An Excised Orthogonal Model for Families of Cusp Forms

Andrew Keisling, Xuyan Liu, Annika Mauro, Zoe McDonald, Jack B. Miller, Santiago Velazquez lannuzzelli

Contact: keislina@umich.edu
Joint work with Owen Barrett, Astrid Lilly, and Steven J. Miller

SMALL REU 2022, Williams College
Conférence de théorie des nombres Québec-Maine
15-16 October 2022

Table of Contents

(1) Background
(2) Elliptic Curve L-Functions
(3) A Weight 4 Example

4 An Arithmetic Approach
(5) Acknowledgments

L-Functions Connection to Random Matrix Theory

Katz-Sarnak Philosophy

In the limit, statistics of L-functions match statistics for large random matrices from particular classical compact groups.

- $U(N)$
- $O(N)$
- $U S p(2 N)$
- $S O(2 N)$

Modeling Low Lying Zeros of L-functions

Theorem (Kohnen-Zagier)

- $f \in S_{k}$
- $g \in S_{(k+1) / 2}^{+}$Shimura correspondence
- $(-1)^{k} d>0$
- ψ_{d} Kronecker character

Then

$$
L_{f}\left(\frac{1}{2}, \psi_{d}\right)=\kappa_{f} \frac{c(|d|)^{2}}{|d|^{(k-1) / 2}}, \text { where } \kappa_{f}=\frac{(k-1)!}{\pi^{k / 2}} \frac{\langle f, f\rangle}{\langle g, g\rangle}
$$

where $c(|d|)$ is the $|d|^{\text {th }}$ Fourier coefficient of g.

Excised Ensemble and Cut-Off Value

Definition

An excised ensemble is a collection of random matrices in which we remove any generated matrix whose characteristic polynomial evaluated at 1 is less than a cut-off value.

Excised Ensemble and Cut-Off Value

Definition

An excised ensemble is a collection of random matrices in which we remove any generated matrix whose characteristic polynomial evaluated at 1 is less than a cut-off value.

We use excised ensembles of random matrices to model L-function statistics for finite conductor.

Non-excised RMT Ensemble

Without excision, the orthogonal model does not capture any of the repulsion behavior.

Non-excised RMT Ensemble

Without excision, the orthogonal model does not capture any of the repulsion behavior.

Left: Probability density of normalized eigenvalue closest to 1 for $\mathrm{SO}(8)$ (solid), $\mathrm{SO}(6)$ (dashed) and $\mathrm{SO}(4)$ (dot-dashed).
Right: Distribution of lowest zero for $L_{E_{11}}\left(s, \chi_{d}\right)$ with $0<d \leq 400,000$ compared to two sizes of non-excised random matrix ensembles.

The Excised Orthogonal Ensemble

In 2011, Dueñez, Huynh, Keating, Miller, and Snaith developed the excised orthogonal ensemble, a sub-ensemble of $S O(2 N)$, as a random matrix analogue for the family of quadratic twists of a given elliptic curve.

Repulsion of First Eigenvalue

The excised orthogonal ensemble exhibits the desired repulsion in the distribution of first eigenvalues:

Left Image: Distribution of first eigenvalues from non-excised $\mathrm{SO}(24)$ random matrices (blue) versus excised $\mathrm{SO}(24)$ random matrices (red). For the excised plot, the sample size before excision was $3,000,000$, cutoff approximately 0.005 .

Right Image: Enlargement of data near the origin.

Properties of the Excised Ensemble

On the scale of mean spacing, the excised ensemble exhibits an exponentially small hard gap determined by the cut-off value, with soft repulsion on a larger scale.

Properties of the Excised Ensemble

On the scale of mean spacing, the excised ensemble exhibits an exponentially small hard gap determined by the cut-off value, with soft repulsion on a larger scale.

Taking $N \rightarrow \infty$, there is limiting orthogonal behavior, which qualitatively agrees with Miller's discrepancy.

Computing the Cutoff Value

To have a model that has a good quantitative agreement with number theoretic data, we choose an appropriate cut-off value.

Computing the Cutoff Value

To have a model that has a good quantitative agreement with number theoretic data, we choose an appropriate cut-off value.

Dueñez, Huynh, Keating, Miller, Snaith determined this cut-off value numerically by using the proportion of quadratic twists with central vanishing.

A Weight 4 Newform

Let f be the normalized, weight 4 , level 7 newform over \mathbb{Q} (Label 7.4.a.a in LMFDB).

The Fourier coefficients $c(d)$ of the corresponding weight $5 / 2$ form can be obtained by adding the values of a quadratic form over a 3-dimensional lattice.

A Weight 4 Newform

Let f be the normalized, weight 4 , level 7 newform over \mathbb{Q} (Label 7.4.a.a in LMFDB).

The Fourier coefficients $c(d)$ of the corresponding weight $5 / 2$ form can be obtained by adding the values of a quadratic form over a 3-dimensional lattice.

Figure: The running average for $c(d)^{2} / d^{3 / 2}$ for positive fundamental discriminants such that $c(d) \neq 0$. This value is proportional to the central value by Kohnen-Zagier.

Lowest-lying Zeros

Using PARI/GP software, we computed the first three zeros for many twists of f by quadratic characters.

Figure: The distribution of lowest-lying zeros for all twists of f by positive fundamental discriminants $d \leq 41128$ with $\operatorname{gcd}(7, d)=1$ such that the twisted L-function does not vanish at the central point.

Effective Matrix Size

To model the finite-conductor statistics, we need to pick a finite matrix size for our $S O(2 N)$ ensemble.

Effective Matrix Size

To model the finite-conductor statistics, we need to pick a finite matrix size for our $S O(2 N)$ ensemble.

We choose a matrix size to equate the mean densities of eigenvalues with the mean density of L-function zeros, giving

$$
N_{s t d}=\log \left(\frac{\sqrt{M} X}{2 \pi e}\right) \approx 8
$$

where $M=7$ is the level of f and $X=41128$ is the largest twist we consider in our statistics.

The Orthogonal Ensemble

Figure: The distribution of the first eigenvalue for 10^{6} random matrices in $S O(16)$.

Cut-off Computation

If we excise our random matrix data by a cutoff value C, we obtain a new distribution.

To find an optimal cut-off value, we compute the L^{1} distance between the cumulative distribution functions of the excised matrix distribution and the distribution of zeros.

Cut-off Computation

When we use all of our lowest-lying zero data for $d \leq 41128$, we obtain an optimal cut-off value of

$$
C=0.00095 \ldots
$$

Figure: (Left) The L^{1} distance between our (rescaled) excised orthogonal data and our lowest-lying zero data for various cutoffs c. (Right) The same data zoomed into the global minimum.

Mock Probability Distribution

Let $P_{O^{+}}(N, x)$ be the probability density of $x=\Lambda_{A}(1, N)$ over the ensemble $A \in S O(2 N)$. We construct a mock probability density $P_{f}(d, x)$ of $x=L_{f}\left(\frac{1}{2}, \psi_{d}\right)$ at the $d^{\text {th }}$ Kronecker twist via

Mock Probability Distribution

Let $P_{O^{+}}(N, x)$ be the probability density of $x=\Lambda_{A}(1, N)$ over the ensemble $A \in S O(2 N)$. We construct a mock probability density $P_{f}(d, x)$ of $x=L_{f}\left(\frac{1}{2}, \psi_{d}\right)$ at the $d^{\text {th }}$ Kronecker twist via

Characteristic Value Distribution (Statistics)

$$
P_{O^{+}}(N, x)=\frac{1}{2 \pi i x} \int_{(c)} M_{O^{+}}(N, s) x^{-s} d s
$$

Mock Probability Distribution

Let $P_{O^{+}}(N, x)$ be the probability density of $x=\Lambda_{A}(1, N)$ over the ensemble $A \in S O(2 N)$. We construct a mock probability density $P_{f}(d, x)$ of $x=L_{f}\left(\frac{1}{2}, \psi_{d}\right)$ at the $d^{\text {th }}$ Kronecker twist via

Characteristic Value Distribution (Statistics)

$$
P_{O^{+}}(N, x)=\frac{1}{2 \pi i x} \int_{(c)} M_{O^{+}}(N, s) x^{-s} d s
$$

Central Value Distribution (Dueñez et. al, Barrett et. al)

$$
P_{f}(d, x):=\frac{1}{2 \pi i x} \int_{(c)} a_{f}(s) M_{O^{+}}(\log d, s) x^{-s} d s
$$

Mock Probability Distribution

Let $P_{O^{+}}(N, x)$ be the probability density of $x=\Lambda_{A}(1, N)$ over the ensemble $A \in S O(2 N)$. We construct a mock probability density $P_{f}(d, x)$ of $x=L_{f}\left(\frac{1}{2}, \psi_{d}\right)$ at the $d^{\text {th }}$ Kronecker twist via

Characteristic Value Distribution (Statistics)

$$
P_{O^{+}}(N, x)=\frac{1}{2 \pi i x} \int_{(c)} M_{O^{+}}(N, s) x^{-s} d s
$$

Central Value Distribution (Dueñez et. al, Barrett et. al)

$$
P_{f}(d, x):=\frac{1}{2 \pi i x} \int_{(c)} a_{f}(s) M_{O^{+}}(\log d, s) x^{-s} d s
$$

The main feature is that, up to first order,

$$
P_{f}(d, x) \sim a_{f}(-1 / 2) P_{O^{+}}(\log d, x)
$$

Mock Probability Distribution

To compute the cutoff value arithmetically, we need a scaling factor to translate from the RMT perspective to the L-function perspective.

$$
\begin{aligned}
a_{f}(s) & =\left[\prod_{p}\left(1-\frac{1}{p}\right)^{s(s-1) / 2}\right] \\
& \times\left[\prod_{p \nmid M}\left(1+\frac{1}{p}\right)^{-1}\left(\frac{1}{p}+\frac{1}{2}\left[\mathcal{L}_{p}\left(p^{-1 / 2}, f\right)^{s}+\mathcal{L}_{p}\left(-p^{-1 / 2}, f\right)^{s}\right]\right)\right] \\
& \times \mathcal{L}_{M}\left(\frac{\varepsilon_{f}}{M^{1 / 2}}\right)^{s}
\end{aligned}
$$

Constructing a cut-off

On the other hand, by the discretization of central value, the value is forced to be 0 if it's less than some constant.

Lemma (Discretization)

$$
L_{f}\left(k, \psi_{d}\right)<\frac{\kappa_{f}}{|d|^{(k-1) / 2}} \Longrightarrow L_{f}\left(k, \psi_{d}\right)=0
$$

Constructing a cut-off

On the other hand, by the discretization of central value, the value is forced to be 0 if it's less than some constant.

Lemma (Discretization)

$$
L_{f}\left(k, \psi_{d}\right)<\frac{\kappa_{f}}{|d|^{(k-1) / 2}} \Longrightarrow L_{f}\left(k, \psi_{d}\right)=0
$$

Note that this lemma is merely using the fact that $c(d) s$ are integers, and the $\frac{\kappa_{f}}{|d|^{k-1) / 2}}$ bound is the crudest possible(taking 1). Ideally, we can do better than 1.

Conjecture

$$
\begin{gathered}
\mid\left\{L_{f}\left(s, \psi_{d}\right) \in \mathcal{F}_{f}^{+}(X): d \text { prime }, L_{f}\left(k, \psi_{d}\right)=0\right\} \mid \\
\sim \sum_{d \text { prime }}^{d \leq X} \operatorname{Prob}\left(0 \leq Y_{d} \leq \frac{\kappa_{f} \delta_{f}}{d^{(k-1) / 2}}\right)
\end{gathered}
$$

where δ_{f} is some constant related to the discretization.

Cutoff value for RMT model

We first obtain our standard matrix size $N_{\text {std }}$ for our RMT model:

$$
N_{s t d}=\log \left(\frac{\sqrt{M} X}{2 \pi e}\right) \sim \log (X)
$$

And by connecting the probability distribution function of central value of this family of L-function and the corresponding characteristic polynomial of RMT model evaluate at 1 , we obtain the following relation

$$
P_{f}(d, x) \sim a_{f}(-1 / 2) P_{O^{+}}(\log d, x)
$$

Cutoff value for RMT model

To obtain the cutoff for RMT model: $C_{\text {std }}$, we normalize our cutoff $\frac{\kappa_{f} \delta_{f}}{d^{(k-1) / 2}}$ for the pdf of L-function by applying the above relation of the pdfs :

Theorem

$$
C_{s t d}=a_{f}^{-2}(-1 / 2) \delta_{f} \kappa_{f} \times \exp \left((1-k) N_{s t d} / 2\right)
$$

To get good δ_{f}, we conjecture this quantity should grow accordingly with the scale of $c(d) s$. Thus we first chose $\delta_{f}=\mathbb{E}\left(c(d)^{2}\right)$ regarding the Kohnen-Zagier formula.

Conjecturing a cutoff

To get good δ_{f}, we conjecture this quantity should grow accordingly with the scale of $c(d) s$. Thus we first chose $\delta_{f}=\mathbb{E}\left(c(d)^{2}\right)$ regarding the Kohnen-Zagier formula.

But:

Figure: The running average for $c(d)^{2} / d^{3 / 2}$ for positive fundamental discriminants such that $c(d) \neq 0$. This value is proportional to the central value by Kohnen-Zagier.

Ongoing Work

Work around stack size issues with PARI/GP to compute higher twists.

Work around stack size issues with PARI/GP to compute higher twists.

Compute with more weight 4 forms to see if the behavior we observe here is typical.

Ongoing Work

Work around stack size issues with PARI/GP to compute higher twists.

Compute with more weight 4 forms to see if the behavior we observe here is typical.

Analytically continue $a_{f}(s)$ to $-1 / 2$ to apply the methods of Dueñez et al. to compute the cutoff in a different way that can be compared to numerical results.

Acknowledgments

- Advisor Steven J Miller
- Professors Zhengyu Mao, Nina Snaith, Gonzalo Tornaría for their helpful insights
- The National Science Foundation Grant DMS1947438
- Williams College Department of Mathematics and Statistics
- University of Michigan
- Great Lakes HPC Cluster

References

- Dueñez, Huynh, Keating, Miller, and Snaith, (2010). A Random Matrix Model for Elliptic Curve L-Functions of Finite Conductor. Mathematics Subject Classification, 11M26, 15B52.
- Kohnen and Zagier (1981). Values of L-Series of Modular Forms. Inventiones Mathematicae, 64, 175-198.

