AN EFFECTIVE VERSION OF A THEOREM OF SHIODA ON RANKS OF ELLIPTIC CURVES

Gary Walsh

gwalsh@uottawa.ca

Tutte Institute and Dept. Math. University of Ottawa Ottawa, Ontario, Canada

Maine-Quebec Number Theory Conference 2022 HAPPY BIRTHDAY ANDREW

1/21

THE CANONICAL CASE

Theorem (Bud Brown and Bruce Myers, 2002)

For a non-zero integer m, let

$$E_m$$
: $y^2 = x^3 - x + m^2$ and $P = (0, m), Q = (-1, m)$.

Then *P* and *Q* are independent points (of infinite order) on E_m , and hence

 $rank(E_m) \geq 2.$

BROWN AND MEYERS

$$E_m: y^2 = x^3 - x + m^2,$$

 $P = (0, m), Q = (-1, m), P + Q = (1, -m)$

Proof.

(*i.*) There is no rational 2-torsion on E_m . ($y \neq 0$ on E_m) (*ii.*) None of P, Q, P + Q are in $2E_m$. (slightly tedious) (*iii.*) {[O], [P], [Q], [P + Q]} is a group of order 4 in $E_m/2E_m$. (*ii.*) (*iv.*) $k, l \in \mathbb{Z}$ (not both 0) with kP + lQ = O violates (iii.) if k, lare not both even and violate (i.) if k, l are both even.

OTHER RESULTS

- P. Tadic (2012)- generic rank (function field) $E_m: y^2 = x^3 - x + m^2, m = m(t): rank_{\mathbb{Q}(t)} E_{m(t)} \ge 2.$
- Fujita and Nara (2017) $E_{m,n}: y^2 = x^3 - m^2 x + n^2: \text{ rank } E_{m,n} \ge 2.$
- Rout and Juyal (2021)

 $E_m: y^2 = x^3 - m^2 x + m^2: \text{ rank } E_m \ge 2.$

• Hatley and Stack (2021)

$$E_m: y^2 = x^3 - x + m^6: \text{ rank } E_m \ge 3.$$

• • = • • = • = •

Other Polynomials

What about

$$f(x) = (x-a)(x-b)(x-c)$$

with distinct integers a, b, c?

$$E_{(a,b,c),m}: y^2 = f(x) + m^2$$

≣ →

Other Polynomials

What about

$$f(x) = (x-a)(x-b)(x-c)$$

with distinct integers a, b, c?

$$E_{(a,b,c),m}: y^2 = f(x) + m^2$$

Example: (a, b, c) = (5, 7, 11), m=42. $E: y^2 = x^3 - 23x^2 + 167x + 1379$ rank(E) = 2 and $E(\mathbb{Q}) = \langle P, Q \rangle$ with P = (5, -42), Q = (7, -42).

個人 人名人 人名人 日

Beware: Rank 1 Examples Do Exist

<pre>R<x>:=PolynomialRing(Integers());</x></pre>	
f:=(x-Random(10^2))*(x-Random(10^2))*(x-Random(10^2));f;	
for i in [132] do	
f1:=f+i^2;	
if IsSquarefree(f1) then	
E:=EllipticCurve(f1);	
SetClassGroupBounds("GRH");	
[i,Rank(E)];	
end if;	
end for;	
	/
Clear	Submit

x^3 - 242*x^2 + 19281*x - 504252	
[1,3]	
[2,3]	
[3,3]	
[4,4]	
[5,2]	
[6, 2]	
[7,3]	
[8,2]	
[9,2]	
[10, 2]	
[11, 4]	
[12, 1]	
F 13 2 1	

< ≣ →

æ

RANK ONE EXAMPLE

$$E: y^2 = (x - 92)(x - 87)(x - 63) + 12^2$$

 $E(\mathbb{Q}) = \langle P \rangle, P = (87, -12)$

</l>
₹ ≣ >
7/21

▲ 同 ▶ → 三 ▶

æ

RANK ONE EXAMPLE

$$E: y^2 = (x - 92)(x - 87)(x - 63) + 12^2$$
$$E(\mathbb{Q}) = \langle P \rangle, P = (87, -12)$$
$$2P = (93, -18)$$
$$3P = (63, -12)$$
$$4P = (92, -12)$$
$$5P = (93, -18)$$
$$6P = (2151/5^2, 2076/5^3)$$

7P = (957, 25938)

ヨト

AN INDEPENDENCE CRITERION

Lemma

Let a, b, c be distinct integers and m a non-zero integer for which

$$f(x) = (x - a)(x - b)(x - c) + m^2$$

is squarefree. Let P = (a, m), Q = (b, m) on

$$E: y^2 = f(x).$$

AN INDEPENDENCE CRITERION

Lemma

Let a, b, c be distinct integers and m a non-zero integer for which

$$f(x) = (x - a)(x - b)(x - c) + m^2$$

is squarefree. Let P = (a, m), Q = (b, m) on

$$E: y^2 = f(x).$$

lf

i. $E(\mathbb{Q})$ is 2-torsion free, *ii.* P, Q are points of infinite order, and *iii.* P, Q and P + Q are not in $2E(\mathbb{Q})$,

then P and Q are independent.

MAIN THEOREM

Theorem (W. 2022)

Let *a*, *b*, *c* denote three distinct integers. There is an effectively computable constant C = C(a, b, c) > 0 with the property that if m > C then the rank of the curve $E = E_{(a,b,c),m}$, given by

$$y^{2} = (x - a)(x - b)(x - c) + m^{2}$$
,

is at least 2.

Strategy of the proof:

- *i.* The curve has no rational 2-torsion.
- *ii.* (a, m) and (b, m) are points of infinite order.

iii. (a, m), (b, m) and (a, m) + (b, m) are not in $2E(\mathbb{Q})$.

Simplifications

1. The translation $x \rightarrow x + c$ allows us to assume that c = 0.

2. Put

$$\begin{split} &A = -27(a^2 - ab + b^2) \\ &B = 3^6 m^2 + 27(a + b)^3 + 3A(a + b), \\ &X = 9x - 3(a + b), \quad Y = 27y, \end{split}$$

then

$$Y^2 = X^3 + AX + B.$$

10/21

Step One: 2-torsion

Assume that (r, s) is a rational point of order two on $Y^2 = X^3 + AX + B$. Then s = 0 and r is a root, so that

$$X^{3} + AX + B = (X - r)(X^{2} + rX + t)$$

for some integer t.

(*)
$$(27m)^2 = (-r)^3 + (-r) - 3A(a+b) - 27(a+b)^3$$
.

Thus, $m < C_1 = C_1(a, b)$ by **Baker's Theorem**. (the cubic above never has multiple roots)

STEP TWO: POINTS OF FINITE ORDER

Lutz-Nagell

Let *E* be an elliptic curve given by

$$y^2 = x^3 + Ax + B$$
, $A, B \in \mathbb{Z}$.

If *P* is a non-zero torsion point, then *i*. $x(P), y(P) \in \mathbb{Z}$. *ii*. Either 2P = 0 or $y(P)^2$ divides $4A^3 + 27B^2$.

 $P = \phi((a, m))$ (mapped to the short model) is torsion, and 2*P* is also. So $2P \in E(\mathbb{Z})$ by Lutz-Nagell, and $\lambda \in \mathbb{Z}$.

The quantity λ arising in the doubling formula is precisely

$$\lambda = \frac{a(a-b)}{54m},$$

and is not integral for $m > C_2(a, b)$ (and note that $\lambda \neq 0$).

It remains to show that P = (a, m), Q = (b, m), P + Q = (0, -m) are all **not** in $2E(\mathbb{Q})$ for *m* large.

Assume that 2(x, y) = (0, -m), need to show that *m* is bounded.

$$\lambda = \frac{3x^2 - 2(a+b)x + ab}{2y}, \ \nu = \frac{-x^3 + abx + 2m^2}{2y},$$

The coordinates (r, s) of 2(x, y) are given by

$$(\lambda^2 + a_1\lambda - a_2 - 2x, -(\lambda + a_1)r - \nu - a_3).$$

Since (r, s) = (0, -m), and $a_3 = 0$, it follows that $\nu = m$.

Combining the two expressions for ν and simplifying gives

$$x^{4} - 2abx^{2} - 8m^{2}x + (a^{2}b^{2} + 4m^{2}(a+b)) = 0.$$

The above polynomial in *x*, *m* satisfies the hypotheses of **Runge's Theorem** on Diophantine equations, from which it follows that $m < C_3 = C_3(a, b)$.

Combining the two expressions for ν and simplifying gives

$$x^{4} - 2abx^{2} - 8m^{2}x + (a^{2}b^{2} + 4m^{2}(a+b)) = 0.$$

The above polynomial in *x*, *m* satisfies the hypotheses of **Runge's Theorem** on Diophantine equations, from which it follows that $m < C_3 = C_3(a, b)$.

i. The weighted sum of highest order terms is reducible. *ii.* The polynomial is irreducible in $\mathbb{Q}[x]$ for $m > C_4(a, b)$. Combining the two expressions for ν and simplifying gives

$$x^{4} - 2abx^{2} - 8m^{2}x + (a^{2}b^{2} + 4m^{2}(a+b)) = 0.$$

The above polynomial in *x*, *m* satisfies the hypotheses of **Runge's Theorem** on Diophantine equations, from which it follows that $m < C_3 = C_3(a, b)$.

i. The weighted sum of highest order terms is reducible. *ii.* The polynomial is irreducible in $\mathbb{Q}[x]$ for $m > C_4(a, b)$.

Open Problem:

Compare the *explicit* constants arising from both the Diophantine method and the Shioda/Silverman method.

Theorem (W. 2023 - work in progress)

Let a, b be non-zero distinct integers for which the Pell equation

$$X^2 - (a+b)Y^2 = -ab$$

is solvable in integers (X, Y) = (n, m).

Then, for m > C = C(a, b), the curve

$$E: y^2 = x(x+a)(x+b) + m^6$$

has rank at least 3.

Proof: $P = (-a, m^3)$, $Q = (-b, m^3)$, $R = (-m^2, Xm)$ are independent for m > C.

Example
$$X^2 - 3Y^2 = -2$$
, $(a, b) = (1, 2)$
 $X + Y\sqrt{3} = (1 + \sqrt{3})(2 + \sqrt{3})^k$, $k \in \mathbb{Z}$

.≣ ≯

Example
$$X^2 - 3Y^2 = -2$$
, $(a, b) = (1, 2)$
 $X + Y\sqrt{3} = (1 + \sqrt{3})(2 + \sqrt{3})^k$, $k \in \mathbb{Z}$
 $k = 0, Y = 1: E: y^2 = x^3 + 3x^2 + 2x + 1$, $rank(E) = 1$

< ⊒ →

Example
$$X^2 - 3Y^2 = -2$$
, $(a, b) = (1, 2)$
 $X + Y\sqrt{3} = (1 + \sqrt{3})(2 + \sqrt{3})^k$, $k \in \mathbb{Z}$
 $k = 0, Y = 1: E: y^2 = x^3 + 3x^2 + 2x + 1$, $rank(E) = 1$
 $k = 1, Y = 3: E: y^2 = x^3 + 3x^2 + 2x + 3^6$, $rank(E) = 4$

< ≣ ► 16/21

Example
$$X^2 - 3Y^2 = -2$$
, $(a, b) = (1, 2)$
 $X + Y\sqrt{3} = (1 + \sqrt{3})(2 + \sqrt{3})^k$, $k \in \mathbb{Z}$
 $k = 0, Y = 1: E: y^2 = x^3 + 3x^2 + 2x + 1$, $rank(E) = 1$
 $k = 1, Y = 3: E: y^2 = x^3 + 3x^2 + 2x + 3^6$, $rank(E) = 4$
 $k = 2, Y = 11: E: y^2 = x^3 + 3x^2 + 2x + 11^6$, $rank(E) = 5$

Example
$$X^2 - 3Y^2 = -2$$
, $(a, b) = (1, 2)$
 $X + Y\sqrt{3} = (1 + \sqrt{3})(2 + \sqrt{3})^k$, $k \in \mathbb{Z}$
 $k = 0, Y = 1: E: y^2 = x^3 + 3x^2 + 2x + 1$, $rank(E) = 1$
 $k = 1, Y = 3: E: y^2 = x^3 + 3x^2 + 2x + 3^6$, $rank(E) = 4$
 $k = 2, Y = 11: E: y^2 = x^3 + 3x^2 + 2x + 11^6$, $rank(E) = 5$
 $k = 3, Y = 41: E: y^2 = x^3 + 3x^2 + 2x + 41^6$, $rank(E) = 7$

< ≣ ▶ 16/21

Using Pell Equations to get rank ≥ 3

Example Let a = 1 so the Pell equation becomes

$$X^2 - (b+1)Y^2 = -b$$

(which is always solvable with X = Y = 1), and restrict to $b = t^2 - 2$ so that small units of positive norm exist.

$$(1 + \sqrt{t^2 - 1}) \cdot (t + \sqrt{t^2 - 1}) = t^2 + t - 1 + (t + 1)\sqrt{t^2 - 1},$$

so $(X, Y) = (t^2 + t - 1, t + 1)$ is also solution to the Pell equation.

$$E_1(t): y^2 = x(x+1)(x+t^2-2)+1$$

$$E_2(t): y^2 = x(x+1)(x+t^2-2) + (t+1)^6$$

should have (somewhat) large rank.

Current Record Holder

$$E_2(346): y^2 = x(x+1)(x+346^2-2)+347^6$$

has rank 8.

≡ ગપલ

$$E: y^2 = x^3 + (a+b)x^2 + abx + m^6$$
,

$$P = (-a, m^3), Q = (-b, m^3), R(-m^2, mn),$$

Need to show $R, P + R, Q + R, P + Q + R \notin 2E(\mathbb{Q})$.

< ≣ ▶19/21

- ∢ ⊒ →

$$E: y^2 = x^3 + (a+b)x^2 + abx + m^6,$$

$$P = (-a, m^3), Q = (-b, m^3), R(-m^2, mn),$$

Need to show $R, P + R, Q + R, P + Q + R \notin 2E(\mathbb{Q})$.

$$X(R) = -m^2 \neq X(2(x, y))$$
 for *m* large means showing that

$$\begin{array}{l} x^4 + 4m^2x^3 + (4(a+b)m^2 - 2ab)x^2 + (4abm^2 - 8m^6)x \\ + (a^2b^2 + 4m^8 - 4(a+b)m^6) = 0 \end{array}$$

has no solutions *x* for *m* large.

Runge's Method: weighted sum of highest order terms

Is $x^4 + 4m^2x^3 - 8m^6x + 4m^8$ reducible?

20/21

Runge's Method: weighted sum of highest order terms

Is $x^4 + 4m^2x^3 - 8m^6x + 4m^8$ reducible?

$$x^4 + 4m^2x^3 - 8m^6x + 4m^8 = (x^2 + 2xm^2 - 2m^4)^2.$$

20/21

$P + R, Q + R, P + Q + R \notin 2E(\mathbb{Z})$

$F_{a,b}(x,m) =$

x^8*m^2 - x^8*a - 4*x^7*m^6 - 4*x^7*m^4*a - 4*x^7*m^4*b - 8*x^7*m^4 + 4*x^7*m^2*a*b + 8*x^7*m^2*a + 8*x^7*m^2*b - 8*x^7*a*b + 4*x^6*m^10 - 4*x^6*m^8*a - 8*x^6*m^8*b + 16*x^6*m^8 + 8*x^6*m^6*a*b + 12*x^6*m^6*a + 4*x^6*m^6*b^2 - 4*x^6*m^6*b + 16*x^6*m^6 - 4*x^6*m^4*a^2 - 4*x^6*m^4*a*b^2 - 40*x^6*m^4*a*b - 24*x^6*m^4*a - 20*x^6*m^4*b^2 - 40*x^6*m^4*b + 4*x^6*m^2*a^2*b + 8*x^6*m^2*a^2 + 20*x^6*m^2*a*b^2 + 44*x^6*m^2*a*b + 24*x^6*m^2*b^2 - 4*x^6*a^2*b - 24*x^6*a*b^2 + 8*x^5*m^10*a + 8*x^5*m^10*b - 8*x^5*m^8*a^2 - 24*x^5*m^8*a*b + 32*x^5*m^8*a - 16*x^5*m^8*b^2 + 32*x^5*m^8*b - 16*x^5*m^8 + 16*x^5*m^6*a^2*b + 32*x^5*m^6*a^2 + 24*x^5*m^6*a*b^2 + 36*x^5*m^6*a*b + 48*x^5*m^6*a + 8*x^5*m^6*b^3 + 32*x^5*m^6*b - 8*x^5*m^4*a^2*b^2 - 60*x^5*m^4*a^2*b - 32*x^5*m^4*a^2 - 8*x^5*m^4*a*b^3 - 92*x^5*m^4*a*b^2 - 88*x^5*m^4*a*b - 32*x^5*m^4*b^3 - 64*x^5*m^4*b^2 + 28*x^5*m^2*a^2*b^2 + 56*x^5*m^7*a^7*b + 37*x^5*m^7*a*b^3 + 88*x^5*m^7*a*b^7 + 37*x^5*m^7*b^3 - 24*x^5*a^2*b^2 - 32*x^5*a*b^3 + 28*x^4*m^12 + 4*x^4*m^10*a^2 + 16*x^4*m^10*a*b + 28*x^4*m^10*a + 4*x^4*m^10*b^2 + 28*x^4*m^10*b + 56*x^4*m^10 - 4*x^4*m^8*a^3 - 24*x^4*m^8*a^2*b + 16*x^4*m^8*a^2 - 36*x^4*m^8*a*b^2 + 36*x^4*m^8*a*b - 64*x^4*m^8*a - 8*x^4*m^8*b^3 + 16*x^4*m^8*b^2 - 64*x^4*m^8*b + 8*x^4*m^6*a^3*b + 16*x^4*m^6*a^3 + 36*x^4*m^6*a^2*b^2 + 72*x^4*m^6*a^2*b + 24*x^4*m^6*a^2 + 24*x^4*m^6*a*b^3 + 24*x^4*m^6*a*b^2 + 128*x^4*m^6*a*b + 4*x^4*m^6*b^4 + 16*x^4*m^6*b^2 - 4*x^4*m^4*a^3*b^2 - 24*x^4*m^4*a^3*b - 16*x^4*m^4*a^3 - 16*x^4*m^4*a^2*b^3 - 128*x^4*m^4*a^2*b^2 - 88*x^4*m^4*a^2*b - 4*x^4*m^4*a*b^4 - 88*x^4*m^4*a*b^3 - 128*x^4*m^4*a*b^2 . 16*x^4*m^4*h^4 . 32*x^4*m^4*h^3 . 8*x^4*m^2*a^3*h^2 . 16*x^4*m^2*a^3*h . 56*x^4*m^2*a^2*h^3 * 118*x^4*m^2*a^2*h^2 * 16*x^4*m^2*a*h^4 * 88*x^4*m^2*a*h^3 * 16*x^4*m^2*h^4 - 6*x^4*a^2*h^2 - 48*x^4*a^2*b^3 - 16*x^4*a*b^4 + 8*x^3*m^16 - 8*x^3*m^14*a - 16*x^3*m^14*b + 32*x^3*m^14 + 16*x^3*m^12*a*b + 80*x^3*m^12*a + 8*x^3*m^12*b^2 + 48*x^3*m^12*b + 32*x^3*m^12 + 8*x^3*m^10*a^2*b + 48°x^3°m^10°a^2 + 32°x^3°m^10°a*b + 64°x^3°m^10°a + 16°x^3°m^10°b^2 + 32°x^3°m^10°b - 8°x^3°m^8°a^3°b - 24*x^3*m^8*a^2*b^2 - 16*x^3*m^8*a^2*b - 96*x^3*m^8*a^2 - 16*x^3*m^8*a*b^3 + 16*x^3*m^8*a*b^2 - 96*x^3*m^8*a*b - 64*x^3*m^8*b^2 + 16*x^3*m^6*a^3*b^2 + 32*x^3*m^6*a^3*b + 24*x^3*m^6*a^2*b^3 + 36*x^3*m^6*a^2*b^2 + 96*x^3*m^6*a^2*b + 8*x^3*m^6*a*b^4 + 96*x^3*m^6*a*b^2 - 8*x^3*m^4*a^3*b^3 - 60*x^3*m^4*a^3*b^2 - 32*x^3*m^4*a^3*b - 8*x^3*m^4*a^2*b^4 - 92*x^3*m^4*a^2*b^3 - 88*x^3*m^4*a^2*b^2 - 32*x^3*m^4*a*b^4 - 64*x^3*m^4*a*b^3 + 28*x^3*m^2*a^3*b^3 + 56*x^3*m^2*a^3*b^2 + 32*x^3*m^2*a^2*b^4 + 88*x^3*m^2*a^2*b^3 + 32*x^3*m^2*a*b^4 - 24*x^3*a^3*b^3 - 32*x^3*a^2*b^4 + 8*x^2*m^16*a + 8*x^2*m^16*b - 8*x^2*m^14*a^2 - 24*x^2*m^14*a*b + 32*x^2*m^14*a - 16*x^2*m^14*b*2 + 32*x^2*m^14*b + 64*x^2*m^14 + 16*x^2*m^12*a^2*t + 48*x^2*m^12*a^2 + 24*x^2*m^12*a*b^2 + 104*x^2*m^12*a*b - 32*x^2*m^12*a + 8*x^2*m^12*b^3 + 16*x^2*m^12*b^2 + 32*x^2*m^12*b + 16*x^2*m^10*a*3 - 4*x^2*m^10*a*2*b*2 + 24*x^2*m^10*a*2*b - 8*x^2*m^10*a*b*3 - 8*x^2*m^10*a*b*2 + 48*x^2*m^10*a*b - 16*x^2*m^10*b^3 - 32*x^2*m^10*b^2 - 4*x^2*m^8*a^3*b^2 - 16*x^2*m^8*a^3*b - 32*x^2*m^8*a^3 - 8*x^2*m^8*a^2*b^3 - 24*x^2*m^8*a^2*b^2 - 96*x^2*m^8*a^2*b + 16*x^2*m^8*a*b^3 - 64*x^2*m^8*a*b^2 + 8*x^2*m^6*a^3*b^3 + 12*x^2*m^6*a^3*b^2 + 16*x^2*m^6*a^3*b + 4*x^2*m^6*a^2*b^4 - 4*x^2*m^6*a^2*b^3 + 112*x^2*m^6*a^2*b^3 - 4*x^2*m^4*a^4*b^2 - 4*x^2*m^4*a^3*b^4 - 40*x^2*m^4*a^3*b^3 - 24*x^2*m^4*a^3*b^2 - 20*x^2*m^4*a^2*b^4 - 40*x^2*m^4*a^2*b^3 + 4*x^2*m^2*a^4*b^3 + 8*x^2*m^2*a^4*b^2 + 20*x^2*m^2*a^3*b^4 + 44*x^2*m^2*a^3*b^3 + 24*x^2*m^2*a^2*b^4 - 4*x^2*a^4*b^3 - 24*x^2*a^3*b^4 + 32*x*m^18 + 8*x*m^16*a*h + 32*x*m^16*a + 32*x*m^16*h + 64*x*m^16 - 8*x*m^14*a^2*h - 16*x*m^14*a*h^2 + 16*x*m^12*a^2*h^2 + 48*x*m^12*a^2*b - 64*x*m^12*a^2 + 8*x*m^12*a*b^3 + 16*x*m^12*a*b^2 + 32*x*m^12*a*b + 16*x*m^10*a^3*b - 8*x*m^10*a^2*b^3 - 32*x*m^10*a^2*b^2 - 16*x*m^10*a*b^3 - 32*x*m^10*a*b^2 - 16*x*m^8*a^3*b^2 - 32*x*m^8*a^3*b + 16*x*mr8*ar2*br3 - 16*x*mr8*ar2*br2 - 4*x*mr6*ar3*br3 + 48*x*mr6*ar3*br2 - 4*x*mr4*ar4*br3 - 4*x*mr4*ar3*br4 - 8*x*mr4*ar3*br3 + 4*x*m^2*a^4*b^4 + 8*x*m^2*a^4*b^3 + 8*x*m^2*a^3*b^4 - 8*x*a^4*b^4 + 4*m^22 - 4*m^20*a - 8*m^20*b + 16*m^20 + 8*m^18*a*b + 32*m^18*a + 4*m^18*b^2 + 16*m^18*b + 16*m^18 + 16*m^16*a^2 - 4*m^16*a*b^2 + 16*m^16*a - 16*m^14*a^2*b - 16*m^14*a^2 - 16*m^12*a^3 - ##m^12#a^2#b^2 - ##m^18#a^2#b^2 - ##m^18#a^2#b^3 - 8#m^18#a^2#b^2 - ##m^8#a^2#b^3 - 8#m^6#a^4#b^2 - m^2#a^##b^4 - a^5#b^4

- 4*m^12*a^2*b^2 - 4*m^10*a^3*b^2 - 4*m^10*a^2*b^3 - 8*m^10*a^2*b^2 + 4*m^8*a^3*b^3 + 8*m^6*a^4*b^2 + m^2*a^4*b^4 - a^5*b^4

satisfies Runge's condition for all a, b.

GARY WALSH GWALSH@UOTTAWA.C#

RANKS OF ELLIPTIC CURVES

21/21

イロト イ押ト イヨト イヨト