On accumulation and complexity of rational points in projective varieties

Nathan Grieve

RMC/Carleton/UQAM
Quebec-Maine Number Theory Conference
October 2022

Outline

- Recall about Diophantine arithmetic geometry, projective varieties and fields of definition.
- Recall about canonical divisors for nonsingular projective varieties.
- Some conjectures about existence and distribution of integral and rational points.
- Geometry of numbers and Schmidt's Subspace Theorem.
- Local Weil and Height functions.
- Vojta's Main Conjecture.
- Influence of toric geometry, Convex (Newton-Okounkov) bodies for big linear series, DH-measure and differentiability of the volume function.
- K-stability for \mathbb{Q}-Fano varieties and Vojta's Main Conjecture.
- Additional recent results and progress.

Diophantine arithmetic geometry

- Main Goal. Study the solutions of those algebraic equations, which are defined over algebraic number fields and/or rings of algebraic integers.
- Tools and Challenges. The underlying arithmetic, algebraic and birational geometry of Diophantine equations.
- Key guiding questions. How to measure arithmetic closeness and complexity of rational points and solutions to Diophantine arithmetic equations.
- Influence from birational geometry. Distribution and complexity of rational points, in projective varieties, should be measured along rational curves; further the Kodaira dimension of a given birational equivalence class should play a role.

Recall about Projective Space

- Let $\mathbf{K} \subseteq \mathbb{C}$ be a number field.
- Projective n-space over \mathbf{K} is defined to be:

$$
\mathbb{P}^{n}=\mathbb{P}_{\mathbf{k}}^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{A}_{\mathbf{k}}^{n+1} \backslash\{0\}\right\} / \sim,
$$

where

$$
\left(x_{0}, \ldots, x_{n}\right) \sim\left(y_{0}, \ldots, y_{n}\right)
$$

if and only if $x_{i}=\lambda y_{i}$ for each i and some $0 \neq \lambda \in \mathbf{K}$.

- \mathbb{P}_{k}^{n} is a basic example of a moduli space: $\mathbb{P}^{n}=\mathbb{P}(V)=\{1$-dim'l quotients of an $n+1$ dim'l v.sp. $V\}$.
- \mathbb{P}^{n} is covered by affine spaces \mathbb{A}_{k}^{n} :

$$
U_{i}=\left\{z=\left[z_{0}: \cdots: z_{n}\right] \in \mathbb{P}^{n}: z_{i} \neq 0\right\}, i=0, \ldots, n .
$$

Then $\mathbb{P}^{n}=\bigcup_{i} U_{i}$ and $\phi_{i}: U_{i} \xrightarrow{\sim} \mathbb{A}_{\mathrm{k}}^{n}$ via:

$$
z=\left[z_{0}: \cdots: z_{n}\right] \mapsto\left(\frac{z_{0}}{z_{i}}, \ldots, \frac{z_{i-1}}{z_{i}}, \frac{z_{i+1}}{z_{i}}, \ldots, \frac{z_{n}}{z_{i}}\right) .
$$

Recall about Projective Varieties

- Are irreducible and reduced Zariski closed subsets

$$
X \subseteq \mathbb{P}_{\mathbf{K}}^{n},
$$

which are defined by the condition that:

$$
\left.\begin{array}{rl}
X=\mathbb{V}(I)=\left\{\left(z_{0}, \ldots, z_{n}\right)\right. & \in \mathbb{P}_{\mathbf{\kappa}}^{n}: \\
& F_{1}\left(z_{0}, \ldots, z_{n}\right)
\end{array}=\cdots=F_{\ell}\left(z_{0}, \ldots, z_{n}\right)=0\right\}
$$

for homogeneous polynomials $F_{i}\left(z_{0}, \ldots, z_{n}\right)$ generating a homogeneous prime ideal

$$
I=\left\langle F_{1}, \ldots, F_{\ell}\right\rangle \subseteq \mathbf{K}\left[z_{0}, \ldots, z_{n}\right] .
$$

- Homogeneous Ideal Variety Correspondence: prime homogeneous ideals $I \subsetneq\left\langle z_{0}, \ldots, z_{n}\right\rangle$ in $\overline{\mathbf{K}}\left[z_{0}, \ldots, z_{n}\right]$

$$
\stackrel{\stackrel{\mathbb{V}}{ }}{\stackrel{\rightharpoonup}{\mathbb{I}}}
$$

non-empty varieties in $\mathbb{P}^{n}: \mathbb{I}(\mathbb{V}(I))=\sqrt{I}$.

Recall about canonical divisors for nonsingular projective varieties

- Let $X \subseteq \mathbb{P}^{n}$ be a nonsingular projective variety with sheaf of differentials

$$
\Omega_{X}=\Omega_{X / \mathbf{k}}
$$

- Recall, that Ω_{X} is a locally free \mathcal{O}_{X}-module and is equipped with a universal K-derivation

$$
\mathrm{d}: \mathcal{O}_{X} \rightarrow \Omega_{X}
$$

- The canonical line bundle of X is the invertible sheaf

$$
\mathrm{K}_{x}=\bigwedge^{\operatorname{dim} x} \Omega_{x}
$$

- By a slight abuse of terminology, we also say that K_{X} is a canonical divisor.

Recall about ample and very ample line bundles

- Let L be a line bundle on a nonsingular projective variety X.
- Recall, that morphisms from X to \mathbb{P}^{n} are determined by base point free linear systems $|V|$, for

$$
0 \neq V \subseteq H^{0}(X, L),
$$

$n=\operatorname{dim} V-1$.

- L is called very ample if the complete linear system $\left|\mathrm{H}^{0}(X, L)\right|$ determines an embedding of X into \mathbb{P}^{n}, $n=h^{0}(X, L)-1$.
- L is called ample if $L^{\otimes m}$ is very ample for some $m>0$.

Recall about big line bundles

- Let L be a line bundle on a nonsingular projective variety X. Then, L is called big if any (and actually all) of the following conditions holds true:

1. There exists a constant $C>0$, which is such that

$$
h^{0}\left(X, L^{\otimes m}\right) \geqslant C m^{\operatorname{dim} X}
$$

for all sufficiently large positive integers $m>0$.
2. Denoting by $\kappa(X, L)$ the litaka dimension of L, it holds true that

$$
\kappa(X, L)=\operatorname{dim} X
$$

3. The volume of L :

$$
\operatorname{Vol}(L):=\limsup _{m \rightarrow \infty} \frac{h^{0}\left(X, L^{\otimes m}\right)}{m^{\operatorname{dim} X} / \operatorname{dim} X!}
$$

is nonzero.
4. For each ample divisor A on X, there exists a positive integer $m>0$ and an effective divisor E which is such that

$$
L^{\otimes m} \simeq \mathcal{O}_{X}(A+E)
$$

Some conjectures for existence, distribution and accumulation of rational points

- Conj. (Weak Lang Conj.) Let X be a general type projective variety defined over a number field \mathbf{K}. Then, its set of \mathbf{K}-rational points $X(\mathbf{K})$ is not Zariski dense.
- Conj. (Harris and Tschinkel) Let X be a nonsingular projective variety defined over a number field \mathbf{K}. If its anticanonical bundle $-\mathrm{K}_{X}$ is numerically effective, then for some finite extension field \mathbf{F} / \mathbf{K}, its set of \mathbf{F}-rational points $X(\mathbf{F})$ is Zariski dense.
- Conj. (D. McKinnon) If $x \in X(\overline{\mathbf{K}})$ is an algebraic point in a polarized projective variety (X, L), defined over a number field \mathbf{K}, and if $x \in C$, for some \mathbf{K}-rational curve $C \subseteq X$, then x admits a sequence of best approximation with respect to L; such an approximating sequence may be chosen to lie along some rational curve of best approximation in X and through x.

Motivational comments about Schmidt's Subspace Theorem

- Schmidt's Subspace Theorem has emerged as a key tool for studying rational and integral points in projective varieties. (Especially following the program of Corvaja-Zannier.)
- Geometry of numbers, successive minima and Minkowski's second convex body theorem play a key role in its proof.
- In recent times, a good deal of attention has been given to geometric and extended general formulations of the Subspace Theorem.
- For instance, the Subspace Theorem implies General Diophantine Arithmetic Inequalities for projective varieties. (This is the work of Ru-Vojta.)
- In turn, such inequalities can be used to deduce instances of Vojta's Main Conjecture. There is interplay with the area of K-stability for projective varieties.

Motivational comments about influence of higher dimensional birational geometry

- An important mechanism that connects all of these seemingly disjoint topics is:
- the theory of Newton-Okounkov bodies;
- the theory of the Duistermaat-Heckman measures; and
- toric geometry quite generally.
- In what follows, we want to state a classical form of the Subspace Theorem, give a hint a some of its geometric applications and explain its relation, for example, to Vojta's Main Conjecture.

Recall about absolute values

- Suppose that \mathbf{K} is a number field of degree

$$
r_{1}+2 r_{2}=[\mathbf{K}: \mathbb{Q}] .
$$

- Then \mathbf{K} has r_{1} real embeddings and r_{2} pairs of complex conjugate embeddings.
- There are two kinds of absolute values on \mathbf{K} which extend the usual and p-adic absolute values on \mathbb{Q}.
- Such absolute values are classified as being either Archimedean or non-Archimedean.
- The Archimedean places correspond to embeddings $\sigma: \mathbf{K} \hookrightarrow \mathbb{C}$; complex conjugate embeddings are identified.
- The non-Archimedean places correspond to prime ideals in the ring of integers of \mathbf{K}.

Recall about product formula

- $M_{\mathbb{Q}}:=\left\{|\cdot|_{p}: p\right.$ a prime number or $\left.p=\infty\right\}$.
- $|\cdot|_{\infty}$ the usual absolute value on \mathbb{Q}.
- If p is a prime number, then $|p|_{p}=\frac{1}{p}$.
- For a number field $\mathbf{K}, M_{\mathbf{K}}:=\left\{|\cdot|_{v}: v\right.$ is a place of $\left.\mathbf{K}\right\}$.
- $|\cdot|_{v}:=\left|N_{K_{v} / \mathbb{Q}_{p}}(\cdot)\right|_{p}^{1 /[\mathrm{K}: \mathbb{Q}]}$ if $v \mid p$, for $p \in M_{\mathbb{Q}}$.
- Thm. (See e.g., [BG, Prop. 1.4.4]). Let K be a number field. The set M_{K} satisfies the product formula:

$$
\prod_{v \in M_{K}}|x|_{v}=1 \text { for all } x \in \mathbf{K} \backslash\{0\} .
$$

- Sketch of Proof. WLOG, $\mathbf{K}=\mathbb{Q}$ and x is a prime number. Then

$$
\prod_{p \in M_{\mathbb{Q}}}|x|_{p}=|x|_{x}|x|_{\infty}=\frac{1}{x} x=1 .
$$

Subspace Theorem set-up

- Let K be a number field with set of places M_{K}. The multiplicative projective height of

$$
x=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{P}^{n}(\mathbf{K})
$$

is defined to be

$$
H_{\mathcal{O}_{\mathbb{P} n}(1)}(x)=H(x):=\prod_{v \in M_{\mathrm{K}}}\|x\|_{v}=\prod_{v \in M_{\mathrm{K}}} \max _{0 \leqslant i \leqslant n}\left|x_{i}\right|_{v} .
$$

It is well defined because of the product formula.

- Let S be a finite subset of $M_{\mathbf{K}}$. For each $v \in S$, let

$$
\ell_{v 0}(x), \ldots, \ell_{v n}(x) \in \mathbf{K}_{v}\left[x_{0}, \ldots, x_{n}\right]
$$

be a collection of K-algebraic linearly independent linear forms.

Subspace Theorem (Multiplicative Projective formulation)

- Thm. (See e.g., [BG, Thm. 7.2.2]). If $\epsilon>0$, then the set of solutions $x \in \mathbb{P}^{n}(\mathbf{K})$ of the inequality

$$
\prod_{v \in S} \prod_{i=0}^{n} \frac{\left|\ell_{v i}(x)\right|_{v}}{\|x\|_{v}}<H(x)^{-n-1-\epsilon}
$$

lies in a finite union $T_{1} \bigcup \cdots \bigcup T_{h}$ of proper linear subspaces of \mathbb{P}^{n}.

- Example. Lang's formulation of Roth's Theorem, see e.g., [BG, Thm. 6.2.3], follows from the Subspace Theorem. The idea is to contemplate consequences of the Subspace Theorem, when applied to the binary linear forms

$$
\ell_{v 0}(x)=x_{0}, \ell_{v 1}(x)=x_{1}-\alpha_{v} x_{0} \in \mathbf{K}_{v}\left[x_{0}, x_{1}\right],
$$

for $v \in S$.

Selected guiding questions for Schmidt's Subspace theorem

- As emphasized by Evertse and Schlickewei, the main guiding questions continue to be
- to algorithmically determine all solutions;
- to give an upper bound for the number of solutions;
- to determine the linear scattering of the Diophantine exceptional set; and
- to establish generalizations.
- Selected recent results and progress:
- Vojta's Main Conjecture and K-unstable Fano varieties.
- Roth type inequalities and uniform arithmetic K-instability for polarized klt pairs (X, Δ).
- Harder and Narasimhan data and central limit theorem for filtered vector spaces.
- A (Parametric) Subspace Theorem, for linear systems with respect to twisted height functions and linear scattering of Diophantine exceptional sets.
- Compactness of Diophantine approximation sets.

Twisted height functions

- The concept of twisted height function arose in work of Roy-Thunder, Evertse-Schlickewei and Evertse-Ferretti.
- Let $c_{v i} \in \mathbb{R}$, for $v \in S$, and $i=0, \ldots, n$, be such that

$$
\sum_{i=0}^{n} c_{v i}=0, \text { for } v \in S
$$

- For $Q \geqslant 1$, the twisted height function is defined by

$$
\begin{aligned}
H_{Q}(x) & :=\prod_{v \in S}\left(\max _{0 \leqslant i \leqslant n}\left|\ell_{v i}(x)\right|_{v} Q^{-c_{v i}}\right) \cdot \prod_{v \notin S}\|x\|_{v} \\
& =\prod_{v \in S}\left(\max _{0 \leqslant i \leqslant n} \frac{\left|\ell_{v i}(x)\right|_{v}}{\|x\|_{v}} Q^{-c_{v i}}\right) \cdot H(x)
\end{aligned}
$$

Subspace Theorem (Parametric formulation)

- Rmk. These (equivalent) projective and affine forms of the Subspace Theorem are implied by the Parametric Subspace Theorem. The parametric formulation, which was given by Evertse-Ferretti-Schlickewei involves the twisted height functions.
- Thm. (Evertse-Ferretti-Schlickewei). Let $\delta>0$. Then, there exists a real number $Q_{0}>1$ and a finite number of proper linear subspaces $T_{1}, \ldots, T_{h} \subsetneq \mathbb{P}^{n}$ such that for all $Q \geqslant Q_{0}$, there is a $T_{i} \in\left\{T_{1}, \ldots, T_{h}\right\}$ with the property that

$$
\left\{x \in \mathbb{P}^{n}(\mathbf{K}): H_{Q}(x) \leqslant Q^{-\delta}\right\} \subseteq T_{i} .
$$

- Thm. (-). Parametric subspace thm for twisted height functions and linear systems \Rightarrow FW-type inequalities for linear systems \Rightarrow Subspace Thm. for linear systems.

Preliminaries for Vojta's Main Conjecture

- Let X be a projective variety defined over a number field K and D a Cartier divisor on X and defined over some finite extension of \mathbf{K}. Consider the proximity function

$$
m_{S}(\cdot, D):=\sum_{v \in S} \lambda_{D}(\cdot, v)
$$

for D with respect to a finite set $S \subseteq M_{\mathbf{K}}$ of places of \mathbf{K}.

- Here, the local Weil functions $\lambda_{D}(\cdot, v)$ are described as:

$$
\lambda_{D}(x, v)=-\log (v \text {-adic distance from } x \text { to } D) .
$$

- The logarithmic height functions determined by very ample line bundles L on X are described by:

$$
h_{L}(x)=\sum_{v \in M_{k}} \max _{j} \log \left|x_{j}\right|_{v} .
$$

- In general, the height function of an arbitrary line bundle M on X, (defined over \mathbf{K}) is obtained by first expressing M as the difference of two ample line bundles.

Vojta's Main Conjecture

- Let X be a non-singular projective variety defined over a number field \mathbf{K}. Let S be a fixed finite set of places of \mathbf{K} and let

$$
D=D_{1}+\cdots+D_{q}
$$

be a normal crossings divisor on X.

- Conj. (Vojta). Let L be a big line bundle on X, defined over \mathbf{K}, and let $\epsilon>0$. Then there exists a proper Zariski closed subset

$$
Z \subsetneq X
$$

so that for all

$$
x \in X(\mathbf{K}) \backslash Z(\mathbf{K})
$$

it holds true that

$$
m_{S}(x, D)+h_{\mathrm{K}_{x}}(x) \leqslant \epsilon h_{L}(x)+\mathrm{O}(1)
$$

Vojta's Main Conjecture: first examples

- E.g. For the case that $X=\mathbb{P}^{n}, L=\mathcal{O}_{\mathbb{P}^{n}}(1)$, and $D=H_{0}+\cdots+H_{n}$, for H_{i} hyperplanes in general position and then the inequalities given by Vojta's Main Conjecture become those of Schmidt's Subspace Theorem.
- E.g. For the case that X is of general type, then Vojta's Main Conjecture together with Northcott's theorem, for finiteness of points of bounded height, implies non-Zariski denseness of the set of K-rational points in X. In particular, Vojta's Main Conjecture implies the Bombieri-Lang conjecture.

Some recent results

- In the direction of Vojta's Main Conjecture, we mention one important consequence of the Arithmetic General Theorem ([RV] and [Gri]).
- First, we need to describe one auxiliary concept which arises in a variety of settings.
- Defn. A \mathbb{Q}-Fano variety is a projective variety X, which has log terminal singularities and ample \mathbb{Q}-Cartier anti-canonical class $-\mathrm{K}_{X}$.
- Defn. If E is a divisor over a \mathbb{Q}-Fano variety X, then let $\pi: X^{\prime} \rightarrow X$ be a model with $E \subseteq X^{\prime}$ a Cartier divisor and put:

$$
\beta\left(-\mathrm{K}_{X}, E\right):=\int_{0}^{\infty} \frac{\operatorname{Vol}\left(\pi^{*}\left(-\mathrm{K}_{X}\right)-t E\right)}{\operatorname{Vol}\left(-\mathrm{K}_{X}\right)} \mathrm{d} t .
$$

This is the expected order of vanishing of $-\mathrm{K}_{X}$ along E.

- E.g. If $X=\mathbb{P}^{n}$ and E is a hyperplane, then

$$
\beta\left(-\mathrm{K}_{X}, E\right)=1
$$

- Thm. (-). Let X be a \mathbb{Q}-Fano variety defined over a number field \mathbf{K}. Fix a finite set of places $S \subseteq M_{\mathbf{K}}$. Let E be a prime divisor over X and having field of definition some finite extension of \mathbf{K}. Assume that $\beta\left(-\mathrm{K}_{X}, E\right) \geqslant 1$. Fix L a big line bundle on X, defined over \mathbf{K}, and let $\epsilon>0$. Then there exists a Zariski closed subset $Z \subsetneq X$ such that if $x \in X(\mathbf{K}) \backslash Z(\mathbf{K})$, then

$$
m_{s}(x, D)+h_{\mathrm{K}_{x}}(x) \leqslant \epsilon h_{L}(x)+\mathrm{O}(1)
$$

Here $D=D_{1}+\cdots+D_{q}$ is a divisor over X that has the properties that:
(i) the divisors D_{1}, \ldots, D_{q} are each linearly equivalent to E; and
(ii) the divisors D_{1}, \ldots, D_{q} intersect properly.

- Sketch of Proof. It suffices to establish the inequality

$$
m_{S}(x, D) \leqslant(\epsilon+1) h_{-\mathrm{K}_{x}}(x)+\mathrm{O}(1)
$$

for all $x \in X(\mathbf{K}) \backslash Z(\mathbf{K})$ and $Z \subsetneq X$ some proper Zariski closed subset. This is implied by [Gri] and/or [RV].

A first example

- To gain some intuition for the conclusion of the Theorem, consider the following example.
- E.g. When $X=\mathbb{P}^{n}$ and $E \subseteq \mathbb{P}^{n}$ is a hyperplane, we then have that

$$
\beta\left(-\mathrm{K}_{X}, E\right)=1 .
$$

The conclusion of the Theorem applied to $L=\mathcal{O}_{\mathbb{P}^{n}}(1)$ and

$$
D=D_{1}+\cdots+D_{n+1},
$$

for D_{1}, \ldots, D_{n+1} a collection of hyperplanes in general position, recovers the usual statement of Schmidt's Subspace Theorem.

Influence of Toric Geometry

- The quantities $\beta\left(-\mathrm{K}_{X}, E\right)$ are related to the Duistermaat-Heckman measures and have origins in toric geometry. They have an interpretation via the theory of Okounkov bodies through the concept of concave transforms.
- E.g. Consider a toric blowing-up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$:

$$
\pi: S\left(\Sigma^{\prime}\right)=\mathrm{Bl}_{\{p t\}}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \rightarrow S(\Sigma)=\mathbb{P}^{1} \times \mathbb{P}^{1} .
$$

Our conventions are such that the primitive ray vectors for the respective fans Σ^{\prime} and Σ are given by:

$$
\begin{gathered}
v_{0}^{\prime}=(1,1), v_{1}^{\prime}=(-1,0), v_{2}^{\prime}=(0,1), \\
v_{3}^{\prime}=(1,0), v_{4}^{\prime}=(0,-1)
\end{gathered}
$$

and

$$
v_{1}=(-1,0), v_{2}=(0,1), v_{3}(1,0), v_{4}=(0,-1) .
$$

- The polytopes of the divisors, for $t \in \mathbb{R}_{\geqslant 0}$,

$$
\pi^{*} \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(a, b)-t E \sim a \pi^{*} D_{3}+b \pi^{*} D_{4}-t E
$$

where $a, b>0$ and $a \leqslant b$, are cut out by the inequalities:

- $\left(m_{1}, m_{2}\right) \cdot(1,1) \geqslant-a+t$,
- $\left(m_{1}, m_{2}\right) \cdot(-1,0) \geqslant 0$,
- $\left(m_{1}, m_{2}\right) \cdot(0,1) \geqslant 0$,
- $\left(m_{1}, m_{2}\right) \cdot(1,0) \geqslant-a$,
- $\left(m_{1}, m_{2}\right) \cdot(0,-1) \geqslant-b$.
- By determining the areas of these polytopes it follows that if

$$
f(t)=\frac{\operatorname{Vol}\left(a \pi^{*} D_{3}+b \pi^{*} D_{4}-t E\right)}{\operatorname{Vol}\left(a \pi^{*} D_{3}+b \pi^{*} D_{4}\right)}
$$

then

$$
f(t)= \begin{cases}1-\frac{t^{2}}{2 a b} & \text { if } 0 \leqslant t \leqslant a \\ 1+\frac{a}{2 b}-\frac{t}{b} & \text { if } a \leqslant t \leqslant b \\ \frac{(a-b-t)^{2}}{2 a b} & \text { if } b \leqslant t \leqslant a+b\end{cases}
$$

- Finally, by integrating $f(t)$, we obtain that

$$
\beta_{x}\left(\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(a, b)\right)=\beta(L, E)=\int_{0}^{a+b} f(t) \mathrm{d} t=\frac{a+b}{2}
$$

- Rmk. This example helps to give intuition as to the more general statements for calculating expected orders of vanishing via the theory of concave transforms for Okounkov bodies. ([Gri], [BKMS], [BC].)

Influence of K-stability

- As another interesting consequence of the Theorem, we indicate some ideas from K-stability.
- Valuative criteria of K-stability (K. Fujita and C. Li). A \mathbb{Q}-Fano variety X is not K -stable if and only if

$$
\beta\left(-\mathrm{K}_{X}, E\right) \geqslant 1+a(X, E)
$$

for at least one prime divisor E over X and defined over some finite extension of the base number field. Here, $a(X, E)$ is the discrepancy of E with respect to X.

- This criteria for K-stability together with the Theorem imply the following interesting consequence. It establishes instances of Vojta's Main Conjecture for \mathbb{Q}-Fano varieties, that have canonical singularieties, are not K-stable.
- Cor. (-). Let X be a \mathbb{Q}-Fano variety with canonical singularieties. If X is not K -stable, then the conclusion of the Theorem holds true for at least one prime divisor E over X and having field of definition some finite extension of the base number field.

The case of points of bounded degree

- In general, it remains a non-trivial open problem to obtain sharp height inequalities for points of bounded degree.
- However, there is a conjectural formulation of Schmidt's Theorem, with discriminant term, for points of bounded degree. It is a special case of the strong from of Vojta's Main Conjecture, for points of bounded degree.
- Conj. (Levin). Let K be a number field and S a finite set of places. Let $H_{1}, \ldots, H_{q} \subseteq \mathbb{P}^{n}$ be a collection of hyperplanes in general position. Put $H=H_{1}+\cdots+H_{q}$. Fix $d \geqslant 1$ and let $\epsilon>0$. Then, there exists a proper Zariski closed subset $Z \subsetneq \mathbb{P}^{n}$ such that

$$
m_{S}(x, H) \leqslant(n+1+\epsilon) h_{\mathcal{O}_{\mathbb{P} n}(1)}(x)+\mathrm{d}_{\mathbf{K}}(x)+\mathrm{O}(1)
$$

for all $x \in \mathbb{P}^{n}(\overline{\mathbf{K}}) \backslash Z(\overline{\mathbf{K}})$ with $[\mathbf{K}(x): \mathbf{K}] \leqslant d$.

- Unconditional subspace type results, for points of bounded degree, have been given by Levin.

Schlickewei's Subspace conjecture for points of bounded degree

- Another point of departure, for bounded degree height inequalities, is a conjecture, of Schlickewei.
- Conj. (Schlickewei). For each $v \in S$, fix linearly independent linear forms $\ell_{v 0}(x), \ldots, \ell_{v n}(x)$ in the polynomial ring $\overline{\mathbf{K}}\left[x_{0}, \ldots, x_{n}\right]$. Then there exists a positive constant $\mathrm{c}(n, d)>0$, which depends only on r and d, which has the following property for each fixed $\delta>0$. If $Z \subsetneq \mathbb{P}^{n}(\overline{\mathbf{K}})$ is the set of all $x=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{P}^{n}(\overline{\mathbf{K}})$ which satisfy the conditions that
$-\sum_{v \in S} \sum_{i=0}^{n} \lambda_{\ell_{v i}, v}(x)>(c(n, d)+\delta) h_{\mathcal{O}_{\frac{\mathbb{P}}{\mathbf{K}}}(1)}(x)+\mathrm{O}(1) ;$ and
- $[\mathbf{K}(x): \mathbf{K}] \leqslant d$,
then there exist finitely many proper linear subspaces $\Lambda_{1}, \ldots, \Lambda_{h}$ in $\mathbb{P}_{\bar{K}}^{n}$, each having field of definition with degree at most d over \mathbf{K}, and such that Z is contained in their union $\Lambda_{1} \bigcup \ldots \bigcup \Lambda_{h}$.

An arithmetic general theorem for points of bounded degree

- Thm. (-). Schlickewei's conjecture implies the following for a given geometrically irreducible projective variety X over K. Let D_{1}, \ldots, D_{q} be nonzero effective Cartier divisors on X and defined over a fixed finite extension field \mathbf{F} / \mathbf{K}. Put $D=D_{1}+\cdots+D_{q}$, and assume that these divisors D_{i} intersect properly. Let L be a big line bundle on X. Then, there exist positive constants $\gamma\left(d, L, D_{i}\right)$ so that if $\epsilon>0$, then

$$
\sum_{i=1}^{q} \gamma\left(d, L, D_{i}\right)^{-1} m_{S}\left(x, D_{i}\right) \leqslant(1+\epsilon) h_{L}(x)+\mathrm{O}(1)
$$

for all algebraic points

$$
x \in X(\overline{\mathbf{K}}) \backslash(Z(\overline{\mathbf{K}}) \bigcup \operatorname{Bs}(L)(\overline{\mathbf{K}}) \bigcup \operatorname{Supp}(D)(\overline{\mathbf{K}}))
$$

with $[\mathbf{K}(x): \mathbf{K}] \leqslant d$. Here, $Z \subsetneq X$ is contained in a finite union of linear sections $\Lambda_{1}, \ldots, \Lambda_{h}$, with degree $\leqslant d$.

Arithmetic uniform K-instability and (penultimate) Roth's theorem for klt-pairs

- Thm. (-). Let (X, Δ) be a Kawamata log terminal pair defined over a number field \mathbf{K}. Let L be an ample line bundle on X and defined over \mathbf{K}. Fix a finite set of places $S \subseteq M_{\mathrm{K}}$. For each $v \in S$, let E_{v} be a prime divisor over X and having field of definition some finite extension field of \mathbf{K}. Assume that (X, Δ) is not arithmetically K -stable with respect to L and E_{v}, for each $v \in S$. Moreover, suppose that $R_{v} \in \mathbb{R}_{>0}$, for $v \in S$, are destabilizing Roth constants; in particular, the inequality

$$
1<\sum_{v \in S} A\left(E_{v}, X, \Delta\right)<\sum_{v \in S} \beta_{E_{v}}(L) R_{v}
$$

is valid. Then, there exists a proper Zariski closed subset $W \subsetneq X$, defined over \mathbf{K}, and at least one place $v \in S$, so that

$$
\alpha_{E_{v}}\left(\left\{x_{i}\right\}, L\right) \geqslant 1 / R_{v} .
$$

