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Outline
◮ Recall about Diophantine arithmetic geometry, projective

varieties and fields of definition.

◮ Recall about canonical divisors for nonsingular projective
varieties.

◮ Some conjectures about existence and distribution of
integral and rational points.

◮ Geometry of numbers and Schmidt’s Subspace Theorem.

◮ Local Weil and Height functions.

◮ Vojta’s Main Conjecture.

◮ Influence of toric geometry, Convex (Newton-Okounkov)
bodies for big linear series, DH-measure and
differentiability of the volume function.

◮ K-stability for Q-Fano varieties and Vojta’s Main
Conjecture.

◮ Additional recent results and progress.



Diophantine arithmetic geometry

◮ Main Goal. Study the solutions of those algebraic
equations, which are defined over algebraic number fields
and/or rings of algebraic integers.

◮ Tools and Challenges. The underlying arithmetic,
algebraic and birational geometry of Diophantine
equations.

◮ Key guiding questions. How to measure arithmetic
closeness and complexity of rational points and solutions
to Diophantine arithmetic equations.

◮ Influence from birational geometry. Distribution and
complexity of rational points, in projective varieties,
should be measured along rational curves; further the
Kodaira dimension of a given birational equivalence class
should play a role.



Recall about Projective Space
◮ Let K ⊆ C be a number field.
◮ Projective n-space over K is defined to be:

Pn = Pn
K = {(x0, . . . , xn) ∈ An+1

K \ {0}}/ ∼ ,

where
(x0, . . . , xn) ∼ (y0, . . . , yn)

if and only if xi = λyi for each i and some 0 6= λ ∈ K.
◮ Pn

K is a basic example of a moduli space:

Pn = P(V ) = {1-dim’l quotients of an n + 1 dim’l v.sp. V }.
◮ Pn is covered by affine spaces An

K:

Ui = {z = [z0 : · · · : zn] ∈ Pn : zi 6= 0}, i = 0, . . . , n.

Then Pn =
⋃

i Ui and φi : Ui
∼−→ An

K via:

z = [z0 : · · · : zn] 7→
(

z0

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn

zi

)

.



Recall about Projective Varieties
◮ Are irreducible and reduced Zariski closed subsets

X ⊆ Pn
K,

which are defined by the condition that:

X = V(I ) = {(z0, . . . , zn) ∈ Pn
K :

F1(z0, . . . , zn) = · · · = Fℓ(z0, . . . , zn) = 0}
for homogeneous polynomials Fi(z0, . . . , zn) generating a
homogeneous prime ideal

I = 〈F1, . . . , Fℓ〉 ⊆ K[z0, . . . , zn].

◮ Homogeneous Ideal Variety Correspondence:

prime homogeneous ideals I ( 〈z0, . . . , zn〉 in K[z0, . . . , zn]

“V”

⇄
“I”

non-empty varieties in Pn: I(V(I )) =
√
I .



Recall about canonical divisors for nonsingular
projective varieties

◮ Let X ⊆ Pn be a nonsingular projective variety with sheaf
of differentials

ΩX = ΩX/K.

◮ Recall, that ΩX is a locally free OX -module and is
equipped with a universal K-derivation

d : OX → ΩX .

◮ The canonical line bundle of X is the invertible sheaf

KX =

dimX
∧

ΩX .

◮ By a slight abuse of terminology, we also say that KX is a
canonical divisor.



Recall about ample and very ample line
bundles

◮ Let L be a line bundle on a nonsingular projective variety
X .

◮ Recall, that morphisms from X to Pn are determined by
base point free linear systems |V |, for

0 6= V ⊆ H
0(X , L),

n = dimV − 1.

◮ L is called very ample if the complete linear system
|H0(X , L)| determines an embedding of X into Pn,
n = h0(X , L)− 1.

◮ L is called ample if L⊗m is very ample for some m > 0.



Recall about big line bundles
◮ Let L be a line bundle on a nonsingular projective variety

X . Then, L is called big if any (and actually all) of the
following conditions holds true:
1. There exists a constant C > 0, which is such that

h
0(X , L⊗m) > Cm

dimX ,

for all sufficiently large positive integers m > 0.
2. Denoting by κ(X , L) the Iitaka dimension of L, it holds

true that
κ(X , L) = dimX .

3. The volume of L:

Vol(L) := lim sup
m→∞

h
0(X , L⊗m)

mdimX/ dimX !

is nonzero.
4. For each ample divisor A on X , there exists a positive

integer m > 0 and an effective divisor E which is such
that

L
⊗m ≃ OX (A+ E ).



Some conjectures for existence, distribution
and accumulation of rational points
◮ Conj. (Weak Lang Conj.) Let X be a general type

projective variety defined over a number field K. Then,
its set of K-rational points X (K) is not Zariski dense.

◮ Conj. (Harris and Tschinkel) Let X be a nonsingular
projective variety defined over a number field K. If its
anticanonical bundle −KX is numerically effective, then
for some finite extension field F/K, its set of F-rational
points X (F) is Zariski dense.

◮ Conj. (D. McKinnon) If x ∈ X (K) is an algebraic point
in a polarized projective variety (X , L), defined over a
number field K, and if x ∈ C , for some K-rational curve
C ⊆ X , then x admits a sequence of best approximation
with respect to L; such an approximating sequence may
be chosen to lie along some rational curve of best
approximation in X and through x .



Motivational comments about Schmidt’s
Subspace Theorem
◮ Schmidt’s Subspace Theorem has emerged as a key tool

for studying rational and integral points in projective
varieties. (Especially following the program of
Corvaja-Zannier.)

◮ Geometry of numbers, successive minima and Minkowski’s
second convex body theorem play a key role in its proof.

◮ In recent times, a good deal of attention has been given
to geometric and extended general formulations of the
Subspace Theorem.

◮ For instance, the Subspace Theorem implies General
Diophantine Arithmetic Inequalities for projective
varieties. (This is the work of Ru-Vojta.)

◮ In turn, such inequalities can be used to deduce instances
of Vojta’s Main Conjecture. There is interplay with the
area of K-stability for projective varieties.



Motivational comments about influence of
higher dimensional birational geometry
◮ An important mechanism that connects all of these

seemingly disjoint topics is:
◮ the theory of Newton-Okounkov bodies;
◮ the theory of the Duistermaat-Heckman measures; and
◮ toric geometry quite generally.

◮ In what follows, we want to state a classical form of the
Subspace Theorem, give a hint a some of its geometric
applications and explain its relation, for example, to
Vojta’s Main Conjecture.



Recall about absolute values

◮ Suppose that K is a number field of degree

r1 + 2r2 = [K : Q].

◮ Then K has r1 real embeddings and r2 pairs of complex
conjugate embeddings.

◮ There are two kinds of absolute values on K which extend
the usual and p-adic absolute values on Q.

◮ Such absolute values are classified as being either
Archimedean or non-Archimedean.

◮ The Archimedean places correspond to embeddings
σ : K →֒ C; complex conjugate embeddings are identified.

◮ The non-Archimedean places correspond to prime ideals
in the ring of integers of K.



Recall about product formula
◮ MQ := {| · |p : p a prime number or p = ∞}.
◮ | · |∞ the usual absolute value on Q.

◮ If p is a prime number, then |p|p = 1
p
.

◮ For a number field K, MK := {| · |v : v is a place of K}.
◮ | · |v := |NKv/Qp

(·)|1/[K:Q]
p if v | p, for p ∈ MQ.

◮ Thm. (See e.g., [BG, Prop. 1.4.4]). Let K be a
number field. The set MK satisfies the product formula:

∏

v∈MK

|x |v = 1 for all x ∈ K \ {0}.

◮ Sketch of Proof. WLOG, K = Q and x is a prime
number. Then

∏

p∈MQ

|x |p = |x |x |x |∞ =
1

x
x = 1.



Subspace Theorem set-up
◮ Let K be a number field with set of places MK. The

multiplicative projective height of

x = [x0 : · · · : xn] ∈ Pn(K)

is defined to be

HOPn (1)(x) = H(x) :=
∏

v∈MK

||x ||v =
∏

v∈MK

max
06i6n

|xi |v .

It is well defined because of the product formula.

◮ Let S be a finite subset of MK. For each v ∈ S , let

ℓv0(x), . . . , ℓvn(x) ∈ Kv [x0, . . . , xn]

be a collection of K-algebraic linearly independent linear
forms.



Subspace Theorem (Multiplicative Projective
formulation)

◮ Thm. (See e.g., [BG, Thm. 7.2.2]). If ǫ > 0, then
the set of solutions x ∈ Pn(K) of the inequality

∏

v∈S

n
∏

i=0

|ℓvi(x)|v
||x ||v

< H(x)−n−1−ǫ

lies in a finite union T1

⋃

· · ·
⋃

Th of proper linear
subspaces of Pn.

◮ Example. Lang’s formulation of Roth’s Theorem, see
e.g., [BG, Thm. 6.2.3], follows from the Subspace
Theorem. The idea is to contemplate consequences of the
Subspace Theorem, when applied to the binary linear
forms

ℓv0(x) = x0, ℓv1(x) = x1 − αvx0 ∈ Kv [x0, x1],

for v ∈ S .



Selected guiding questions for Schmidt’s
Subspace theorem
◮ As emphasized by Evertse and Schlickewei, the main

guiding questions continue to be
◮ to algorithmically determine all solutions;
◮ to give an upper bound for the number of solutions;
◮ to determine the linear scattering of the Diophantine

exceptional set; and
◮ to establish generalizations.

◮ Selected recent results and progress:
◮ Vojta’s Main Conjecture and K-unstable Fano varieties.
◮ Roth type inequalities and uniform arithmetic

K-instability for polarized klt pairs (X ,∆).
◮ Harder and Narasimhan data and central limit theorem

for filtered vector spaces.
◮ A (Parametric) Subspace Theorem, for linear systems

with respect to twisted height functions and linear
scattering of Diophantine exceptional sets.

◮ Compactness of Diophantine approximation sets.



Twisted height functions

◮ The concept of twisted height function arose in work of
Roy-Thunder, Evertse-Schlickewei and Evertse-Ferretti.

◮ Let cvi ∈ R, for v ∈ S , and i = 0, . . . , n, be such that

n
∑

i=0

cvi = 0, for v ∈ S .

◮ For Q > 1, the twisted height function is defined by

HQ(x) :=
∏

v∈S

(

max
06i6n

|ℓvi(x)|vQ−cvi

)

·
∏

v 6∈S

||x ||v

=
∏

v∈S

(

max
06i6n

|ℓvi(x)|v
||x ||v

Q−cvi

)

· H(x).



Subspace Theorem (Parametric formulation)

◮ Rmk. These (equivalent) projective and affine forms of
the Subspace Theorem are implied by the Parametric
Subspace Theorem. The parametric formulation, which
was given by Evertse-Ferretti-Schlickewei involves the
twisted height functions.

◮ Thm. (Evertse-Ferretti-Schlickewei). Let δ > 0.
Then, there exists a real number Q0 > 1 and a finite
number of proper linear subspaces T1, . . . ,Th ( Pn such
that for all Q > Q0, there is a Ti ∈ {T1, . . . ,Th} with
the property that

{

x ∈ Pn(K) : HQ(x) 6 Q−δ
}

⊆ Ti .

◮ Thm. (-). Parametric subspace thm for twisted height
functions and linear systems ⇒ FW-type inequalities for
linear systems ⇒ Subspace Thm. for linear systems.



Preliminaries for Vojta’s Main Conjecture
◮ Let X be a projective variety defined over a number field

K and D a Cartier divisor on X and defined over some
finite extension of K. Consider the proximity function

mS(·,D) :=
∑

v∈S

λD(·, v )

for D with respect to a finite set S ⊆ MK of places of K.
◮ Here, the local Weil functions λD(·, v ) are described as:

λD(x , v ) = − log(v -adic distance from x to D).

◮ The logarithmic height functions determined by very
ample line bundles L on X are described by:

hL(x) =
∑

v∈MK

max
j

log |xj |v .

◮ In general, the height function of an arbitrary line bundle
M on X , (defined over K) is obtained by first expressing
M as the difference of two ample line bundles.



Vojta’s Main Conjecture
◮ Let X be a non-singular projective variety defined over a

number field K. Let S be a fixed finite set of places of K
and let

D = D1 + · · ·+ Dq

be a normal crossings divisor on X .

◮ Conj. (Vojta). Let L be a big line bundle on X , defined
over K, and let ǫ > 0. Then there exists a proper Zariski
closed subset

Z ( X

so that for all
x ∈ X (K) \ Z (K)

it holds true that

mS(x ,D) + hKX
(x) 6 ǫhL(x) +O(1).



Vojta’s Main Conjecture: first examples

◮ E.g. For the case that X = Pn, L = OPn(1), and
D = H0 + · · ·+Hn, for Hi hyperplanes in general position
and then the inequalities given by Vojta’s Main Conjecture
become those of Schmidt’s Subspace Theorem.

◮ E.g. For the case that X is of general type, then Vojta’s
Main Conjecture together with Northcott’s theorem, for
finiteness of points of bounded height, implies non-Zariski
denseness of the set of K-rational points in X . In
particular, Vojta’s Main Conjecture implies the
Bombieri-Lang conjecture.



Some recent results
◮ In the direction of Vojta’s Main Conjecture, we mention

one important consequence of the Arithmetic General
Theorem ([RV] and [Gri]).

◮ First, we need to describe one auxiliary concept which
arises in a variety of settings.

◮ Defn. A Q-Fano variety is a projective variety X , which
has log terminal singularities and ample Q-Cartier
anti-canonical class −KX .

◮ Defn. If E is a divisor over a Q-Fano variety X , then let
π : X ′ → X be a model with E ⊆ X ′ a Cartier divisor and
put:

β(−KX ,E ) :=

∫ ∞

0

Vol(π∗(−KX )− tE )

Vol(−KX )
dt.

This is the expected order of vanishing of −KX along E .
◮ E.g. If X = Pn and E is a hyperplane, then

β(−KX ,E ) = 1.



◮ Thm. (-). Let X be a Q-Fano variety defined over a
number field K. Fix a finite set of places S ⊆ MK. Let E
be a prime divisor over X and having field of definition
some finite extension of K. Assume that β(−KX ,E ) > 1.
Fix L a big line bundle on X , defined over K, and let
ǫ > 0. Then there exists a Zariski closed subset Z ( X

such that if x ∈ X (K) \ Z (K), then

mS(x ,D) + hKX
(x) 6 ǫhL(x) +O(1).

Here D = D1 + · · ·+ Dq is a divisor over X that has the
properties that:
(i) the divisors D1, . . . ,Dq are each linearly equivalent to E ;

and
(ii) the divisors D1, . . . ,Dq intersect properly.

◮ Sketch of Proof. It suffices to establish the inequality

mS(x ,D) 6 (ǫ+ 1)h−KX
(x) +O(1)

for all x ∈ X (K) \ Z (K) and Z ( X some proper Zariski
closed subset. This is implied by [Gri] and/or [RV].



A first example

◮ To gain some intuition for the conclusion of the Theorem,
consider the following example.

◮ E.g. When X = Pn and E ⊆ Pn is a hyperplane, we then
have that

β(−KX ,E ) = 1.

The conclusion of the Theorem applied to L = OPn(1) and

D = D1 + · · ·+ Dn+1,

for D1, . . . ,Dn+1 a collection of hyperplanes in general
position, recovers the usual statement of Schmidt’s
Subspace Theorem.



Influence of Toric Geometry
◮ The quantities β(−KX ,E ) are related to the

Duistermaat-Heckman measures and have origins in toric
geometry. They have an interpretation via the theory of
Okounkov bodies through the concept of concave
transforms.

◮ E.g. Consider a toric blowing-up of P1 × P1:

π : S(Σ′) = Bl{pt}(P
1 × P1) → S(Σ) = P1 × P1.

Our conventions are such that the primitive ray vectors
for the respective fans Σ′ and Σ are given by:

v ′
0 = (1, 1), v ′

1 = (−1, 0), v ′
2 = (0, 1),

v ′
3 = (1, 0), v ′

4 = (0,−1)

and

v1 = (−1, 0), v2 = (0, 1), v3(1, 0), v4 = (0,−1).



◮ The polytopes of the divisors, for t ∈ R>0,

π∗OP1×P1(a, b)− tE ∼ aπ∗D3 + bπ∗D4 − tE ,

where a, b > 0 and a 6 b, are cut out by the
inequalities:
◮ (m1,m2) · (1, 1) > −a+ t,
◮ (m1,m2) · (−1, 0) > 0,
◮ (m1,m2) · (0, 1) > 0,
◮ (m1,m2) · (1, 0) > −a,
◮ (m1,m2) · (0,−1) > −b.



◮ By determining the areas of these polytopes it follows
that if

f (t) =
Vol(aπ∗D3 + bπ∗D4 − tE )

Vol(aπ∗D3 + bπ∗D4)

then

f (t) =











1− t2

2ab
if 0 6 t 6 a;

1 + a
2b

− t
b

if a 6 t 6 b
(a−b−t)2

2ab
if b 6 t 6 a + b.

◮ Finally, by integrating f (t), we obtain that

βx(OP1×P1(a, b)) = β(L,E ) =

∫ a+b

0

f (t)dt =
a + b

2
.

◮ Rmk. This example helps to give intuition as to the more
general statements for calculating expected orders of
vanishing via the theory of concave transforms for
Okounkov bodies. ([Gri], [BKMS], [BC].)



Influence of K-stability
◮ As another interesting consequence of the Theorem, we

indicate some ideas from K-stability.
◮ Valuative criteria of K-stability (K. Fujita and C.

Li). A Q-Fano variety X is not K-stable if and only if

β(−KX ,E ) > 1 + a(X ,E )

for at least one prime divisor E over X and defined over
some finite extension of the base number field. Here,
a(X ,E ) is the discrepancy of E with respect to X .

◮ This criteria for K-stability together with the Theorem
imply the following interesting consequence. It establishes
instances of Vojta’s Main Conjecture for Q-Fano varieties,
that have canonical singularieties, are not K-stable.

◮ Cor. (-). Let X be a Q-Fano variety with canonical
singularieties. If X is not K-stable, then the conclusion of
the Theorem holds true for at least one prime divisor E
over X and having field of definition some finite extension
of the base number field.



The case of points of bounded degree
◮ In general, it remains a non-trivial open problem to obtain

sharp height inequalities for points of bounded degree.
◮ However, there is a conjectural formulation of Schmidt’s

Theorem, with discriminant term, for points of bounded
degree. It is a special case of the strong from of Vojta’s
Main Conjecture, for points of bounded degree.

◮ Conj. (Levin). Let K be a number field and S a finite
set of places. Let H1, . . . ,Hq ⊆ Pn be a collection of
hyperplanes in general position. Put H = H1 + · · ·+ Hq.
Fix d > 1 and let ǫ > 0. Then, there exists a proper
Zariski closed subset Z ( Pn such that

mS(x ,H) 6 (n + 1 + ǫ)hOPn (1)(x) + dK(x) +O(1)

for all x ∈ Pn(K) \ Z (K) with [K(x) : K] 6 d .
◮ Unconditional subspace type results, for points of

bounded degree, have been given by Levin.



Schlickewei’s Subspace conjecture for points
of bounded degree
◮ Another point of departure, for bounded degree height

inequalities, is a conjecture, of Schlickewei.
◮ Conj. (Schlickewei). For each v ∈ S , fix linearly

independent linear forms ℓv0(x), . . . , ℓvn(x) in the
polynomial ring K[x0, . . . , xn]. Then there exists a positive
constant c(n, d) > 0, which depends only on r and d ,
which has the following property for each fixed δ > 0. If
Z ( Pn(K) is the set of all x = [x0 : · · · : xn] ∈ Pn(K)
which satisfy the conditions that
◮

∑

v∈S

∑n
i=0 λℓvi ,v (x) > (c(n, d) + δ)hOPn

K
(1)(x) +O(1);

and
◮ [K(x) : K] 6 d ,

then there exist finitely many proper linear subspaces
Λ1, . . . ,Λh in Pn

K
, each having field of definition with

degree at most d over K, and such that Z is contained in
their union Λ1

⋃

. . .
⋃

Λh.



An arithmetic general theorem for points of
bounded degree
◮ Thm. (-). Schlickewei’s conjecture implies the following

for a given geometrically irreducible projective variety X

over K. Let D1, . . . ,Dq be nonzero effective Cartier
divisors on X and defined over a fixed finite extension
field F/K. Put D = D1 + · · ·+ Dq, and assume that
these divisors Di intersect properly. Let L be a big line
bundle on X . Then, there exist positive constants
γ(d , L,Di) so that if ǫ > 0, then

q
∑

i=1

γ(d , L,Di)
−1mS(x ,Di) 6 (1 + ǫ) hL(x) +O(1)

for all algebraic points

x ∈ X (K) \
(

Z (K)
⋃

Bs(L)(K)
⋃

Supp(D)(K)
)

with [K(x) : K] 6 d . Here, Z ( X is contained in a finite
union of linear sections Λ1, . . . ,Λh, with degree 6 d .



Arithmetic uniform K-instability and
(penultimate) Roth’s theorem for klt-pairs
◮ Thm. (-). Let (X ,∆) be a Kawamata log terminal pair

defined over a number field K. Let L be an ample line
bundle on X and defined over K. Fix a finite set of places
S ⊆ MK. For each v ∈ S , let Ev be a prime divisor over
X and having field of definition some finite extension field
of K. Assume that (X ,∆) is not arithmetically K-stable
with respect to L and Ev , for each v ∈ S . Moreover,
suppose that Rv ∈ R>0, for v ∈ S , are destabilizing Roth
constants; in particular, the inequality

1 <
∑

v∈S

A(Ev ,X ,∆) <
∑

v∈S

βEv
(L)Rv

is valid. Then, there exists a proper Zariski closed subset
W ( X , defined over K, and at least one place v ∈ S , so
that

αEv
({xi}, L) > 1/Rv .


