AN EFFECTIVE VERSION OF A THEOREM OF SHIODA ON RANKS OF ELLIPTIC CURVES

Gary Walsh
gwalsh@uottawa.ca

Tutte Institute and
Dept. Math. University of Ottawa
Ottawa, Ontario, Canada

Maine-Quebec Number Theory Conference 2022 HAPPY BIRTHDAY ANDREW

The Canonical Case

Theorem (Bud Brown and Bruce Myers, 2002)

For a non-zero integer m, let

$$
E_{m}: y^{2}=x^{3}-x+m^{2} \text { and } P=(0, m), Q=(-1, m) .
$$

Then P and Q are independent points (of infinite order) on E_{m}, and hence

$$
\operatorname{rank}\left(E_{m}\right) \geq 2
$$

$E_{m}: y^{2}=x^{3}-x+m^{2}$,
$P=(0, m), Q=(-1, m), P+Q=(1,-m)$

Proof.

(i.) There is no rational 2-torsion on $E_{m} \cdot\left(y \neq 0\right.$ on $\left.E_{m}\right)$
(ii.) None of $P, Q, P+Q$ are in $2 E_{m}$. (slightly tedious)
(iii.) $\{[O],[P],[Q],[P+Q]\}$ is a group of order 4 in $E_{m} / 2 E_{m}$. (ii.)
(iv.) $k, I \in \mathbb{Z}$ (not both 0) with $k P+I Q=O$ violates (iii.) if k, l are not both even and violate (i.) if k, l are both even.

Other Results

- P. Tadic (2012)- generic rank (function field)

$$
E_{m}: y^{2}=x^{3}-x+m^{2}, m=m(t): \operatorname{rank}_{\mathbb{Q}(t)} E_{m(t)} \geq 2
$$

- Fujita and Nara (2017)
$E_{m, n}: y^{2}=x^{3}-m^{2} x+n^{2}: \operatorname{rank} E_{m, n} \geq 2$.
- Rout and Juyal (2021)
$E_{m}: y^{2}=x^{3}-m^{2} x+m^{2}: \operatorname{rank} E_{m} \geq 2$.
- Hatley and Stack (2021)
$E_{m}: y^{2}=x^{3}-x+m^{6}: \operatorname{rank} E_{m} \geq 3$.

Other Polynomials

What about

$$
f(x)=(x-a)(x-b)(x-c)
$$

with distinct integers a, b, c ?

$$
E_{(a, b, c), m}: y^{2}=f(x)+m^{2}
$$

Other Polynomials

What about

$$
f(x)=(x-a)(x-b)(x-c)
$$

with distinct integers a, b, c ?

$$
E_{(a, b, c), m}: y^{2}=f(x)+m^{2}
$$

Example: $(a, b, c)=(5,7,11), m=42$.

$$
E: y^{2}=x^{3}-23 x^{2}+167 x+1379
$$

$\operatorname{rank}(E)=2$ and
$E(\mathbb{Q})=<P, Q>$ with $P=(5,-42), Q=(7,-42)$.

Beware: Rank 1 Examples Do Exist

```
R<x>:=PolynomialRing(Integers());
f:=(x-Random(10^2))*(x-Random(10^2))*(x-Random(10^2)); f;
for is in [1..32] do
f1:=f+i^2;
if IsSquarefree(f1) then
E:=EllipticCurve(f1);
SetClassGroupBounds("GRH");
[i,Rank(E)];
end if;
end for;
```

```
x^3-242**^2 + 19281*x - 504252
[ 1, 3 ]
[2, 3]
[ 3, 3 ]
[4,4]
[ 5, 2]
[6, 2 ]
[ 7, 3 ]
[ 8, 2 ]
[ 9, 2 ]
[ 10, 2 ]
[ 11, 4 ]
[ 12, 1]
[13, 2 ]
```


Rank One Example

$$
E: y^{2}=(x-92)(x-87)(x-63)+12^{2}
$$

$$
E(\mathbb{Q})=\langle P\rangle, P=(87,-12)
$$

$$
E: y^{2}=(x-92)(x-87)(x-63)+12^{2}
$$

$$
E(\mathbb{Q})=\langle P\rangle, P=(87,-12)
$$

$$
\begin{aligned}
& 2 P=(93,-18) \\
& 3 P=(63,-12) \\
& 4 P=(92,-12) \\
& 5 P=(93,-18) \\
& 6 P=\left(2151 / 5^{2}, 2076 / 5^{3}\right) \\
& 7 P=(957,25938)
\end{aligned}
$$

An Independence CRITERION

Lemma

Let a, b, c be distinct integers and m a non-zero integer for which

$$
f(x)=(x-a)(x-b)(x-c)+m^{2}
$$

is squarefree. Let $P=(a, m), Q=(b, m)$ on

$$
E: y^{2}=f(x)
$$

An Independence Criterion

Lemma

Let a, b, c be distinct integers and m a non-zero integer for which

$$
f(x)=(x-a)(x-b)(x-c)+m^{2}
$$

is squarefree. Let $P=(a, m), Q=(b, m)$ on

$$
E: y^{2}=f(x)
$$

If
i. $E(\mathbb{Q})$ is 2-torsion free,
ii. P, Q are points of infinite order, and
iii. P, Q and $P+Q$ are not in $2 E(\mathbb{Q})$,
then P and Q are independent.

Main Theorem

Theorem (W. 2022)
Let a, b, c denote three distinct integers. There is an effectively computable constant $C=C(a, b, c)>0$ with the property that if $m>C$ then the rank of the curve $E=E_{(a, b, c), m}$, given by

$$
y^{2}=(x-a)(x-b)(x-c)+m^{2},
$$

is at least 2.
Strategy of the proof:
i. The curve has no rational 2 -torsion.
ii. (a, m) and (b, m) are points of infinite order.
iii. $(a, m),(b, m)$ and $(a, m)+(b, m)$ are not in $2 E(\mathbb{Q})$.

Proof of the Main Theorem

Simplifications

1. The translation $x \rightarrow x+c$ allows us to assume that $c=0$.
2. Put

$$
\begin{aligned}
& A=-27\left(a^{2}-a b+b^{2}\right) \\
& B=3^{6} m^{2}+27(a+b)^{3}+3 A(a+b) \\
& X=9 x-3(a+b), \quad Y=27 y
\end{aligned}
$$

then

$$
Y^{2}=X^{3}+A X+B
$$

Proof of the Main Theorem

Step One: 2-torsion

Assume that (r, s) is a rational point of order two on $Y^{2}=X^{3}+A X+B$. Then $s=0$ and r is a root, so that

$$
X^{3}+A X+B=(X-r)\left(X^{2}+r X+t\right)
$$

for some integer t.
$(*)(27 m)^{2}=(-r)^{3}+(-r)-3 A(a+b)-27(a+b)^{3}$.

Thus, $m<C_{1}=C_{1}(a, b)$ by Baker's Theorem.
(the cubic above never has multiple roots)

Lutz-Nagell

Let E be an elliptic curve given by

$$
y^{2}=x^{3}+A x+B, \quad A, B \in \mathbb{Z} .
$$

If P is a non-zero torsion point, then
i. $x(P), y(P) \in \mathbb{Z}$.
ii. Either $2 P=0$ or $y(P)^{2}$ divides $4 A^{3}+27 B^{2}$.
$P=\phi((a, m))$ (mapped to the short model) is torsion, and $2 P$ is also. So $2 P \in E(\mathbb{Z})$ by Lutz-Nagell, and $\lambda \in \mathbb{Z}$.

The quantity λ arising in the doubling formula is precisely

$$
\lambda=\frac{a(a-b)}{54 m},
$$

and is not integral for $m>C_{2}(a, b)$ (and note that $\lambda \neq 0$).

It remains to show that $P=(a, m), Q=(b, m)$,
$P+Q=(0,-m)$ are all not in $2 E(\mathbb{Q})$ for m large.
Assume that $2(x, y)=(0,-m)$, need to show that m is bounded.

$$
\lambda=\frac{3 x^{2}-2(a+b) x+a b}{2 y}, \nu=\frac{-x^{3}+a b x+2 m^{2}}{2 y} .
$$

The coordinates (r, s) of $2(x, y)$ are given by

$$
\left(\lambda^{2}+a_{1} \lambda-a_{2}-2 x,-\left(\lambda+a_{1}\right) r-\nu-a_{3}\right)
$$

Since $(r, s)=(0,-m)$, and $a_{3}=0$, it follows that $\nu=m$.

Combining the two expressions for ν and simplifying gives

$$
x^{4}-2 a b x^{2}-8 m^{2} x+\left(a^{2} b^{2}+4 m^{2}(a+b)\right)=0 .
$$

The above polynomial in x, m satisfies the hypotheses of Runge's Theorem on Diophantine equations, from which it follows that $m<C_{3}=C_{3}(a, b)$.

Combining the two expressions for ν and simplifying gives

$$
x^{4}-2 a b x^{2}-8 m^{2} x+\left(a^{2} b^{2}+4 m^{2}(a+b)\right)=0 .
$$

The above polynomial in x, m satisfies the hypotheses of Runge's Theorem on Diophantine equations, from which it follows that $m<C_{3}=C_{3}(a, b)$.
i. The weighted sum of highest order terms is reducible.
ii. The polynomial is irreducible in $\mathbb{Q}[x]$ for $m>C_{4}(a, b)$.

Combining the two expressions for ν and simplifying gives

$$
x^{4}-2 a b x^{2}-8 m^{2} x+\left(a^{2} b^{2}+4 m^{2}(a+b)\right)=0 .
$$

The above polynomial in x, m satisfies the hypotheses of
Runge's Theorem on Diophantine equations, from which it follows that $m<C_{3}=C_{3}(a, b)$.
i. The weighted sum of highest order terms is reducible.
ii. The polynomial is irreducible in $\mathbb{Q}[x]$ for $m>C_{4}(a, b)$.

Open Problem:

Compare the explicit constants arising from both the Diophantine method and the Shioda/Silverman method.

Using Pell Equations to get rank ≥ 3

Theorem (W. 2023 - work in progress)
Let a, b be non-zero distinct integers for which the Pell equation

$$
X^{2}-(a+b) Y^{2}=-a b
$$

is solvable in integers $(X, Y)=(n, m)$.
Then, for $m>C=C(a, b)$, the curve

$$
E: y^{2}=x(x+a)(x+b)+m^{6}
$$

has rank at least 3.
Proof: $P=\left(-a, m^{3}\right), Q=\left(-b, m^{3}\right), R=\left(-m^{2}, X m\right)$ are independent for $m>C$.

Using Pell Equations to get rank ≥ 3

Example $X^{2}-3 Y^{2}=-2, \quad(a, b)=(1,2)$

$$
X+Y \sqrt{3}=(1+\sqrt{3})(2+\sqrt{3})^{k}, \quad k \in \mathbb{Z}
$$

Using Pell Equations to get rank ≥ 3

Example $X^{2}-3 Y^{2}=-2, \quad(a, b)=(1,2)$

$$
\begin{gathered}
X+Y \sqrt{3}=(1+\sqrt{3})(2+\sqrt{3})^{k}, \quad k \in \mathbb{Z} \\
k=0, Y=1: E: y^{2}=x^{3}+3 x^{2}+2 x+1, \operatorname{rank}(E)=1
\end{gathered}
$$

Using Pell Equations to get rank ≥ 3

Example $X^{2}-3 Y^{2}=-2, \quad(a, b)=(1,2)$

$$
X+Y \sqrt{3}=(1+\sqrt{3})(2+\sqrt{3})^{k}, \quad k \in \mathbb{Z}
$$

$k=0, Y=1: E: y^{2}=x^{3}+3 x^{2}+2 x+1, \operatorname{rank}(E)=1$
$k=1, Y=3: E: y^{2}=x^{3}+3 x^{2}+2 x+3^{6}, \operatorname{rank}(E)=4$

Using Pell Equations to get rank ≥ 3

Example $X^{2}-3 Y^{2}=-2, \quad(a, b)=(1,2)$

$$
X+Y \sqrt{3}=(1+\sqrt{3})(2+\sqrt{3})^{k}, \quad k \in \mathbb{Z}
$$

$k=0, Y=1: E: y^{2}=x^{3}+3 x^{2}+2 x+1, \operatorname{rank}(E)=1$
$k=1, Y=3: E: y^{2}=x^{3}+3 x^{2}+2 x+3^{6}, \operatorname{rank}(E)=4$
$k=2, Y=11: E: y^{2}=x^{3}+3 x^{2}+2 x+11^{6}, \operatorname{rank}(E)=5$

Using Pell Equations to get rank ≥ 3

Example $X^{2}-3 Y^{2}=-2, \quad(a, b)=(1,2)$

$$
X+Y \sqrt{3}=(1+\sqrt{3})(2+\sqrt{3})^{k}, \quad k \in \mathbb{Z}
$$

$k=0, Y=1: E: y^{2}=x^{3}+3 x^{2}+2 x+1, \operatorname{rank}(E)=1$
$k=1, Y=3: E: y^{2}=x^{3}+3 x^{2}+2 x+3^{6}, \operatorname{rank}(E)=4$
$k=2, Y=11: E: y^{2}=x^{3}+3 x^{2}+2 x+11^{6}, \operatorname{rank}(E)=5$
$k=3, Y=41: E: y^{2}=x^{3}+3 x^{2}+2 x+41^{6}, \operatorname{rank}(E)=7$

Using Pell Equations to get rank ≥ 3

Example Let $a=1$ so the Pell equation becomes

$$
X^{2}-(b+1) Y^{2}=-b
$$

(which is always solvable with $X=Y=1$), and restrict to $b=t^{2}-2$ so that small units of positive norm exist.

$$
\left(1+\sqrt{t^{2}-1}\right) \cdot\left(t+\sqrt{t^{2}-1}\right)=t^{2}+t-1+(t+1) \sqrt{t^{2}-1}
$$

so $(X, Y)=\left(t^{2}+t-1, t+1\right)$ is also solution to the Pell equation.

$$
\begin{gathered}
E_{1}(t): y^{2}=x(x+1)\left(x+t^{2}-2\right)+1 \\
E_{2}(t): y^{2}=x(x+1)\left(x+t^{2}-2\right)+(t+1)^{6}
\end{gathered}
$$

should have (somewhat) large rank.

Using Pell Equations to get rank ≥ 3

Current Record Holder

$$
E_{2}(346): y^{2}=x(x+1)\left(x+346^{2}-2\right)+347^{6}
$$

has rank 8.

$$
\begin{gathered}
E: y^{2}=x^{3}+(a+b) x^{2}+a b x+m^{6}, \\
P=\left(-a, m^{3}\right), Q=\left(-b, m^{3}\right), R\left(-m^{2}, m n\right),
\end{gathered}
$$

Need to show $R, P+R, Q+R, P+Q+R \notin 2 E(\mathbb{Q})$.

$$
\begin{gathered}
E: y^{2}=x^{3}+(a+b) x^{2}+a b x+m^{6}, \\
P=\left(-a, m^{3}\right), Q=\left(-b, m^{3}\right), R\left(-m^{2}, m n\right),
\end{gathered}
$$

Need to show $R, P+R, Q+R, P+Q+R \notin 2 E(\mathbb{Q})$.
$X(R)=-m^{2} \neq X(2(x, y))$ for m large means showing that
$x^{4}+4 m^{2} x^{3}+\left(4(a+b) m^{2}-2 a b\right) x^{2}+\left(4 a b m^{2}-8 m^{6}\right) x$ $+\left(a^{2} b^{2}+4 m^{8}-4(a+b) m^{6}\right)=0$
has no solutions x for m large.

It's LIKE MAGIC

Runge's Method: weighted sum of highest order terms
Is $x^{4}+4 m^{2} x^{3}-8 m^{6} x+4 m^{8}$ reducible?

It's LIKE MAGIC

Runge's Method: weighted sum of highest order terms
Is $x^{4}+4 m^{2} x^{3}-8 m^{6} x+4 m^{8}$ reducible?
$x^{4}+4 m^{2} x^{3}-8 m^{6} x+4 m^{8}=\left(x^{2}+2 x m^{2}-2 m^{4}\right)^{2}$.

$P+R, Q+R, P+Q+R \notin 2 E(\mathbb{Z})$

$F_{a, b}(x, m)=$
$x^{\wedge} 8^{*} m^{\wedge} 2-x^{\wedge} 8^{*} a-4^{*} x^{\wedge} 7^{*} m^{\wedge} 6-4^{*} x^{\wedge} 7^{*} m^{\wedge} \wedge^{*} a-4^{*} x^{\wedge} 7^{*} m^{\wedge} 4^{*} b-8^{*} x^{\wedge} 7^{*} m^{\wedge} 4+4^{*} x^{\wedge} 7^{*} m^{\wedge} 2^{*} a^{*} b$ $+8^{*} x^{\wedge} 7^{*} m^{\wedge} 2^{*} a+8^{*} x^{\wedge} 7^{*} m^{\wedge} 2^{*} b-8^{*} x^{\wedge} 7^{*} a^{*} b+4^{*} x^{\wedge} 6^{*} m^{\wedge} 10-4^{*} x^{\wedge} 6^{*} m^{\wedge} 8^{*} a$
$8^{*} x^{\wedge} 6^{*} m^{\wedge} a^{*} b+16^{*} x^{\wedge} 6^{*} m^{\wedge} 8+8^{*} x^{\wedge} 6^{*} m^{\wedge} 6^{ \pm} a^{*} b+12^{*} x^{\wedge} 6^{*} m^{\wedge} 6^{*} a+4^{*} x^{\wedge} 6^{*} m^{\wedge} 6^{*} b^{\wedge} 2$
$-4^{*} x^{\wedge} 6^{*} m^{\wedge} 6^{*} b+16^{*} x^{\wedge} 6^{*} m^{\wedge} 6-4^{*} x^{\wedge} 6^{*} m^{\wedge} 4^{*} a^{\wedge} 2-4^{*} x^{\wedge} 6^{*} m^{\wedge} 4^{*} a^{*} b^{\wedge} 2-40^{*} x^{\wedge} 6^{*} m^{\wedge} 4^{*} a^{*} b$
$-24^{*} x^{\wedge} 6^{*} m^{\wedge} 4^{*} a-20^{*} x^{\wedge} 6^{*} m^{\wedge} 4^{*} b^{\wedge} 2-4 \theta^{*} x^{\wedge} 6^{*} m^{\wedge} 4^{*} b+4^{*} x^{\wedge} 6^{*} m^{\wedge} 2^{*} a^{\wedge} 2^{*} b+8^{*} x^{\wedge} 6^{*} m^{\wedge} 2^{*} a^{\wedge} 2$
$+20^{*} x^{\wedge} 6^{*} m^{\wedge} 2^{*} a^{*} b^{\wedge} 2+44^{*} x^{\wedge} 6^{*} m^{\wedge} 2^{*} a^{*} b+24^{*} x^{\wedge} 6^{*} m^{\wedge} 2^{*} b^{\wedge} 2-4^{*} x^{\wedge} 6^{*} a^{\wedge} 2^{*} b-24^{*} x^{\wedge} 6^{*} a^{*} b^{\wedge} 2$
$+8^{*} x^{\wedge} 5^{*} m^{\wedge} 10^{*} a+8^{*} x^{\wedge} 5^{*} m^{\wedge} 0^{*} b-8^{*} x^{\wedge} 5^{*} m^{\wedge} 8^{*} a^{\wedge} 2-24^{*} x^{\wedge} 5^{*} m^{\wedge} 8^{*} a^{*} b$
$8^{*} x^{\wedge} 5^{*} m^{\wedge} 10^{*} a+8^{*} x^{\wedge} 5^{*} m^{\wedge} 10^{*} b-8^{*} x^{\wedge} 5^{*} m^{\wedge} 8^{*} a^{\wedge} 2-24^{*} x^{\wedge} 5^{*} m^{\wedge} 8^{*} a^{*} b$
$+32^{*} x^{\wedge} 5^{*} m^{\wedge} 8^{*} a-16^{*} x^{\wedge} 5^{*} m^{\wedge} 8^{*} b^{\wedge} 2+32^{*} x^{\wedge} 5^{*} m^{\wedge} 8^{*} b-16^{*} x^{\wedge} 5^{*} m^{\wedge} 8+16^{*} x^{\wedge} 5^{*} m^{\wedge} 6^{*} a^{\wedge} 2^{*} b$
$+32^{*} x^{\wedge} 5^{*} m^{\wedge} 6^{*} a^{\wedge} 2+24^{*} x^{\wedge} 5^{*} m^{\wedge} 6^{*} \mathrm{a}^{*} b^{\wedge} 2+36^{*} x^{\wedge} 5^{*} m^{\wedge} 6^{*} a * b+48^{*} x^{\wedge} 5^{*} m^{\wedge} 6^{*} a+8^{*} x^{\wedge} 5^{*} \mathrm{~m}^{\wedge} 6^{*} 6^{*} b^{\wedge} 3$
$+32^{*} x^{\wedge} 5^{\wedge} m^{\wedge} 6^{*} b-8^{*} x^{\wedge} 5^{*} m^{\wedge} 4^{*} a^{\wedge} 2^{*} b^{\wedge} 2-60^{*} x^{\wedge} 5^{*} m^{\wedge} 4^{*} a^{\wedge} 2^{*} b-32^{*} x^{\wedge} 5^{*} m^{\wedge} 4^{*} a^{\wedge} a^{\wedge} 2-8^{*} x^{\wedge} 5^{*} 5^{*} m^{\wedge} 4^{*} a^{*} b^{\wedge} 3$
$92^{*} x^{\wedge} 5^{*} m^{\wedge} 4^{*} a^{*} b^{\wedge} 2-88^{*} x^{\wedge} 5^{*} m^{\wedge} 4^{*} a^{*} b-32^{*} x^{\wedge} 5^{*} 5^{*} x^{*} b^{*} x^{*}-64^{*} x^{\wedge} 5^{*} m^{\wedge} 4^{*} b^{\wedge} 2+28^{*} x^{*} 5^{*} m^{\wedge} 2^{*} a^{\wedge} 2^{*} b^{\wedge}$
$56^{*} x^{\wedge} 5^{*} m^{\wedge} 2^{*} a^{\wedge} 2^{*} b+32^{*} x^{\wedge} 5^{*} m^{\wedge} 2^{*} a^{*} b^{\wedge} 3+88^{*} x^{\wedge} 5^{*} m^{\wedge} 2^{*} a^{*} b^{\wedge} 2+32^{*} x^{\wedge} 5^{*} m^{\wedge} 2^{*} b^{\wedge} 3$
$24^{*} x^{\wedge} 5^{*} a^{\wedge} 2^{*} b^{\wedge} 2-32^{*} x^{\wedge} 5^{*} a^{*} b^{\wedge} 3+28^{*} x^{\wedge} 4^{*} m^{\wedge} 12+4^{*} x^{\wedge} 4^{*} m^{\wedge} 10^{*} a^{\wedge} 2$

$4^{*} x^{\wedge} 4^{*} m^{\wedge} 8^{*} a^{\wedge} 3-24^{*} x^{\wedge} 4^{*} m^{\wedge} 8^{*} a^{\wedge} 2^{*} b+16^{*} x^{\wedge} 4^{*} m^{\wedge} 8^{*} a^{\wedge} 2-36^{*} x^{\wedge} 4^{*} m^{\wedge} 8^{*} a^{*} b^{\wedge} 2+36^{*} x^{\wedge} 4^{*} m^{\wedge} 8^{*} a^{*} b$
$64^{*} x^{\wedge} 4^{*} m^{\wedge} 8^{*} a-8^{*} x^{\wedge} 4^{*} m^{\wedge} 8^{*} b^{\wedge} 3+16^{*} x^{\wedge} 4^{*} m^{\wedge} 8^{*} b^{\wedge} 2-64^{*} x^{\wedge} 4^{*} m^{\wedge} 8^{*} b+8^{*} x^{\wedge} 4^{*} m^{\wedge} 6^{*} a^{\wedge} 3^{*} b+16^{*} x^{\wedge} 4^{*} m^{\wedge} 6^{*} a^{\wedge} 3$

$+16^{*} x^{\wedge} 4^{*} m^{\wedge} 6^{*} b^{\wedge} 2-4^{*} x^{\wedge} 4^{*} m^{\wedge} 4^{*} a^{\wedge} 3^{*} b^{\wedge} 2-24^{*} x^{\wedge} 4^{*} m^{\wedge} 4^{*} a^{\wedge} 3^{*} b-16^{*} x^{\wedge} 4^{*} m^{\wedge} 4^{*} a^{\wedge} 3-16^{*} x^{\wedge} 4^{*} m^{\wedge} 4^{*} a^{\wedge} 2^{*} b^{\wedge} 3$
$128^{*} x^{\wedge} 4^{*} m^{\wedge} 4^{*} a^{\wedge} 2^{*} b^{\wedge} 2-80^{*} x^{\wedge} 4^{*} m^{\wedge} 4^{*} a^{\wedge} 2^{*} b-4^{*} x^{\wedge} 4^{*} m^{\wedge} 4^{*} a^{*} b^{\wedge} 4-88^{*} x^{\wedge} 4^{*} m^{\wedge} 4^{*} a^{*} b^{\wedge} 3-128^{*} x^{\wedge} 4^{*} m^{\wedge} 4^{*} a^{*} b^{\wedge} b^{\wedge} 2$
$118^{*} x^{\wedge} 4^{*} m^{\wedge} 2^{*} a^{\wedge} 2^{*} b^{\wedge} 2+16^{*} x^{\wedge} 4^{*} m^{\wedge} 2^{*} a^{*} b^{\wedge} 4+80^{*} x^{\wedge} 4^{*} m^{\wedge} 2^{*} a^{*} b^{\wedge} 3+16^{*} x^{\wedge} 4^{*} m^{\wedge} 2^{*} b^{\wedge} 4-6^{*} x^{\wedge} 4^{*} a^{\wedge} 3^{*} b^{\wedge} 2$
$48^{*} x^{\wedge} 4^{*} a^{\wedge} 2^{*} b^{\wedge} 3-16^{*} x^{\wedge} 4^{*} a^{*} b^{\wedge} 4+8^{*} x^{\wedge} 3^{*} m^{\wedge} 16-8^{*} x^{\wedge} 3^{*} m^{\wedge} 14^{*} a-16^{*} x^{\wedge} 3^{*} m^{\wedge} 14^{*} b+32^{*} x^{\wedge} 3^{*} m^{\wedge} 14$
$16^{*} x^{\wedge} 3^{*} \mathrm{~m}^{\wedge} 12^{*} \mathrm{a}^{*} \mathrm{~b}+80^{*} x^{\wedge} 3^{*} \mathrm{~m}^{\wedge} 12^{*} a+8^{*} x^{\wedge} 3^{*} \mathrm{~m}^{\wedge} 12^{*} \mathrm{~b}^{\wedge} 2+48^{*} x^{\wedge} 3^{*} \mathrm{~m}^{\wedge} 12^{*} b+32^{*} x^{\wedge} 3^{*} \mathrm{~m}^{\wedge} 12+8^{*} x^{\wedge} 3^{x}$
$18^{*} x^{\wedge} 3^{*} m^{\wedge} 10^{*} a^{\wedge} 2+32^{*} x^{\wedge} 3^{*} \mathrm{~m}^{\wedge} 10^{*} a^{*} b+64^{*} x^{\wedge} 3^{*} m^{\wedge} 10^{*} a+16^{*} x^{\wedge} 3^{*} m^{\wedge} 10^{*} b^{\wedge} 2+32^{*} x^{\wedge} 3^{*} \mathrm{~m}^{\wedge} 10^{*} b-8^{*} 10^{*} a^{\wedge} 2^{*} \mathrm{~b}$
$+48^{*} x^{\wedge}{ }^{*}$
$-24^{*} x^{\wedge} 3^{*} \mathrm{~m}^{\wedge} 8^{*} \mathrm{a}^{\wedge} \wedge^{*} \mathrm{~b}^{\wedge} 2-16^{*} \mathrm{x}^{\wedge} 3^{*} \mathrm{~m}^{\wedge} 8^{*} \mathrm{a}^{\wedge} 2^{*} \mathrm{~b}-96^{*} \mathrm{x}^{\wedge} 3^{*} \mathrm{~m}^{\wedge} 8^{*} \mathrm{a}^{\wedge} 2-16^{*} \mathrm{x}^{\wedge} 3^{*} \mathrm{~m}^{\wedge} \mathrm{m}^{\wedge} 8^{*} \mathrm{a}^{*} \mathrm{~b}^{\wedge} 3+16^{*} \mathrm{~m}^{\wedge} \mathrm{x}^{\wedge} 3^{*} \mathrm{~m}^{\wedge} 8^{*} \mathrm{~s}^{*} \mathrm{a}^{*} \mathrm{~b}^{\wedge} 2-96^{*} \mathrm{~b}^{*} \mathrm{x}^{\wedge} 3^{*} \mathrm{~m}^{\wedge} 8^{*} \mathrm{a}^{*} \mathrm{~b}$
$+96^{*} x^{\wedge} 3^{*} m^{\wedge} 6^{*} a^{\wedge} 2^{*} b+8^{*} x^{\wedge} 3^{*} m^{\wedge} 6^{*} a^{*} b^{\wedge} 4+96^{*} x^{\wedge} 3^{*} m^{\wedge} 6^{*} a^{*} b^{\wedge} 2-8^{*} x^{\wedge} 3^{*} m^{\wedge} 4^{*} a^{\wedge} 3^{*} b^{\wedge} 3-60^{*} x^{\wedge} 3^{*} n^{\wedge} 4^{*} a^{\wedge} 3^{*} b^{\wedge} 2$
$-32^{*} x^{\wedge} 3^{*} m^{\wedge} 4^{*} a^{\wedge} 3^{*} b-8^{*} x^{\wedge} 3^{*} m^{\wedge} 4^{*} a^{\wedge} 2^{*} b^{\wedge} 4-92^{*} x^{\wedge} 3^{*} m^{\wedge} 4^{*} a^{\wedge} 2^{*} b^{\wedge} 3-88^{*} x^{\wedge} 3^{*} m^{\wedge} 4^{*} a^{\wedge} 2^{*} b^{\wedge} 2-32^{*} x^{\wedge} 3^{*} m^{\wedge} 4^{*} a^{*} b^{\wedge} 4$
$62^{*} x^{\wedge} 3^{*} m^{\wedge} 4^{*} a^{\wedge} 3^{*} b 3^{*} 3^{*} m^{\wedge} 4^{*} a^{*} b^{\wedge} 3+28^{*} x^{\wedge} 3^{*} m^{\wedge} 2^{*} a^{\wedge} 3^{*} b^{\wedge} 3+56^{*} x^{\wedge} 3^{*} m^{\wedge} 2^{*} a^{\wedge} 3^{*} b^{\wedge} 2+32^{*} x^{\wedge} 3^{*} m^{\wedge} 2^{*} a^{\wedge} 2^{*} b^{\wedge} 4+88^{*} x^{\wedge} 3^{*} m^{\wedge} 2^{*} a^{\wedge} 2^{*} b^{\wedge} 3$
$+32^{*} x^{\wedge} 3^{*} m^{\wedge} 2^{*} a^{*} b^{\wedge} 4-24^{*} x^{\wedge} 3^{*} a^{\wedge} 3^{*} b^{\wedge} 3-32^{*} x^{\wedge} 3^{*} a^{\wedge} 2^{*} b^{\wedge} 4+8^{*} x^{\wedge} 2^{*} m^{\wedge} 16^{*} a+8^{*} x^{\wedge} 2^{*} m^{\wedge} 16^{*} b-8^{*} x^{\wedge} 2^{*} m^{\wedge} 14^{*} a^{\wedge} 2$
$+32^{*} x^{\wedge} 3^{*} m^{\wedge} 2^{*} a^{*} b^{\wedge} 4-24^{*} x^{\wedge} 3^{*} a^{\wedge} 3^{*} b^{\wedge} 34^{*}-32^{*} x^{\wedge} 3^{*} a^{\wedge} 2^{*} b^{\wedge} 4+8^{*} x^{\wedge} 2^{*} m+32^{*} x^{\wedge} 2^{*} m^{\wedge} 14^{*} a-16^{*} x^{\wedge} 2^{*} m^{\wedge} 14^{*} b^{\wedge} 2+32^{*} x^{\wedge} 2^{*} m^{\wedge} 14^{*} b+64^{*} x^{\wedge} 2^{*} n^{*} 16^{\wedge} 14+16^{*} x^{\wedge} x^{\wedge} 2^{*} m^{\wedge} 12^{*} a^{*} a^{\wedge} 2^{*} b$
$+48^{*} x^{\wedge} 2^{*} m^{\wedge} 12^{*} a^{\wedge} 2+24^{*} x^{\wedge} 2^{*} m^{\wedge} 12^{*} a^{*} b^{\wedge} 2+104^{*} x^{\wedge} 2^{*} m^{\wedge} 12^{*} a^{*} b-32^{*} x^{\wedge} 2^{*} m^{\wedge} 12^{*} a+8^{*} x^{\wedge} 2^{*} m^{\wedge} 12^{*} b^{\wedge} 3+16^{*} x^{\wedge} 2^{*} m^{\wedge} 12^{*} b^{\wedge} 2$
$+48^{*} x^{\wedge}{ }^{*} m^{\wedge} 12^{*} a^{\wedge} 2+24^{*} x^{\wedge} 2^{*} m^{\wedge} 12^{*} a^{*} b^{\wedge} 2+104^{*} x^{\wedge} 2^{*} m^{\wedge} 12^{*} a^{*} b-32^{*} x^{\wedge} 2^{*} m^{\wedge} 12^{*} a+8^{*} x^{\wedge} 2^{*} m^{\wedge} 12^{*} b^{\wedge} 3+16^{*} x^{\wedge} 2^{*} m^{\wedge} 12^{*} b^{\wedge} 2$
$+32^{*} x^{\wedge} 2^{*} m^{\wedge} 12^{*} b+16^{*} x^{\wedge} \wedge^{*} m^{\wedge} 10^{*^{\wedge}} a^{\wedge} 3-4^{*} x^{\wedge} 2^{*} m^{\wedge} 10^{*} a^{\wedge} 2^{*} b^{\wedge} 2+24^{*} x^{\wedge} 2^{*} m^{\wedge} 10^{*} a^{\wedge} 2^{*} b-8^{*} x^{\wedge} 2^{*} m^{\wedge} 10^{*} a^{*} b^{\wedge} 3-8^{*} x^{\wedge} 2^{*} m^{\wedge} 10^{*} a^{*} b^{\wedge} 2$

$-32^{*} x^{\wedge} 2^{*} m^{\wedge} 8^{*} a^{\wedge} 3-8^{*} x^{\wedge} 2^{*} m^{\wedge} 8^{*} a^{\wedge} 2^{*} b^{\wedge} 3-24^{*} x^{\wedge} 2^{*} m^{\wedge} 8^{*} a^{\wedge} 2^{*} b^{\wedge} 2-96^{*} x^{\wedge} 2^{*} m^{\wedge} 8^{*} a^{\wedge} 2^{*} b+16^{*} x^{\wedge} 2^{*} m^{\wedge} 8^{*} a^{*} b^{\wedge} 3-64^{*} x^{\wedge} 2^{*} m^{\wedge} 8^{*} a^{*} b^{\wedge} 2$
$+8^{*} x^{\wedge} 2^{*} m^{\wedge} 6^{*} a^{\wedge} 3^{*} b^{\wedge} 3+12^{*} x^{\wedge} 2^{*} m^{\wedge} 6^{*} a^{\wedge} 3^{*} b^{\wedge} 2+16^{*} x^{\wedge} 2^{*} m^{\wedge} 6^{*} a^{\wedge} 3^{*} b+4^{*} x^{\wedge} 2^{*} m^{\wedge} 6^{*} a^{\wedge} 2^{*} b^{\wedge} 4-4^{*} x^{\wedge} 2^{*} m^{\wedge} 6^{*} a^{\wedge} 2^{*} b^{\wedge} 3+112^{*} x^{\wedge} 2^{*} m^{\wedge} b^{*} a^{\wedge} a^{\wedge} 2^{*} b^{\wedge} 2$
$+8^{*} x^{\wedge} 2^{*} m^{\wedge} 6^{*} a^{\wedge} 3^{*} b^{\wedge} 3+12^{*} x^{\wedge} 2^{*} m^{\wedge} 6^{*} a^{\wedge} 3^{*} b^{\wedge} 2+16^{*} x^{\wedge} 2^{*} m^{\wedge} 6^{*} a^{\wedge} 3^{*} b+4^{*} x^{\wedge} 2^{*} m^{\wedge} 6^{*} a^{\wedge} 2^{*} b^{\wedge} 4-4^{*} x^{\wedge} 2^{*} m^{\wedge} 6^{*} a^{\wedge} 2^{*} b^{\wedge} 3+112^{*} x^{\wedge} 2^{*} m^{\wedge} 6^{*} a^{\wedge} 2^{*} b^{\wedge} 2$
$-4^{*} x^{\wedge} 2^{*} m^{\wedge} 4^{*} a^{\wedge} 4^{*} b^{\wedge} 2-4^{*} x^{\wedge} 2^{*} m^{\wedge} 4^{*} a^{\wedge} 3^{*} b^{\wedge} 4-40^{*} x^{\wedge} 2^{*} m^{\wedge} 4^{*} a^{\wedge} 3^{*} b^{\wedge} 3-24^{*} x^{\wedge} 2^{*} m^{\wedge} 4^{*} a^{\wedge} 3^{*} b^{\wedge} 2-20^{*} x^{\wedge} 2^{*} m^{\wedge} 4^{*} a^{\wedge} 2^{*} b^{\wedge} 4-40^{*} x^{\wedge} 2^{*} m^{\wedge} 4^{*} a^{\wedge} 2^{*} b^{\wedge} 3$ $+4^{*} x^{\wedge} 2^{*} m^{\wedge} 2^{*} a^{\wedge} 4^{*} b^{\wedge} 3+8^{*} x^{\wedge} 2^{*} m^{\wedge} 2^{*} a^{\wedge} 4^{*} b^{\wedge} 2+20^{*} x^{\wedge} 2^{*} m^{\wedge} 2^{*} a^{\wedge} 3^{*} b^{\wedge} 4+44^{*} x^{\wedge} 2^{*} m^{\wedge} 2^{*} a^{\wedge} 3^{\wedge} 3^{*} b^{\wedge} 3+24^{*} x^{\wedge} 2^{*} m^{\wedge} 2^{*} a^{\wedge} 2^{*} b^{\wedge} 4-4^{*} x^{\wedge} 2^{*} a^{\wedge} 4^{*} b^{\wedge} 3^{\wedge}-24^{*} x^{\wedge} 2^{*} a^{\wedge} 3^{*} b^{\wedge} 4$
$+32^{*} x^{*} m^{\wedge} 18+8^{*} x^{*} m^{\wedge} 16^{*} a^{*} b+32^{*} x^{*} m^{\wedge} 16^{*} a+32^{*} x^{*} m^{\wedge} 16^{*} b+64^{*} x^{*} m^{\wedge} 16-8^{*} x^{*} m^{\wedge} 14^{*} a^{\wedge} 2^{*} b-16^{*} x^{*} m^{\wedge} 14^{*} a^{*} b^{\wedge} 2+16^{*} x^{*} m^{\wedge} 12^{*} a^{\wedge} 2^{*} b^{\wedge} 2$
$+32^{*} x^{*} m^{\wedge} 18+8^{*} x^{*} m^{\wedge} 16^{*} a^{*} b+32^{*} x^{*} m^{\wedge} 16^{*} a+32^{*} x^{*} m^{\wedge} 16^{*} b+64^{*} x^{*} m^{\wedge} 16-8^{*} x^{*} m^{\wedge} 14^{*} a^{\wedge} 2^{*} b-46^{*} x^{*} x^{*} m^{\wedge} 12^{*} a^{\wedge} 2^{*} b-64^{*} x^{*} m^{\wedge} 12^{*} a^{\wedge} 2+8^{*} x^{*} m^{\wedge} 12^{*} a^{*} b^{\wedge} 3+16^{*} x^{*} m^{\wedge} 12^{*} a^{*} b^{\wedge} 2+32^{*} x^{*} m^{\wedge} 12^{*} a^{*} b$
$+48^{*} x^{*} m^{\wedge} 12^{*} a^{\wedge} 2^{*} b-64^{*} x^{*} m^{\wedge} 12^{*} a^{\wedge} 2+8^{*} x^{*} m^{\wedge} 12^{*} a^{*} b^{\wedge} 3+16^{*} x^{*} m^{\wedge} 12^{*} a^{*} b^{\wedge} 2+32^{*} x^{*} m^{\wedge} 12^{*} a^{*} b$
$+16^{*} x^{*} m^{\wedge} 10^{*} a^{\wedge} 3^{*} b-8^{*} x^{*} m^{\wedge} 10^{*} a^{\wedge} 2^{*} b^{\wedge} 3-32^{*} x^{*} m^{\wedge} 10^{*} a^{\wedge} 2^{*} b^{\wedge} 2-16^{*} x^{*} m^{\wedge} 10^{*} a^{*} b^{\wedge} 3-32^{*} x^{*} m^{\wedge} 10^{*} a^{*} b^{\wedge} 2-16^{*} x^{*} m^{\wedge} 8^{*} a^{\wedge} 3^{*} b^{\wedge} 2-32^{*} x^{*} m^{\wedge} 8^{*} a^{\wedge} 3^{*} b$
$+16^{*} x^{*} m^{\wedge} 8^{*} a^{\wedge} 2^{*} b^{\wedge} 3-16^{*} x^{*} m^{\wedge} 8^{*} a^{\wedge} 2^{*} b^{\wedge} 2-4^{*} x^{*} m^{\wedge} 6^{*} a^{\wedge} 3^{*} b^{\wedge} 3+48^{*} x^{*} m^{\wedge} 6^{*} a^{\wedge} 3^{*} b^{\wedge} 2-4^{*} x^{*} m^{\wedge} 4^{*} a^{\wedge} 4^{*} b^{\wedge} 3-4^{*} x^{*} m^{\wedge} 4^{*} a^{\wedge} 3^{*} b^{\wedge} 4-8^{*} x^{*} m^{\wedge} 4^{*} a^{\wedge} 3^{*} b^{\wedge} 3$

$+4^{*} x^{*} m^{\wedge} 2^{*} a^{\wedge} 4^{*} b^{\wedge} 4+8^{*} x^{*} m^{\wedge} 2^{*} a^{\wedge} 4^{*} b^{\wedge} 3+8^{*} x^{*} m^{\wedge} 2^{*} a^{\wedge} 3^{*} b^{\wedge} 4-8^{*} x^{*} a^{\wedge} 4^{*} b^{\wedge} 4+4^{*} m^{\wedge} 22-4^{*} m^{\wedge} 20^{*} a-8^{*} m^{\wedge} 20^{*} b+16^{*} m^{\wedge} 20+8^{*} m^{\wedge} 18^{*} a^{*} b$
$+32^{*} m^{\wedge} 18^{*} a+4^{*} m^{\wedge} 18^{*} b^{\wedge} 2+16^{*} m^{\wedge} 18^{*} b+16^{*} m^{\wedge} 18+16^{*} m^{\wedge} 16^{*} a^{\wedge} 2-4^{*} m^{\wedge} 16^{*} a^{*} b^{\wedge} 2+16^{*} m^{\wedge} 16^{*} a-16^{*} m^{\wedge} 14^{*} a^{\wedge} 2^{*} b-16^{*} m^{\wedge} 14^{*} a^{\wedge} 2-16^{*} m^{\wedge} 12^{*} a^{\wedge} 3$ $-4^{*} m^{\wedge} 12^{*} a^{\wedge} 2^{*} b^{\wedge} 2-4^{*} m^{\wedge} 10^{*} a^{\wedge} 3^{*} b^{\wedge} 2-4^{*} m^{\wedge} 10^{*} a^{\wedge} 2^{*} b^{\wedge} 3-8^{*} m^{\wedge} 10^{*} a^{\wedge} 2^{*} b^{\wedge} 2+4^{*} m^{\wedge} 8^{*} a^{\wedge} 3^{*} b^{\wedge} 3+8^{*} m^{\wedge} 6^{*} a^{\wedge} 4^{*} b^{\wedge} 2+m^{\wedge} 2^{*} a^{\wedge} 4^{*} b^{\wedge} 4-a^{\wedge} 5^{*} b^{\wedge} 4$
satisfies Runge's condition for all a, b.

