Detecting summand types in the module structure of square power classes over biquadratic extensions

Andrew Schultz

October 16, 2022

Wellesley College

In collaboration with...

John Swallow Frank Chemotti Ján Mináč

Tung T. Nguyen Nguyen Duy Tan

The next 25 minutes of your life

Here's what we'll be doing

- Introduce a Galois module of interest
- Review what is known about it
- Reinterpret module-theoretic info arithmetically
- Compute some examples

Motivation and Background

Problem under consideration

If K/F is a biquadratic extension and $\operatorname{char}(F) \neq 2$, decompose $K^{\times}/K^{\times 2}$ as module over $\mathbb{F}_2[\operatorname{Gal}(K/F)]$.

Problem under consideration

If K/F is a biquadratic extension and $\operatorname{char}(F) \neq 2$, decompose $K^{\times}/K^{\times 2}$ as module over $\mathbb{F}_2[\operatorname{Gal}(K/F)]$.

Why should we care?

Problem under consideration

If K/F is a biquadratic extension and $\operatorname{char}(F) \neq 2$, decompose $K^{\times}/K^{\times 2}$ as module over $\mathbb{F}_2[\operatorname{Gal}(K/F)]$.

Why should we care?

Problem under consideration

If K/F is a biquadratic extension and $\operatorname{char}(F) \neq 2$, decompose $K^{\times}/K^{\times 2}$ as module over $\mathbb{F}_2[\operatorname{Gal}(K/F)]$.

Why should we care?

If decomposition is "special" for any K/F, this means absolute Galois groups are "special" too

4

Problem under consideration

If K/F is a biquadratic extension and $\operatorname{char}(F) \neq 2$, decompose $K^{\times}/K^{\times 2}$ as module over $\mathbb{F}_2[\operatorname{Gal}(K/F)]$.

Why should we care?

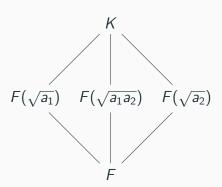
If decomposition is "special" for any K/F, this means absolute Galois groups are "special" too

(Spoiler alert: this module has been decomposed, and its "special" for any choice of K/F)

$$K = F(\sqrt{a_1}, \sqrt{a_2})$$

$$\sigma_i(\sqrt{a_j}) = (-1)^{\delta_{ij}} \sqrt{a_j}$$

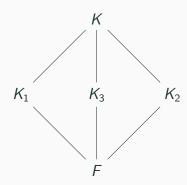
$$G = \operatorname{Gal}(K/F) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$



$$K = F(\sqrt{a_1}, \sqrt{a_2})$$

$$\sigma_i(\sqrt{a_j}) = (-1)^{\delta_{ij}} \sqrt{a_j}$$

$$G = \operatorname{Gal}(K/F) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$



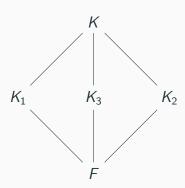
$$K = F(\sqrt{a_1}, \sqrt{a_2})$$

$$\sigma_i(\sqrt{a_j}) = (-1)^{\delta_{ij}} \sqrt{a_j}$$

$$G = \operatorname{Gal}(K/F) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

$$[\gamma] \in \mathcal{K}^{\times}/\mathcal{K}^{\times 2}$$
 is class of $\gamma \in \mathcal{K}^{\times}$

$$[\gamma]_i \in K_i^{\times}/K_i^{\times 2}$$
 is class of $\gamma \in K_i$



$$K = F(\sqrt{a_1}, \sqrt{a_2})$$

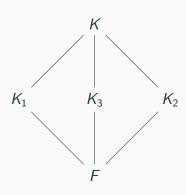
$$\sigma_i(\sqrt{a_j}) = (-1)^{\delta_{ij}} \sqrt{a_j}$$

$$G=\operatorname{Gal}(K/F)\simeq \mathbb{Z}/2\mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z}$$

$$[\gamma] \in \mathcal{K}^{\times}/\mathcal{K}^{\times 2}$$
 is class of $\gamma \in \mathcal{K}^{\times}$

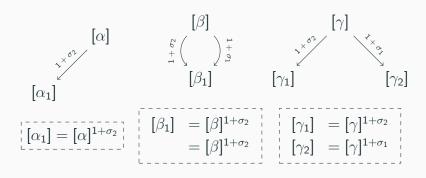
$$[\gamma]_i \in K_i^{\times}/K_i^{\times 2}$$
 is class of $\gamma \in K_i$

$$H_i=\operatorname{Gal}(G/K_i)$$



Warning: graphic content

We will view module information with pictures

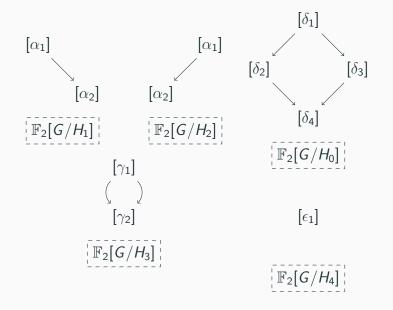


6

A sample of $\mathbb{F}_2[\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}]$ -indecomposables

For n > 1, there are 2 indecomposables of dimension 2n + 1

A sample of $\mathbb{F}_2[\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}]$ -indecomposables



Our module decomposition

Theorem [Chemotti, Mináč, S-, Swallow]

Suppose char $(K) \neq 2$ and $\operatorname{Gal}(K/F) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Then

$$K^{\times}/K^{\times 2} \simeq O_1 \oplus O_2 \oplus Q_0 \oplus Q_1 \oplus Q_2 \oplus Q_3 \oplus Q_4 \oplus X$$

where

- for each $i \in \{1, 2\}$, the summand O_i is a direct sum of modules isomorphic to Ω^i ; and
- for each $i \in \{0, 1, 2, 3, 4\}$, the summand Q_i is a direct sum of modules isomorphic to $\mathbb{F}_2[G/H_i]$; and
- X is isomorphic to one of the following: $\{0\}, \mathbb{F}_2, \mathbb{F}_2 \oplus \mathbb{F}_2, \Omega^{-1}, \Omega^{-2}, \text{ or } \Omega^{-1} \oplus \Omega^{-1}.$

Our module decomposition

Theorem [Chemotti, Mináč, S-, Swallow]

Suppose char $(K) \neq 2$ and $\operatorname{Gal}(K/F) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Then

$$\mathcal{K}^{\times}/\mathcal{K}^{\times 2} \simeq \underbrace{O_1 \oplus O_2 \oplus Q_0 \oplus Q_1 \oplus Q_2 \oplus Q_3 \oplus Q_4}_{\text{"unexceptional summand" }Y} \oplus X,$$

where

- for each $i \in \{1, 2\}$, the summand O_i is a direct sum of modules isomorphic to Ω^i ; and
- for each $i \in \{0, 1, 2, 3, 4\}$, the summand Q_i is a direct sum of modules isomorphic to $\mathbb{F}_2[G/H_i]$; and
- X is isomorphic to one of the following: $\{0\}, \mathbb{F}_2, \mathbb{F}_2 \oplus \mathbb{F}_2, \Omega^{-1}, \Omega^{-2}, \text{ or } \Omega^{-1} \oplus \Omega^{-1}.$

Motivation and Background

How the decomposition works

Lemma (Exclusion lemma)

If $U, V \subseteq W$ are $\mathbb{F}_2[G]$ -modules, then

$$U \cap V = \{0\} \Longleftrightarrow U^G \cap V^G = \{0\}$$

Lemma (Exclusion lemma)

If $U, V \subseteq W$ are $\mathbb{F}_2[G]$ -modules, then

$$U \cap V = \{0\} \iff U^G \cap V^G = \{0\}$$

Strategy:

I: Build a big module Y with $Y^G = [F^{\times}] \subseteq (K^{\times}/K^{\times 2})^G$

Lemma (Exclusion lemma)

If $U, V \subseteq W$ are $\mathbb{F}_2[G]$ -modules, then

$$U \cap V = \{0\} \iff U^G \cap V^G = \{0\}$$

Strategy:

I: Build a big module Y with $Y^G = [F^{\times}] \subseteq (K^{\times}/K^{\times 2})^G$

II: Build a small module X "over" a complement to $[F^{\times}]$

Lemma (Exclusion lemma)

If $U, V \subseteq W$ are $\mathbb{F}_2[G]$ -modules, then

$$U \cap V = \{0\} \iff U^G \cap V^G = \{0\}$$

Strategy:

I: Build a big module Y with $Y^G = [F^{\times}] \subseteq (K^{\times}/K^{\times 2})^G$

II: Build a small module X "over" a complement to $[F^{ imes}]$

III: Show X + Y spans

Lemma (Exclusion lemma)

If $U, V \subseteq W$ are $\mathbb{F}_2[G]$ -modules, then

$$U \cap V = \{0\} \iff U^G \cap V^G = \{0\}$$

Strategy:

I: Build a big module Y with $Y^G = [F^{\times}] \subseteq (K^{\times}/K^{\times 2})^G$

II: Build a small module X "over" a complement to $[F^{\times}]$

III: Show X + Y spans

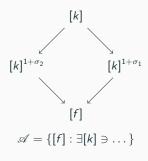
How do we build *Y*?

Guiding principle

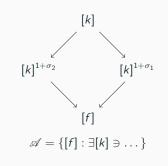
If $[f] \in [F^{\times}]$ is in the image of a norm map in $K^{\times}/K^{\times 2}$, make sure it's in the image of that norm map in Y.

- Preference given to "bigger" norms
- Preference given to "multiple norms"

Introducing the norms



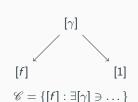
Introducing the norms

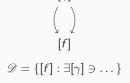


$$[\gamma]$$

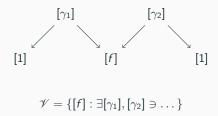
$$[1] \qquad [f]$$

$$\mathscr{B} = \{[f] : \exists [\gamma] \ni \dots \}$$





But what if $[f] \in \mathcal{B} \cap \mathcal{C}$?



To be greedy, we want $\mathscr V$ more than $\mathscr B$ or $\mathscr C$

One final issue

What about $(\mathcal{B} + \mathcal{C}) \cap \mathcal{D}$?

One final issue

What about $(\mathscr{B} + \mathscr{C}) \cap \mathscr{D}$?

Lemma [Tracking norm interactions]

 $[b][c] \in (\mathscr{B} + \mathscr{C}) \cap \mathscr{D}$ if and only if there is a solution to

Define $\mathcal{W} = \{([b], [c]) : \exists [\gamma_1], [\gamma_2], [\gamma_3] \ni ... \}.$

Building the unexceptional piece

Proposition

There exists a submodule Y whose fixed part is $[F^{\times}]$, and which is a direct sum of modules isomorphic to

- $\mathbb{F}_2[G/H_i]$ for $i \in \{0, 1, 2, 3, 4\}$
- Ω^k for $k \in \{1, 2\}$

Building the unexceptional piece

Proposition

There exists a submodule Y whose fixed part is $[F^{\times}]$, and which is a direct sum of modules isomorphic to

- $\mathbb{F}_2[G/H_i]$ for $i \in \{0, 1, 2, 3, 4\}$
- Ω^k for $k \in \{1, 2\}$

Proof sketch:

Building the unexceptional piece

Proposition

There exists a submodule Y whose fixed part is $[F^{\times}]$, and which is a direct sum of modules isomorphic to

- $\mathbb{F}_2[G/H_i]$ for $i \in \{0, 1, 2, 3, 4\}$
- Ω^k for $k \in \{1, 2\}$

Proof sketch:

Move through subspaces in order $(\mathscr{A}, \mathscr{V}, \mathscr{W}, \mathscr{B}, \mathscr{C}, \mathscr{D}, [F^{\times}])$

Building the unexceptional piece

Proposition

There exists a submodule Y whose fixed part is $[F^{\times}]$, and which is a direct sum of modules isomorphic to

- $\mathbb{F}_2[G/H_i]$ for $i \in \{0, 1, 2, 3, 4\}$
- Ω^k for $k \in \{1, 2\}$

Proof sketch:

Move through subspaces in order $(\mathscr{A}, \mathscr{V}, \mathscr{W}, \mathscr{B}, \mathscr{C}, \mathscr{D}, [F^{\times}])$

→ Make module "above" your element for given diagram

Building the unexceptional piece

Proposition

There exists a submodule Y whose fixed part is $[F^{\times}]$, and which is a direct sum of modules isomorphic to

- $\mathbb{F}_2[G/H_i]$ for $i \in \{0, 1, 2, 3, 4\}$
- Ω^k for $k \in \{1, 2\}$

Proof sketch:

Move through subspaces in order $(\mathscr{A}, \mathscr{V}, \mathscr{W}, \mathscr{B}, \mathscr{C}, \mathscr{D}, [F^{\times}])$

- → Make module "above" your element for given diagram
- → Be sure to avoid what you've already captured!

Reinterpreting the construction

of Y

Arithmetic interpretation for solvability

Original argument views Y in terms of solvability of diagrams, but gives no indication of how we determine solvability

Arithmetic interpretation for solvability

Original argument views Y in terms of solvability of diagrams, but gives no indication of how we determine solvability

Theorem [Diagram solvability and Br(F)]

Let $S = \langle (a_1, a_1), (a_1, a_2), (a_2, a_2) \rangle \subseteq \operatorname{Br}(F)$. For $f, g \in F^{\times}$, we have $(a_1, f)(a_2, g) \in S$ iff there exists $\gamma \in K^{\times}$ with

Arithmetic interpretation for solvability

Original argument views Y in terms of solvability of diagrams, but gives no indication of how we determine solvability

Theorem [Diagram solvability and Br(F)]

Let $S = \langle (a_1, a_1), (a_1, a_2), (a_2, a_2) \rangle \subseteq \operatorname{Br}(F)$. For $f, g \in F^{\times}$, we have $(a_1, f)(a_2, g) \in S$ iff there exists $\gamma \in K^{\times}$ with

Sketch of proof: solvability of Galois embedding problems

Thinking rationally

Great news: if $F=\mathbb{Q}$, then local-global principle makes computing elements of $\mathrm{Br}(\mathbb{Q})$ nicely explicit: $(a,b)=(c,d)\in\mathrm{Br}(\mathbb{Q})$ iff for all $v\in\{2,3,5,7,\cdots,\infty\}$ we have $(a,b)_v=(c,d)_v$

Thinking rationally

Great news: if $F = \mathbb{Q}$, then local-global principle makes computing elements of $\mathrm{Br}(\mathbb{Q})$ nicely explicit:

$$(a,b)=(c,d)\in \mathrm{Br}(\mathbb{Q})$$
 iff for all $v\in\{2,3,5,7,\cdots,\infty\}$ we have $(a,b)_v=(c,d)_v$

ullet if $p=\infty$ and $a,b\in\mathbb{Z}$ then

$$(a,b)_{\infty}=-1$$
 if $a,b<0,$ $(a,b)_{\infty}=1$ else

• if p odd prime then for gcd(a, p) = gcd(b, p) = 1 we get

$$(a,b)_p=1, \qquad (a,p)_p=\left(\frac{a}{p}\right), \qquad (p,p)_p=\left(\frac{-1}{p}\right)$$

• if p = 2 and $a, b \in 2\mathbb{Z} + 1$ then

$$(a,b)_2 = (-1)^{\frac{a-1}{2} \cdot \frac{b-1}{2}}, \quad (a,2)_p = (-1)^{\frac{a^2-1}{8}}, \quad (2,2)_2 = 1$$

$$\mathscr{V} = \left\{ [f] : \exists [\gamma_1], [\gamma_2] \text{ with } \begin{bmatrix} [\gamma_1] \\ [f] \end{bmatrix} \begin{bmatrix} [\gamma_2] \\ [f] \end{bmatrix} \right\}$$

$$\mathscr{V}=\left\{[f]:\exists [\gamma_1],[\gamma_2] \text{ with } \left[\begin{matrix} [\gamma_1] & [\gamma_2] \end{matrix} \right] \right\}$$

$$=\{[f]:(a_1,f)(a_2,1)\in \mathcal{S} \text{ and } (a_1,1)(a_2,f)\in \mathcal{S}\}$$

$$\mathscr{V}=\left\{[f]:\exists [\gamma_1],[\gamma_2] \text{ with } \left[\begin{matrix} [\gamma_1] & [\gamma_2] \end{matrix}\right] \right\}$$

$$=\left\{[f]:(a_1,f)(a_2,1)\in\mathcal{S} \text{ and } (a_1,1)(a_2,f)\in\mathcal{S}\right\}$$

$$\mathcal{V} = \left\{ [f] : \exists [\gamma_1], [\gamma_2] \text{ with } [\gamma_1] \right\}$$

$$= \{ [f] : (a_1, f)(a_2, 1) \in \mathcal{S} \text{ and } (a_1, 1)(a_2, f) \in \mathcal{S} \}$$

$$= \{ [f] : (a_1, f) \in \mathcal{S} \text{ and } (a_2, f) \in \mathcal{S} \}$$

$$\mathscr{V} = \left\{ [f] : \exists [\gamma_1], [\gamma_2] \text{ with } [\gamma_1] \\ = \{ [f] : (a_1, f)(a_2, 1) \in \mathcal{S} \text{ and } (a_1, 1)(a_2, f) \in \mathcal{S} \} \\ = \{ [f] : (a_1, f) \in \mathcal{S} \text{ and } (a_2, f) \in \mathcal{S} \} \right\}$$

Corollary

 Ω^1 summands of $K^{\times}/K^{\times 2}$ exist if there exists f so that $(a_1, f), (a_2, f) \in \mathcal{S} \setminus \{0\}.$

Let
$$K/F=\mathbb{Q}(\sqrt{7},\sqrt{-5})/\mathbb{Q}$$

$$\mathcal{S}=\langle (7,7),(7,-5),(-5,-5)\rangle$$

Let
$$K/F=\mathbb{Q}(\sqrt{7},\sqrt{-5})/\mathbb{Q}$$

$$\mathcal{S}=\langle (7,7),(7,-5),(-5,-5)\rangle$$

Goal: show $K^{\times}/K^{\times 2}$ has Ω^1 summands

$$\rightsquigarrow$$
 enough to find $f \in \mathbb{Q}$ so $(-5, f), (7, f) \in \mathcal{S} \setminus \{0\}$

Let
$$K/F=\mathbb{Q}(\sqrt{7},\sqrt{-5})/\mathbb{Q}$$

$$\mathcal{S}=\langle (7,7),(7,-5),(-5,-5)\rangle$$

Goal: show $K^{\times}/K^{\times 2}$ has Ω^1 summands

$$\rightsquigarrow$$
 enough to find $f \in \mathbb{Q}$ so $(-5, f), (7, f) \in \mathcal{S} \setminus \{0\}$

Strategy: find prime *p* with (-5, -p) = (-5, -5) and (7, -p) = (7, 7)

Fact:
$$(-5, -5)_{\nu} = -1$$
 iff $\nu = 2, \infty$

Fact:
$$(-5, -5)_v = -1$$
 iff $v = 2, \infty$
$$(-5, -p)_v = (-1, -1)_v (5, -1)_v (-1, p)_v (5, p)_v$$

Fact:
$$(-5, -5)_v = -1$$
 iff $v = 2, \infty$

$$(-5, -p)_v = (-1, -1)_v (5, -1)_v (-1, p)_v (5, p)_v$$

$$= \begin{cases} & \text{if } v = \infty \\ & \text{if } v = 5 \\ & \text{if } v = p. \end{cases}$$

Fact:
$$(-5, -5)_v = -1$$
 iff $v = 2, \infty$

$$(-5, -p)_v = (-1, -1)_v (5, -1)_v (-1, p)_v (5, p)_v$$

$$= \begin{cases} -1, & \text{if } v = \infty \\ & \text{if } v = 2 \\ & \text{if } v = 5 \end{cases}$$

$$\text{if } v = p.$$

Fact:
$$(-5, -5)_v = -1$$
 iff $v = 2, \infty$

$$(-5, -p)_v = (-1, -1)_v (5, -1)_v (-1, p)_v (5, p)_v$$

$$= \begin{cases} -1, & \text{if } v = \infty \\ -1 \cdot 1 \cdot (-1)^{\frac{p-1}{2}} \cdot 1, & \text{if } v = 2 \\ & \text{if } v = 5 \end{cases}$$
if $v = p$.

Fact:
$$(-5, -5)_v = -1$$
 iff $v = 2, \infty$

$$(-5, -p)_v = (-1, -1)_v (5, -1)_v (-1, p)_v (5, p)_v$$

$$= \begin{cases}
-1, & \text{if } v = \infty \\
-1 \cdot 1 \cdot (-1)^{\frac{p-1}{2}} \cdot 1, & \text{if } v = 2 \\
1 \cdot (\frac{-1}{5}) \cdot 1 \cdot (\frac{p}{5}), & \text{if } v = 5 \\
& \text{if } v = p.
\end{cases}$$

Fact:
$$(-5, -5)_v = -1$$
 iff $v = 2, \infty$

$$(-5, -p)_v = (-1, -1)_v (5, -1)_v (-1, p)_v (5, p)_v$$

$$= \begin{cases} -1, & \text{if } v = \infty \\ -1 \cdot 1 \cdot (-1)^{\frac{p-1}{2}} \cdot 1, & \text{if } v = 2 \\ 1 \cdot (\frac{-1}{5}) \cdot 1 \cdot (\frac{p}{5}), & \text{if } v = 5 \\ 1 \cdot 1 \cdot (\frac{-1}{p}) \cdot (\frac{5}{p}), & \text{if } v = p. \end{cases}$$

Fact:
$$(-5, -5)_{v} = -1$$
 iff $v = 2, \infty$

$$(-5, -p)_{v} = (-1, -1)_{v}(5, -1)_{v}(-1, p)_{v}(5, p)_{v}$$

$$= \begin{cases}
-1, & \text{if } v = \infty \\
-1 \cdot 1 \cdot (-1)^{\frac{p-1}{2}} \cdot 1, & \text{if } v = 2 \\
1 \cdot (\frac{-1}{5}) \cdot 1 \cdot (\frac{p}{5}), & \text{if } v = 5 \\
1 \cdot 1 \cdot (\frac{-1}{p}) \cdot (\frac{5}{p}), & \text{if } v = p.
\end{cases}$$

So we want $p \equiv 1 \pmod{4}$ and $p \equiv 1, 4 \pmod{5}$

Fact:
$$(7,7)_v = -1$$
 iff $v = 2,7$

Fact:
$$(7,7)_{v} = -1$$
 iff $v = 2,7$
$$(7,-p)_{v} = (7,-1)_{v}(7,p)_{v}$$

$$= \begin{cases} 1, & \text{if } v = \infty \\ -1 \cdot (-1)^{\frac{p-1}{2}}, & \text{if } v = 2 \\ \left(\frac{-1}{7}\right) \cdot \left(\frac{p}{7}\right), & \text{if } v = 7 \\ 1 \cdot \left(\frac{7}{p}\right), & \text{if } v = p. \end{cases}$$

Fact:
$$(7,7)_{v} = -1$$
 iff $v = 2,7$
$$(7,-p)_{v} = (7,-1)_{v}(7,p)_{v}$$

$$= \begin{cases} 1, & \text{if } v = \infty \\ -1 \cdot (-1)^{\frac{p-1}{2}}, & \text{if } v = 2 \\ \left(\frac{-1}{7}\right) \cdot \left(\frac{p}{7}\right), & \text{if } v = 7 \\ 1 \cdot \left(\frac{7}{p}\right), & \text{if } v = p. \end{cases}$$

So we need $p \equiv 1 \pmod{4}$ and $p \equiv 1, 2, 4 \pmod{7}$

Fact:
$$(7,7)_{v} = -1$$
 iff $v = 2,7$
$$(7,-p)_{v} = (7,-1)_{v}(7,p)_{v}$$

$$= \begin{cases} 1, & \text{if } v = \infty \\ -1 \cdot (-1)^{\frac{p-1}{2}}, & \text{if } v = 2 \\ \left(\frac{-1}{7}\right) \cdot \left(\frac{p}{7}\right), & \text{if } v = 7 \\ 1 \cdot \left(\frac{7}{p}\right), & \text{if } v = p. \end{cases}$$

So we need $p \equiv 1 \pmod{4}$ and $p \equiv 1, 2, 4 \pmod{7}$

Summary: any prime p with $p \equiv 1 \pmod{4}$, $p \equiv 1, 4 \pmod{5}$, and $p \equiv 1, 2, 4 \pmod{7}$ works.

Fact:
$$(7,7)_{v} = -1$$
 iff $v = 2,7$
$$(7,-p)_{v} = (7,-1)_{v}(7,p)_{v}$$

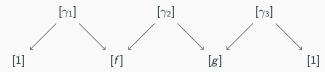
$$= \begin{cases} 1, & \text{if } v = \infty \\ -1 \cdot (-1)^{\frac{p-1}{2}}, & \text{if } v = 2 \\ \left(\frac{-1}{7}\right) \cdot \left(\frac{p}{7}\right), & \text{if } v = 7 \\ 1 \cdot \left(\frac{7}{p}\right), & \text{if } v = p. \end{cases}$$

So we need $p \equiv 1 \pmod{4}$ and $p \equiv 1, 2, 4 \pmod{7}$

Summary: any prime p with $p \equiv 1 \pmod{4}$, $p \equiv 1, 4 \pmod{5}$, and $p \equiv 1, 2, 4 \pmod{7}$ works.

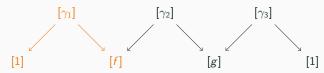
 \rightsquigarrow lots of Ω^1 summands in this module

 Ω^2 summands occurs for solutions to



AND we must have $[f],[g] \notin \mathcal{V}$

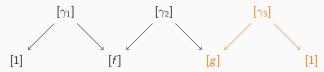
 Ω^2 summands occurs for solutions to



AND we must have $[f], [g] \notin \mathcal{V}$

So we need $(a_1, f), (a_2, g) \in S$ and $(a_2, f)(a_1, g) \in S$ but $(a_2, f), (a_1, g) \notin S$

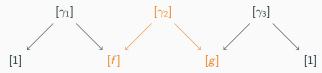
 Ω^2 summands occurs for solutions to



AND we must have $[f], [g] \notin \mathcal{V}$

So we need $(a_1, f), (a_2, g) \in S$ and $(a_2, f)(a_1, g) \in S$ but $(a_2, f), (a_1, g) \notin S$

 Ω^2 summands occurs for solutions to



AND we must have $[f], [g] \notin \mathcal{V}$

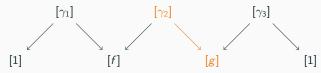
So we need $(a_1, f), (a_2, g) \in \mathcal{S}$ and $(a_2, f)(a_1, g) \in \mathcal{S}$ but $(a_2, f), (a_1, g) \notin \mathcal{S}$

 Ω^2 summands occurs for solutions to

AND we must have $[f], [g] \notin \mathcal{V}$

So we need $(a_1,f),(a_2,g)\in\mathcal{S}$ and $(a_2,f)(a_1,g)\in\mathcal{S}$ but $(a_2,f),(a_1,g)\not\in\mathcal{S}$

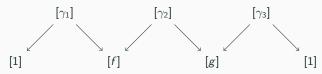
 Ω^2 summands occurs for solutions to



AND we must have $[f], [g] \notin \mathcal{V}$

So we need $(a_1, f), (a_2, g) \in \mathcal{S}$ and $(a_2, f)(a_1, g) \in \mathcal{S}$ but $(a_2, f), (a_1, g) \notin \mathcal{S}$

 Ω^2 summands occurs for solutions to



AND we must have $[f], [g] \notin \mathcal{V}$

So we need $(a_1,f),(a_2,g)\in\mathcal{S}$ and $(a_2,f)(a_1,g)\in\mathcal{S}$ but $(a_2,f),(a_1,g)\not\in\mathcal{S}$

Corollary

 Ω^2 summands of $K^{\times}/K^{\times 2}$ exist if there exist f,g so that $(a_1,f),(a_2,g)\in\mathcal{S}$ and $(a_1,g)=(a_2,f)\not\in\mathcal{S}$.

Let
$$K/F = \mathbb{Q}(\sqrt{33}, \sqrt{35})/\mathbb{Q}$$

Let
$$K/F = \mathbb{Q}(\sqrt{33}, \sqrt{35})/\mathbb{Q}$$

Goal: show $K^{\times}/K^{\times 2}$ has Ω^2 summands

ightharpoonup enough to find f,g so that $(a_1,f),(a_2,g)\in\mathcal{S}$ and $(a_1,g)=(a_2,f)\not\in\mathcal{S}$.

Let
$$K/F = \mathbb{Q}(\sqrt{33}, \sqrt{35})/\mathbb{Q}$$

Goal: show $K^{\times}/K^{\times 2}$ has Ω^2 summands

ightharpoonup enough to find f,g so that $(a_1,f),(a_2,g)\in\mathcal{S}$ and $(a_1,g)=(a_2,f)\not\in\mathcal{S}.$

Strategy: find primes p, q with (33, 3pq) = (33, 33) and (35, 7pq) = (1, 1) and $(33, 7pq) = (35, 3pq) \notin S$

Let
$$K/F = \mathbb{Q}(\sqrt{33}, \sqrt{35})/\mathbb{Q}$$

Goal: show $K^{\times}/K^{\times 2}$ has Ω^2 summands

 \leadsto enough to find f,g so that $(a_1,f),(a_2,g)\in\mathcal{S}$ and $(a_1,g)=(a_2,f)\not\in\mathcal{S}.$

Strategy: find primes p, q with (33, 3pq) = (33, 33) and (35, 7pq) = (1, 1) and $(33, 7pq) = (35, 3pq) \notin S$

- \sim Choose p so $p \not\equiv \square \pmod{3}$, $p \not\equiv \square \pmod{4}$, $p \not\equiv \square \pmod{5}$, $p \equiv \square \pmod{7}$, and $p \not\equiv \square \pmod{11}$
- ightharpoonup Choose q so $q \equiv \square \pmod{3}$, $q \equiv \square \pmod{4}$, $q \equiv \square \pmod{5}$, $q \equiv \square \pmod{7}$, and $q \equiv \square \pmod{11}$

Lather, rinse, repeat

This same strategy provides methods for realizing other "unexceptional" summand types over well-chosen rational biquadratic extensions

Lather, rinse, repeat

This same strategy provides methods for realizing other "unexceptional" summand types over well-chosen rational biquadratic extensions

The structure of the X summand also has new interpretation in this lens (but less exciting since it was originally interpretable in terms of Galois embeddings)

Merci!