Dirichlet law for factorization of integers, polynomials and permutations

Sun-Kai Leung
Université de Montréal
Québec-Maine Number Theory Conference 15 October 2022

Introduction

Question

Given an integer $n \geq 1$, how to study the distribution of its divisors?

Dirichlet law for factorization of integers,
polynomials and permutations

Sun-Kai Leung

Introduction

Question

Given an integer $n \geq 1$, how to study the distribution of its

```
Dirichlet law for factorization of integers,
polynomials and permutations
Sun-Kai Leung
``` divisors? What is the limiting distribution if it exists?
```

Introduction

```

\section*{Introduction}

\section*{Question}

Given an integer \(n \geq 1\), how to study the distribution of its divisors? What is the limiting distribution if it exists? Let \(d\) be a random integer chosen uniformly from the divisors of \(n\). Then \(D_{n}:=\frac{\log d}{\log n}\) is a random variable taking values in \([0,1]\).

\section*{Introduction}

\section*{Question}

Given an integer \(n \geq 1\), how to study the distribution of its divisors? What is the limiting distribution if it exists? Let \(d\) be a random integer chosen uniformly from the divisors of \(n\). Then \(D_{n}:=\frac{\log d}{\log n}\) is a random variable taking values in \([0,1]\).
Q. Why using the logarithmic scale?

\section*{Introduction}

\section*{Question}

Given an integer \(n \geq 1\), how to study the distribution of its divisors? What is the limiting distribution if it exists? Let \(d\) be a random integer chosen uniformly from the divisors of \(n\). Then \(D_{n}:=\frac{\log d}{\log n}\) is a random variable taking values in \([0,1]\).
Q. Why using the logarithmic scale?
A. Symmetry w.r.t. \(\frac{1}{2}\), i.e. \(\frac{\log n / d}{\log n}=1-\frac{\log d}{\log n}\).

\section*{Introduction}

\section*{Question}

Given an integer \(n \geq 1\), how to study the distribution of its divisors? What is the limiting distribution if it exists? Let \(d\) be a random integer chosen uniformly from the divisors of \(n\). Then \(D_{n}:=\frac{\log d}{\log n}\) is a random variable taking values in \([0,1]\).
Q. Why using the logarithmic scale?
A. Symmetry w.r.t. \(\frac{1}{2}\), i.e. \(\frac{\log n / d}{\log n}=1-\frac{\log d}{\log n}\).

Figure: Probability mass function of \(D_{24}\)

\section*{DDT arcsine law}

As it turns out, the sequence of random variables \(\left\{D_{n}\right\}_{n=1}^{\infty}\) does not converge in distribution (say consider the subsequence consisting of primes and squares of primes).

Dirichlet law for factorization of integers,
polynomials and permutations

Sun-Kai Leung

\section*{DDT arcsine law}

As it turns out, the sequence of random variables \(\left\{D_{n}\right\}_{n=1}^{\infty}\) does not converge in distribution (say consider the subsequence consisting of primes and squares of primes).

Nevertheless, Deshouillers, Dress and Tenenbaum (DDT) proved the mean of the corresponding distribution functions converges to that of the arcsine law.

\section*{DDT arcsine law}

As it turns out, the sequence of random variables \(\left\{D_{n}\right\}_{n=1}^{\infty}\) does not converge in distribution (say consider the subsequence consisting of primes and squares of primes).

Nevertheless, Deshouillers, Dress and Tenenbaum (DDT) proved the mean of the corresponding distribution functions converges to that of the arcsine law.

Theorem (DDT arcsine law)
Uniformly for \(u \in[0,1]\), we have
\[
\frac{1}{x} \sum_{n \leq x} \mathbb{P}\left(D_{n} \leq u\right)=\frac{2}{\pi} \arcsin \sqrt{u}+O\left(\frac{1}{\sqrt{\log x}}\right)
\]
where \(\mathbb{P}\left(D_{n} \leq u\right):=\frac{1}{\tau(n)} \sum_{\substack{d \mid n \\ d<n^{u}}} 1\) is the distribution function of \(D_{n}\).

\section*{Arcsine distribution}

\section*{Question}

In a long coin-tossing game (say at the rate of one per

Dirichlet law for factorization of integers,
polynomials and permutations
```

Sun-Kai Leung

``` lead will pass frequently from one player to the other?

\section*{Arcsine distribution}

\section*{Question}

In a long coin-tossing game (say at the rate of one per lead will pass frequently from one player to the other?
On the average, in one out of ten games the last equalization will occur before 9 days have passes, and the lead will not change during the following 356 days!

\section*{Arcsine distribution}

\section*{Question}

In a long coin-tossing game (say at the rate of one per lead will pass frequently from one player to the other?
On the average, in one out of ten games the last equalization will occur before 9 days have passes, and the lead will not change during the following 356 days!

In fact, the last equalization follows the arcsine distribution.

\section*{Arcsine distribution}

\section*{Question}

In a long coin-tossing game (say at the rate of one per lead will pass frequently from one player to the other?
On the average, in one out of ten games the last equalization will occur before 9 days have passes, and the lead will not change during the following 356 days!

In fact, the last equalization follows the arcsine distribution.

\section*{Definition}

The arcsine distribution is the probability distribution defined on \((0,1)\) whose probability density function is
\[
f(x)=\frac{1}{\pi \sqrt{x(1-x)}}
\]

\section*{Arcsine distribution}

\section*{Question}

In a long coin-tossing game (say at the rate of one per lead will pass frequently from one player to the other?
On the average, in one out of ten games the last equalization will occur before 9 days have passes, and the lead will not change during the following 356 days!

In fact, the last equalization follows the arcsine distribution.

\section*{Definition}

The arcsine distribution is the probability distribution defined on \((0,1)\) whose probability density function is
\[
f(x)=\frac{1}{\pi \sqrt{x(1-x)}}
\]

In particular, it is symmetric and \(f(x) \rightarrow \infty\) as \(x \rightarrow 0\) or 1 .

Dirichlet law for factorization of integers, polynomials and permutations

Sun-Kai Leung

\section*{Introduction}

Main theorem
Generalization

Figure: DDT arcsine law with \(x=10^{3}\)

Figure: DDT arcsine law with \(x=10^{3}\)

Motivation. Taking a Bayesian perspective, the arcsine distribution is a special case of Dirichlet distribution.

Figure: DDT arcsine law with \(x=10^{3}\)

Motivation. Taking a Bayesian perspective, the arcsine distribution is a special case of Dirichlet distribution. Therefore, a natural question would be how to generalize the DDT theorem?

\section*{Dirichlet distribution}

\section*{Definition}

Let \(k \geq 2\). The Dirichlet distribution with parameters

Dirichlet law for factorization of integers,
polynomials and permutations \(\alpha_{1}, \ldots, \alpha_{k}>0\) is denoted by \(\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{k}\right)\), which is defined on the \((k-1)\)-dimensional probability simplex
\[
\left\{\left(t_{1}, \ldots, t_{k}\right) \in[0,1]^{k}: t_{1}+\cdots+t_{k}=1\right\}
\]
having density
\[
f_{\alpha}\left(t_{1}, \ldots, t_{k}\right):=\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} t_{i}^{\alpha_{i}-1}
\]

\section*{Dirichlet distribution}

\section*{Definition}

Let \(k \geq 2\). The Dirichlet distribution with parameters defined on the \((k-1)\)-dimensional probability simplex
\[
\left\{\left(t_{1}, \ldots, t_{k}\right) \in[0,1]^{k}: t_{1}+\cdots+t_{k}=1\right\}
\]
having density
\[
f_{\alpha}\left(t_{1}, \ldots, t_{k}\right):=\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} t_{i}^{\alpha_{i}-1} .
\]

In particular, if \(\alpha_{1}, \ldots, \alpha_{k}<1\), then \(f_{\alpha}\left(t_{1}, \ldots, t_{k}\right) \rightarrow \infty\) rapidly as \(t_{j} \rightarrow 1\) for some \(j=1, \ldots, k\).

\section*{Dirichlet distribution}

\section*{Definition}

Let \(k \geq 2\). The Dirichlet distribution with parameters
\(\alpha_{1}, \ldots, \alpha_{k}>0\) is denoted by \(\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{k}\right)\), which is defined on the \((k-1)\)-dimensional probability simplex
\[
\left\{\left(t_{1}, \ldots, t_{k}\right) \in[0,1]^{k}: t_{1}+\cdots+t_{k}=1\right\}
\]
having density
\[
f_{\alpha}\left(t_{1}, \ldots, t_{k}\right):=\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} t_{i}^{\alpha_{i}-1} .
\]

In particular, if \(\alpha_{1}, \ldots, \alpha_{k}<1\), then \(f_{\alpha}\left(t_{1}, \ldots, t_{k}\right) \rightarrow \infty\) rapidly as \(t_{j} \rightarrow 1\) for some \(j=1, \ldots, k\).

\section*{Example}

When \(k=2, \alpha=\beta=\frac{1}{2}\), Dirichlet distribution reduce to the arcsine distribution.

\section*{Main theorem}

Theorem (L., 2022)
Let \(k \geq 2\) be an integer. Then uniformly for \(x \geq 2\) and \(u_{1}, \ldots, u_{k-1} \geq 0\) satisfying \(u_{1}+\cdots+u_{k-1} \leq 1\), we have
\[
\frac{1}{x} \sum_{n \leq x} \frac{1}{\tau_{k}(n)} \sum_{d_{1} \leq n^{u_{1}}} \ldots \sum_{\substack{d_{k-1} \leq n^{u_{k-1}} \\ d_{1} \cdots d_{k-1} \mid n}} 1=F_{1 / k}\left(u_{1}, \ldots, u_{k-1}\right)
\]
\[
+O_{k}\left(\frac{1}{(\log x)^{\frac{1}{k}}}\right)
\]
where \(F_{1 / k}\) is the distribution function of \(\operatorname{Dir}\left(\frac{1}{k}, \ldots, \frac{1}{k}\right)\).

\section*{Main theorem}

Theorem (L., 2022)
Let \(k \geq 2\) be an integer. Then uniformly for \(x \geq 2\) and \(u_{1}, \ldots, u_{k-1} \geq 0\) satisfying \(u_{1}+\cdots+u_{k-1} \leq 1\), we have
\[
\frac{1}{x} \sum_{n \leq x} \frac{1}{\tau_{k}(n)} \sum_{d_{1} \leq n^{u_{1}}} \cdots \sum_{\substack{d_{k-1} \leq n^{u_{k-1}} \\ d_{1} \cdots d_{k-1} \mid n}} 1=F_{1 / k}\left(u_{1}, \ldots, u_{k-1}\right)
\]
\[
+O_{k}\left(\frac{1}{(\log x)^{\frac{1}{k}}}\right)
\]
where \(F_{1 / k}\) is the distribution function of \(\operatorname{Dir}\left(\frac{1}{k}, \ldots, \frac{1}{k}\right)\).
Remark. The error term here is optimal if full uniformity in \(u_{1}, \ldots, u_{k-1}\) is required.

Dirichlet law for factorization of integers,

\section*{In the language of probability theory, we have:}

Dirichlet law for factorization of integers,

In the language of probability theory, we have:

\section*{Corollary}

Let \(k \geq 2\) be a fixed integer. For \(x \geq 1\), let \(n\) be a random integer chosen uniformly from \([1, x]\)

Dirichlet law for factorization of integers,
polynomials and permutations

\author{
Sun-Kai Leung
}

In the language of probability theory, we have:

\section*{Corollary}

Let \(k \geq 2\) be a fixed integer. For \(x \geq 1\), let \(n\) be a random integer chosen uniformly from \([1, x]\) and \(\left(d_{1}, \ldots, d_{k}\right)\) be a random k-tuple chosen uniformly from the set of all possible factorization \(\left\{\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}: n=m_{1} \cdots m_{k}\right\}\).

In the language of probability theory, we have:

\section*{Corollary}

Let \(k \geq 2\) be a fixed integer. For \(x \geq 1\), let \(n\) be a random integer chosen uniformly from \([1, x]\) and \(\left(d_{1}, \ldots, d_{k}\right)\) be a random k-tuple chosen uniformly from the set of all possible factorization \(\left\{\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}: n=m_{1} \cdots m_{k}\right\}\). Then we have the convergence in distribution
\[
\left(\frac{\log d_{1}}{\log n}, \ldots, \frac{\log d_{k}}{\log n}\right) \xrightarrow{d} \operatorname{Dir}\left(\frac{1}{k}, \ldots, \frac{1}{k}\right)
\]
as \(x \rightarrow \infty\).

In the language of probability theory, we have:

\section*{Corollary}

Let \(k \geq 2\) be a fixed integer. For \(x \geq 1\), let \(n\) be a random integer chosen uniformly from \([1, x]\) and \(\left(d_{1}, \ldots, d_{k}\right)\) be a random k-tuple chosen uniformly from the set of all possible factorization \(\left\{\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}: n=m_{1} \cdots m_{k}\right\}\). Then we have the convergence in distribution
\[
\left(\frac{\log d_{1}}{\log n}, \ldots, \frac{\log d_{k}}{\log n}\right) \xrightarrow{d} \operatorname{Dir}\left(\frac{1}{k}, \ldots, \frac{1}{k}\right)
\]
as \(x \rightarrow \infty\).
It is a general phenomenon that the "anatomy" of polynomials or permutations is essentially the same as that of integers, and the main theorem here is no exception.

In terms of permutations, we have:

Dirichlet law for factorization of integers,
polynomials and permutations

\author{
Sun-Kai Leung
}

\section*{Introduction}

Main theorem

In terms of permutations, we have:

\section*{Corollary}

Let \(k \geq 2\) be a fixed integer. For \(n \geq 1\), let \(\sigma\) be a random permutation chosen uniformly from \(S_{n}\)

Dirichlet law for factorization of integers,
polynomials and permutations

\author{
Sun-Kai Leung
}

In terms of permutations, we have:

\section*{Corollary}

Let \(k \geq 2\) be a fixed integer. For \(n \geq 1\), let \(\sigma\) be a random permutation chosen uniformly from \(S_{n}\) and \(\left(A_{1}, \ldots, A_{k}\right)\) be a random k-tuple chosen uniformly from the set of all possible \(\sigma\)-invariant decomposition \(\left\{\left(B_{1}, \ldots, B_{k}\right):[n]=\right.\) \(B_{1} \sqcup \cdots \sqcup B_{k}, \sigma\left(B_{i}\right)=B_{i}\) for \(\left.i=1, \ldots, k\right\}\).

In terms of permutations, we have:

\section*{Corollary}

Let \(k \geq 2\) be a fixed integer. For \(n \geq 1\), let \(\sigma\) be a random permutation chosen uniformly from \(S_{n}\) and \(\left(A_{1}, \ldots, A_{k}\right)\) be a random k-tuple chosen uniformly from the set of all possible \(\sigma\)-invariant decomposition \(\left\{\left(B_{1}, \ldots, B_{k}\right):[n]=\right.\) \(B_{1} \sqcup \cdots \sqcup B_{k}, \sigma\left(B_{i}\right)=B_{i}\) for \(\left.i=1, \ldots, k\right\}\). Then we have the convergence in distribution
\[
\left(\frac{\left|A_{1}\right|}{n}, \ldots, \frac{\left|A_{k}\right|}{n}\right) \xrightarrow{d} \operatorname{Dir}\left(\frac{1}{k}, \ldots, \frac{1}{k}\right)
\]
as \(n \rightarrow \infty\).

In terms of permutations, we have:

\section*{Corollary}

Let \(k \geq 2\) be a fixed integer. For \(n \geq 1\), let \(\sigma\) be a random permutation chosen uniformly from \(S_{n}\) and \(\left(A_{1}, \ldots, A_{k}\right)\) be a random k-tuple chosen uniformly from the set of all possible \(\sigma\)-invariant decomposition \(\left\{\left(B_{1}, \ldots, B_{k}\right):[n]=\right.\) \(B_{1} \sqcup \cdots \sqcup B_{k}, \sigma\left(B_{i}\right)=B_{i}\) for \(\left.i=1, \ldots, k\right\}\). Then we have the convergence in distribution
\[
\left(\frac{\left|A_{1}\right|}{n}, \ldots, \frac{\left|A_{k}\right|}{n}\right) \xrightarrow{d} \operatorname{Dir}\left(\frac{1}{k}, \ldots, \frac{1}{k}\right)
\]
as \(n \rightarrow \infty\).
For polynomials over finite fields, it is similar.

Dirichlet law for factorization of integers,
polynomials and permutations

Sun-Kai Leung

\section*{Introduction}

Main theorem
Generalization

Figure: Main theorem for \(k=3\) with \(x=10^{3}\)

Figure: Main theorem for \(k=3\) with \(x=10^{3}\)

Since for each \(i\) the parameter \(\alpha_{i}=\frac{1}{k}\) is less than 1 , the density \(f_{\alpha}\left(t_{1}, \ldots, t_{k}\right)\) is concentrated on the vertices of the probability simplex.

Dirichlet law for factorization of integers,
polynomials and permutations

Sun-Kai Leung

\section*{Introduction}

Main theorem

Figure: Main theorem for \(k=3\) with \(x=10^{3}\)

Since for each \(i\) the parameter \(\alpha_{i}=\frac{1}{k}\) is less than 1 , the density \(f_{\alpha}\left(t_{1}, \ldots, t_{k}\right)\) is concentrated on the vertices of the probability simplex. Therefore, our intuition that a typical factorization of integers into \(k\) parts consists of \(k-1\) small factors and one large factor is justified quantitatively.

\section*{A multiple Dirichlet series}

Definition
For \(\operatorname{Re}\left(s_{j}\right)>1, j=1, \ldots, k\), we denote by \(\mathcal{D}\left(s_{1}, \ldots, s_{k}\right)\) the
Dirichlet law for factorization of integers,
polynomials and permutations multiple Dirichlet series
\[
\sum_{n_{1}=1}^{\infty} \cdots \sum_{n_{k}=1}^{\infty} \frac{\tau_{k}\left(n_{1} \cdots n_{k}\right)^{-1}}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}
\]

\section*{A multiple Dirichlet series}

\section*{Definition}

For \(\operatorname{Re}\left(s_{j}\right)>1, j=1, \ldots, k\), we denote by \(\mathcal{D}\left(s_{1}, \ldots, s_{k}\right)\) the multiple Dirichlet series
\[
\sum_{n_{1}=1}^{\infty} \cdots \sum_{n_{k}=1}^{\infty} \frac{\tau_{k}\left(n_{1} \cdots n_{k}\right)^{-1}}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}
\]

Although \(\tau_{k}\) is not completely multiplicative, we still have
\[
\mathcal{D}\left(s_{1}, \ldots, s_{k}\right)^{"} \approx " \zeta\left(s_{1}\right)^{\frac{1}{k}} \cdots \zeta\left(s_{k}\right)^{\frac{1}{k}}
\]

In particular, it can be expressed as an Euler product and continued meromorphically up to the non-trivial zeros.

\section*{A multiple Dirichlet series}

\section*{Definition}

For \(\operatorname{Re}\left(s_{j}\right)>1, j=1, \ldots, k\), we denote by \(\mathcal{D}\left(s_{1}, \ldots, s_{k}\right)\) the multiple Dirichlet series
\[
\sum_{n_{1}=1}^{\infty} \cdots \sum_{n_{k}=1}^{\infty} \frac{\tau_{k}\left(n_{1} \cdots n_{k}\right)^{-1}}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}
\]

Although \(\tau_{k}\) is not completely multiplicative, we still have
\[
\mathcal{D}\left(s_{1}, \ldots, s_{k}\right)^{\prime \prime} \approx " \zeta\left(s_{1}\right)^{\frac{1}{k}} \cdots \zeta\left(s_{k}\right)^{\frac{1}{k}}
\]

In particular, it can be expressed as an Euler product and continued meromorphically up to the non-trivial zeros.

Also, since \(\zeta(s) \sim \frac{1}{s-1}\) for \(s \sim 1\), we have
\[
\mathcal{D}\left(s_{1}, \ldots, s_{k}\right) \sim\left(s_{1}-1\right)^{-1} \cdots\left(s_{k}-1\right)^{-1}
\]
for \(s_{1}, \ldots, s_{k} \sim 1\).

\section*{Sketch of proof}

First of all, we have

Dirichlet law for factorization of integers,
polynomials and permutations

Sun-Kai Leung
\[
\begin{align*}
& \sum_{n \leq x} \frac{1}{\tau_{k}(n)} \sum_{d_{1} \leq n^{u_{1}}} \cdots \sum_{\substack{d_{k-1} \leq n^{u_{k-1}}}} 1 \\
\approx & \left.\sum_{n \leq x} \frac{1}{d_{1} \cdots d_{k-1} \mid n}\right\} \\
\sum_{k}(n) & \cdots \sum_{\substack{d_{1} \leq x^{u_{1}} \\
d_{1} \cdots d_{k-1} \mid n}} 1 . \tag{2.1}
\end{align*}
\]

\section*{Sketch of proof}

First of all, we have
\[
\begin{align*}
& \sum_{n \leq x} \frac{1}{\tau_{k}(n)} \sum_{d_{1} \leq n^{u_{1}}} \cdots \sum_{\substack{d_{k-1} \leq n^{u_{k-1}} \\
d_{1} \cdots d_{k-1} \mid n}} 1 \\
\approx & \sum_{n \leq x} \frac{1}{\tau_{k}(n)} \sum_{\substack{d_{1} \leq x^{u_{1}} \\
d_{1} \cdots d_{k-1} \mid n}} \cdots \sum_{\substack{d_{k-1} \leq x^{u_{k-1}}}} 1
\end{align*}
\]

Dirichlet law for factorization of integers,

Let \(d_{k}=n / d_{1} \cdots d_{k-1}\). Then (2.1) becomes
\[
\begin{equation*}
\sum_{d_{1} \leq x^{u_{1}}} \cdots \sum_{d_{k-1} \leq x^{u_{k-1}}} \sum_{d_{k} \leq x / d_{1} \cdots d_{k-1}} \frac{1}{\tau_{k}\left(d_{1} \cdots d_{k}\right)} \tag{2.2}
\end{equation*}
\]

\section*{Sketch of proof}

First of all, we have
\[
\begin{align*}
& \sum_{n \leq x} \frac{1}{\tau_{k}(n)} \sum_{d_{1} \leq n^{u_{1}}} \cdots \sum_{\substack{d_{k-1} \leq n^{u_{k-1}} \\
d_{1} \cdots d_{k-1} \mid n}} 1 \\
\approx & \sum_{n \leq x} \frac{1}{\tau_{k}(n)} \sum_{\substack{d_{1} \leq x^{u_{1}} \\
d_{1} \cdots d_{k-1} \mid n}} \cdots \sum_{\substack{d_{k-1} \leq x^{u_{k-1}}}} 1
\end{align*}
\]

Dirichlet law for factorization of integers,

Let \(d_{k}=n / d_{1} \cdots d_{k-1}\). Then (2.1) becomes
\[
\begin{equation*}
\sum_{d_{1} \leq x^{u_{1}}} \cdots \sum_{d_{k-1} \leq x^{u_{k-1}}} \sum_{d_{k} \leq x / d_{1} \cdots d_{k-1}} \frac{1}{\tau_{k}\left(d_{1} \cdots d_{k}\right)} \tag{2.2}
\end{equation*}
\]

As we can see, the sum is not symmetric.

Lemma
Let \(S\left(x_{1}, \ldots, x_{k}\right)\) denote the weighted sum
\[
\sum_{d_{1} \leq x_{1}} \cdots \sum_{d_{k} \leq x_{k}} \frac{\left(\log d_{1}\right)^{2} \cdots\left(\log d_{k}\right)^{2}}{\tau_{k}\left(d_{1} \cdots d_{k}\right)}
\]

Dirichlet law for factorization of integers,
polynomials and permutations

Sun-Kai Leung

Introduction
Main theorem

\section*{Lemma}

Let \(S\left(x_{1}, \ldots, x_{k}\right)\) denote the weighted sum
\[
\sum_{d_{1} \leq x_{1}} \cdots \sum_{d_{k} \leq x_{k}} \frac{\left(\log d_{1}\right)^{2} \cdots\left(\log d_{k}\right)^{2}}{\tau_{k}\left(d_{1} \cdots d_{k}\right)}
\]

Then we have
\[
S\left(x_{1}, \ldots, x_{k}\right) \approx \frac{1}{\Gamma\left(\frac{1}{k}\right)^{k}} \prod_{j=1}^{k} \int_{1}^{x_{j}}\left(\log y_{j}\right)^{\frac{1}{k}+1} d y_{j}
\]

\section*{Lemma}

Let \(S\left(x_{1}, \ldots, x_{k}\right)\) denote the weighted sum
\[
\sum_{d_{1} \leq x_{1}} \cdots \sum_{d_{k} \leq x_{k}} \frac{\left(\log d_{1}\right)^{2} \cdots\left(\log d_{k}\right)^{2}}{\tau_{k}\left(d_{1} \cdots d_{k}\right)}
\]

Dirichlet law for factorization of integers,
polynomials and permutations

Then we have
\[
S\left(x_{1}, \ldots, x_{k}\right) \approx \frac{1}{\Gamma\left(\frac{1}{k}\right)^{k}} \prod_{j=1}^{k} \int_{1}^{x_{j}}\left(\log y_{j}\right)^{\frac{1}{k}+1} d y_{j}
\]

Let us assume the lemma. By partial summation, the expression (2.2) equals
\[
\int_{1}^{x^{u_{1}}} \cdots \int_{1}^{x^{u_{k}-1}} \int_{1}^{\frac{x}{x_{1} \cdots x_{k}}} \frac{1}{\left(\log x_{1}\right)^{2}} \cdots \frac{1}{\left(\log x_{k}\right)^{2}} d S\left(x_{1}, \ldots, x_{k}\right)
\]

\section*{Lemma}

Let \(S\left(x_{1}, \ldots, x_{k}\right)\) denote the weighted sum
\[
\sum_{d_{1} \leq x_{1}} \cdots \sum_{d_{k} \leq x_{k}} \frac{\left(\log d_{1}\right)^{2} \cdots\left(\log d_{k}\right)^{2}}{\tau_{k}\left(d_{1} \cdots d_{k}\right)}
\]

Dirichlet law for factorization of integers, polynomials and permutations

Then we have
\[
S\left(x_{1}, \ldots, x_{k}\right) \approx \frac{1}{\Gamma\left(\frac{1}{k}\right)^{k}} \prod_{j=1}^{k} \int_{1}^{x_{j}}\left(\log y_{j}\right)^{\frac{1}{k}+1} d y_{j} .
\]

Let us assume the lemma. By partial summation, the expression (2.2) equals
\(\int_{1}^{x^{u_{1}}} \cdots \int_{1}^{x^{u_{k}-1}} \int_{1}^{\frac{x}{x_{1} \cdots x_{k}}} \frac{1}{\left(\log x_{1}\right)^{2}} \cdots \frac{1}{\left(\log x_{k}\right)^{2}} d S\left(x_{1}, \ldots, x_{k}\right)\),
which is \(\approx F_{1 / k}\left(u_{1}, \ldots, u_{k-1}\right) \times\) using the change of variables \(x_{j}=x^{t_{j}}, j=1, \ldots, k-1\). It remains to prove the lemma.

Applying Mellin's inversion formula, the weighted sum \(S\left(x_{1}, \ldots, x_{k}\right)\) becomes
\[
\begin{aligned}
\frac{1}{(2 \pi i)^{k}} & \int_{\operatorname{Re}\left(s_{1}\right)=1+\frac{1}{\log x_{1}}} \cdots \int_{\operatorname{Re}\left(s_{k}\right)=1+\frac{1}{\log x_{k}}} \\
& \left(\frac{\partial^{2 k}}{\partial s_{1}^{2} \cdots \partial s_{k}^{2}} \mathcal{D}\left(s_{1}, \ldots, s_{k}\right)\right) x_{1}^{s_{1}} \cdots x_{k}^{s_{k}} \frac{d s_{1}}{s_{1}} \cdots \frac{d s_{k}}{s_{k}}
\end{aligned}
\]

Dirichlet law for factorization of integers,
polynomials and permutations
Sun-Kai Leung

Applying Mellin's inversion formula, the weighted sum \(S\left(x_{1}, \ldots, x_{k}\right)\) becomes
\[
\begin{aligned}
\frac{1}{(2 \pi i)^{k}} & \int_{\operatorname{Re}\left(s_{1}\right)=1+\frac{1}{\log x_{1}}} \cdots \int_{\operatorname{Re}\left(s_{k}\right)=1+\frac{1}{\log x_{k}}} \\
& \left(\frac{\partial^{2 k}}{\partial s_{1}^{2} \cdots \partial s_{k}^{2}} \mathcal{D}\left(s_{1}, \ldots, s_{k}\right)\right) x_{1}^{s_{1}} \cdots x_{k}^{s_{k}} \frac{d s_{1}}{s_{1}} \cdots \frac{d s_{k}}{s_{k}},
\end{aligned}
\]
which is by Cauchy's estimate combined with the classical zero-free region
\[
\begin{gather*}
\approx \frac{1}{(2 \pi i)^{k}} \int_{l_{1}^{(1)}} \cdots \int_{l_{k}^{(1)}}\left(\frac{\partial^{2 k}}{\partial s_{1}^{2} \cdots \partial s_{k}^{2}} \mathcal{D}\left(s_{1}, \ldots, s_{k}\right)\right) \\
\cdot x_{1}^{s_{1}} \cdots x_{k}^{s_{k}} \frac{d s_{1}}{s_{1}} \cdots \frac{d s_{k}}{s_{k}} \tag{2.3}
\end{gather*}
\]
where \(l_{j}^{(1)}:=\left\{s_{j} \in \mathbb{C}: \operatorname{Re}\left(s_{j}\right)=1+\frac{1}{\log x_{j}},\left|\operatorname{Im}\left(s_{j}\right)\right| \leq 1\right\}\) for \(j=1, \ldots, k\).

Recall that for \(s_{1}, \ldots, s_{k} \sim 1\), we have
\(\mathcal{D}\left(s_{1}, \ldots, s_{k}\right) \sim\left(s_{1}-1\right)^{-1} \cdots\left(s_{k}-1\right)^{-1}\)

Dirichlet law for factorization of integers,
polynomials and
permutations
Sun-Kai Leung

\section*{Introduction}

Main theorem

Recall that for \(s_{1}, \ldots, s_{k} \sim 1\), we have
\[
\mathcal{D}\left(s_{1}, \ldots, s_{k}\right) \sim\left(s_{1}-1\right)^{-1} \cdots\left(s_{k}-1\right)^{-1}
\]
so that
\[
\begin{aligned}
\frac{\partial^{2 k}}{\partial s_{1}^{2} \cdots \partial s_{k}^{2}} \mathcal{D}\left(s_{1}, \ldots, s_{k}\right) & \sim\left(1+\frac{1}{k}\right)^{k} \frac{1}{k^{k}} \\
& \cdot\left(s_{1}-1\right)^{-\frac{1}{k}-2} \cdots\left(s_{k}-1\right)^{-\frac{1}{k}-2} .
\end{aligned}
\]

Recall that for \(s_{1}, \ldots, s_{k} \sim 1\), we have
\[
\mathcal{D}\left(s_{1}, \ldots, s_{k}\right) \sim\left(s_{1}-1\right)^{-1} \cdots\left(s_{k}-1\right)^{-1}
\]
so that
\[
\begin{aligned}
\frac{\partial^{2 k}}{\partial s_{1}^{2} \cdots \partial s_{k}^{2}} \mathcal{D}\left(s_{1}, \ldots, s_{k}\right) \sim & \left(1+\frac{1}{k}\right)^{k} \frac{1}{k^{k}} \\
& \cdot\left(s_{1}-1\right)^{-\frac{1}{k}-2} \cdots\left(s_{k}-1\right)^{-\frac{1}{k}-2}
\end{aligned}
\]

Therefore, the expression (2.3) is
\[
\approx\left(1+\frac{1}{k}\right)^{k} \frac{1}{k^{k}} \prod_{j=1}^{k}\left(\frac{1}{2 \pi i} \int_{l_{j}^{(1)}}\left(s_{j}-1\right)^{-\frac{1}{k}-2} x_{j}^{s_{j}} \frac{d s_{j}}{s_{j}}\right)
\]

Recall that for \(s_{1}, \ldots, s_{k} \sim 1\), we have
\[
\mathcal{D}\left(s_{1}, \ldots, s_{k}\right) \sim\left(s_{1}-1\right)^{-1} \cdots\left(s_{k}-1\right)^{-1}
\]

Dirichlet law for factorization of integers, polynomials and permutations
so that
\[
\begin{aligned}
\frac{\partial^{2 k}}{\partial s_{1}^{2} \cdots \partial s_{k}^{2}} \mathcal{D}\left(s_{1}, \ldots, s_{k}\right) & \sim\left(1+\frac{1}{k}\right)^{k} \frac{1}{k^{k}} \\
& \cdot\left(s_{1}-1\right)^{-\frac{1}{k}-2} \cdots\left(s_{k}-1\right)^{-\frac{1}{k}-2}
\end{aligned}
\]

Therefore, the expression (2.3) is
\[
\approx\left(1+\frac{1}{k}\right)^{k} \frac{1}{k^{k}} \prod_{j=1}^{k}\left(\frac{1}{2 \pi i} \int_{l_{j}^{(1)}}\left(s_{j}-1\right)^{-\frac{1}{k}-2} x_{j}^{s_{j}} \frac{d s_{j}}{s_{j}}\right)
\]
which is
\[
\approx\left(1+\frac{1}{k}\right)^{k} \frac{1}{k^{k}} \prod_{j=1}^{k}\left(\frac{1}{2 \pi i} \int_{\operatorname{Re}\left(s_{j}\right)=1+\frac{1}{\log x_{j}}}\left(s_{j}-1\right)^{-\frac{1}{k}-2} x_{j}^{s_{j}} \frac{d s_{j}}{s_{j}}\right) .
\]

Finally, the lemma follows from the following version of Hankel's lemma with \(\alpha=\frac{1}{k}+2\).

Dirichlet law for factorization of integers,
polynomials and permutations

Sun-Kai Leung

\section*{Introduction}

Main theorem

Finally, the lemma follows from the following version of Hankel's lemma with \(\alpha=\frac{1}{k}+2\).

\section*{Lemma}

Let \(x>1, \sigma>1\) and \(\operatorname{Re}(\alpha)>1\). Then we have
\[
\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\sigma} \frac{x^{s}}{s(s-1)^{\alpha}} d s=\frac{1}{\Gamma(\alpha)} \int_{1}^{x}(\log y)^{\alpha-1} d y
\]

Dirichlet law for factorization of integers,
polynomials and permutations

Finally, the lemma follows from the following version of Hankel's lemma with \(\alpha=\frac{1}{k}+2\).

\section*{Lemma}

Let \(x>1, \sigma>1\) and \(\operatorname{Re}(\alpha)>1\). Then we have
\[
\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\sigma} \frac{x^{s}}{s(s-1)^{\alpha}} d s=\frac{1}{\Gamma(\alpha)} \int_{1}^{x}(\log y)^{\alpha-1} d y
\]

Remark. The classical contour deformation fails as one of the \(x_{j}\) 's can be as small as 1 if \(u_{j}=0\) so that the contribution of the contour away from the branch point \(s_{j}=1\) is no longer negligible.

Finally, the lemma follows from the following version of Hankel's lemma with \(\alpha=\frac{1}{k}+2\).

\section*{Lemma}

Let \(x>1, \sigma>1\) and \(\operatorname{Re}(\alpha)>1\). Then we have
\[
\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\sigma} \frac{x^{s}}{s(s-1)^{\alpha}} d s=\frac{1}{\Gamma(\alpha)} \int_{1}^{x}(\log y)^{\alpha-1} d y
\]

Remark. The classical contour deformation fails as one of the \(x_{j}\) 's can be as small as 1 if \(u_{j}=0\) so that the contribution of the contour away from the branch point \(s_{j}=1\) is no longer negligible. Instead, we follow the approach by Granville and Koukoulopoulos to break each contour into three pieces, and the main contribution comes from \(\left|\operatorname{Im}\left(s_{j}\right)\right| \leq 1\), i.e. close to the branch point \(s_{j}=1\).
-

\section*{Generalization}

Dirichlet distribution with arbitrary parameters \(\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{k}\right)\) can be modelled similarly by assigning probability weights which are not necessarily uniform to each integer and to each factorization.

Dirichlet law for factorization of integers,
polynomials and permutations

Sun-Kai Leung

\section*{Introduction}

\section*{Generalization}

Dirichlet distribution with arbitrary parameters \(\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{k}\right)\) can be modelled similarly by assigning probability weights which are not necessarily uniform to each integer and to each factorization.

\section*{Example}

Let \(k \geq 2\) be a fixed integer. For \(x \geq 1\), let \(n\) be a random integer chosen uniformly from the set of sum of two squares \(\leq x\)

\section*{Generalization}

Dirichlet distribution with arbitrary parameters \(\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{k}\right)\) can be modelled similarly by assigning probability weights which are not necessarily uniform to each integer and to each factorization.

\section*{Example}

Let \(k \geq 2\) be a fixed integer. For \(x \geq 1\), let \(n\) be a random integer chosen uniformly from the set of sum of two squares \(\leq x\) and \(\left(d_{1}, \ldots, d_{k}\right)\) be a random \(k\)-tuple chosen uniformly from the set of all possible factorization \(\left\{\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}: n=m_{1} \cdots m_{k}\right\}\).

\section*{Generalization}

Dirichlet distribution with arbitrary parameters
\(\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{k}\right)\) can be modelled similarly by assigning probability weights which are not necessarily uniform to each integer and to each factorization.

\section*{Example}

Let \(k \geq 2\) be a fixed integer. For \(x \geq 1\), let \(n\) be a random integer chosen uniformly from the set of sum of two squares \(\leq x\) and \(\left(d_{1}, \ldots, d_{k}\right)\) be a random \(k\)-tuple chosen uniformly from the set of all possible factorization \(\left\{\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}: n=m_{1} \cdots m_{k}\right\}\). Then we have the convergence in distribution
\[
\left(\frac{\log d_{1}}{\log n}, \ldots, \frac{\log d_{k}}{\log n}\right) \xrightarrow{d} \operatorname{Dir}\left(\frac{1}{2 k}, \ldots, \frac{1}{2 k}\right)
\]
as \(x \rightarrow \infty\).

\section*{Thank you for listening!}```

