad P_{3}=[1,0,1] \quad P_{4}=[1188,0,-19] \\
& P_{5}=[1,1,1] \quad P_{6}=[780,780,1883] \quad P_{7}=[-52,52,51] \quad P_{8}=[-9,9,-17]
\end{aligned}
$$

7 exceptional curves meet at a non-torsion point

Example (Desjardins-Winter)

Let X be the blow-up of \mathbb{P}^{2} in the eight points:

$$
\begin{aligned}
& P_{1}=[0,1,1] \quad P_{2}=[0,3861,1957] \quad P_{3}=[1,0,1] \quad P_{4}=[1188,0,-19] \\
& P_{5}=[1,1,1] \quad P_{6}=[780,780,1883] \quad P_{7}=[-52,52,51] \quad P_{8}=[-9,9,-17]
\end{aligned}
$$

Consider the curves in \mathbb{P}^{2} :

- The lines $L_{1,2}, L_{3,4}, L_{5,6}, L_{7,8}$,
- The cubics $C_{1,2}, C_{3,4}$
- The quartic through all points and singular in P_{2}, P_{6}, P_{7}.

7 exceptional curves meet at a non-torsion point

Example (Desjardins-Winter)

Let X be the blow-up of \mathbb{P}^{2} in the eight points:

$$
\begin{aligned}
& P_{1}=[0,1,1] \quad P_{2}=[0,3861,1957] \quad P_{3}=[1,0,1] \quad P_{4}=[1188,0,-19] \\
& P_{5}=[1,1,1] \quad P_{6}=[780,780,1883] \quad P_{7}=[-52,52,51] \quad P_{8}=[-9,9,-17]
\end{aligned}
$$

Consider the curves in \mathbb{P}^{2} :

- The lines $L_{1,2}, L_{3,4}, L_{5,6}, L_{7,8}$,
- The cubics $C_{1,2}, C_{3,4}$
- The quartic through all points and singular in P_{2}, P_{6}, P_{7}.

These curves all go through $Q=[0: 0: 1]$, and each of them is an exceptional curve.

7 exceptional curves meet at a non-torsion point

Example (Desjardins-Winter)

Let X be the blow-up of \mathbb{P}^{2} in the eight points:

$$
\begin{aligned}
& P_{1}=[0,1,1] \quad P_{2}=[0,3861,1957] \quad P_{3}=[1,0,1] \quad P_{4}=[1188,0,-19] \\
& P_{5}=[1,1,1] \quad P_{6}=[780,780,1883] \quad P_{7}=[-52,52,51] \quad P_{8}=[-9,9,-17]
\end{aligned}
$$

Consider the curves in \mathbb{P}^{2} :

- The lines $L_{1,2}, L_{3,4}, L_{5,6}, L_{7,8}$,
- The cubics $C_{1,2}, C_{3,4}$
- The quartic through all points and singular in P_{2}, P_{6}, P_{7}.

These curves all go through $Q=[0: 0: 1]$, and each of them is an exceptional curve. The fiber of Q is given by the cubic through P_{1}, \ldots, P_{8}, Q, and on this curve Q is non-torsion!

Can 8 exceptional curves meet at a non-torsion point?

Can 8 exceptional curves meet at a non-torsion point? To be followed...

Thank you for your attention!

