Higher Kato elements and equivariant complexes

Peter Xu

Department of Mathematics and Statistics McGill University

October 15, 2022

- Common origin:
 - Analogues of Kato elements organized into group cocycles

- Common origin:
 - Analogues of Kato elements organized into group cocycles
 - Theta correspondences between pairs of groups automorphic forms to automorphic forms. Or, homology classes to automorphic forms. Example for two copies of GL₂:

 $H^1(\Gamma, M_2(H)) = \hom(H_1(\Gamma), M_2(H))$

with $\Gamma, H \subset SL_2(\mathbb{Z})$.

- Common origin:
 - Analogues of Kato elements organized into group cocycles
 - **Theta correspondences** between pairs of groups automorphic forms to automorphic forms. Or, homology classes to automorphic forms. Example for two copies of GL₂:

 $H^1(\Gamma, M_2(H)) = \hom(H_1(\Gamma), M_2(H))$

with $\Gamma, H \subset SL_2(\mathbb{Z})$.

• Constructed from equivariant complexes in cohomology

- Common origin:
 - Analogues of Kato elements organized into group cocycles
 - Theta correspondences between pairs of groups automorphic forms to automorphic forms. Or, homology classes to automorphic forms. Example for two copies of GL₂:

 $H^1(\Gamma, M_2(H)) = \hom(H_1(\Gamma), M_2(H))$

with Γ , $H \subset SL_2(\mathbb{Z})$.

- Constructed from equivariant complexes in cohomology
- Arithmetic applications: group cocycles valued in *motivic cohomology* with very good formal properties, with *explicitly computable* regulators. Can be put into *p*-adic families, used for Iwasawa theory, etc.

- Common origin:
 - Analogues of Kato elements organized into group cocycles
 - Theta correspondences between pairs of groups automorphic forms to automorphic forms. Or, homology classes to automorphic forms. Example for two copies of GL₂:

 $H^1(\Gamma, M_2(H)) = \hom(H_1(\Gamma), M_2(H))$

with Γ , $H \subset SL_2(\mathbb{Z})$.

- Constructed from *equivariant complexes* in cohomology
- Arithmetic applications: group cocycles valued in *motivic cohomology* with very good formal properties, with *explicitly computable* regulators. Can be put into *p*-adic families, used for Iwasawa theory, etc.
 - Example: diagonal restrictions of Hilbert modular surface $\mathcal{Y} \subset \mathcal{Y}_F$.

• $\mathcal{E} \to \mathcal{Y}$ universal elliptic curve (with some level structure)

- $\mathcal{E} \to \mathcal{Y}$ universal elliptic curve (with some level structure)
- Canonical meromorphic functions

$$_{\mathcal{C}}g\in\mathcal{O}(\mathcal{E}-\mathcal{C})^{ imes}\otimes\mathbb{Z}[1/6]$$

specified via (degree-zero) divisors C supported at torsion sections C

- $\mathcal{E} \to \mathcal{Y}$ universal elliptic curve (with some level structure)
- Canonical meromorphic functions

$$_{\mathcal{C}}g\in\mathcal{O}(\mathcal{E}-\mathcal{C})^{ imes}\otimes\mathbb{Z}[1/6]$$

specified via (degree-zero) divisors C supported at torsion sections C

• Pullback by torsion section $x : \mathcal{Y} \to \mathcal{E} - \mathcal{C}$ is

 ${}_{\mathcal{C}} g_{x} \in \mathcal{O}(\mathcal{Y})^{ imes}$

- $\mathcal{E} \to \mathcal{Y}$ universal elliptic curve (with some level structure)
- Canonical meromorphic functions

$$_{\mathcal{C}}g\in\mathcal{O}(\mathcal{E}-\mathcal{C})^{ imes}\otimes\mathbb{Z}[1/6]$$

specified via (degree-zero) divisors C supported at torsion sections C

• Pullback by torsion section $x : \mathcal{Y} \to \mathcal{E} - \mathcal{C}$ is

$$_{\mathcal{C}}g_{x}\in\mathcal{O}(\mathcal{Y})^{ imes}$$

• Relation to Eisenstein series:

$$d\log_{\mathcal{C}}g = E_1^{(\mathcal{C})}(\tau,z)dz + E_2^{(\mathcal{C})}(\tau,z)d\tau$$

• Cup products in motivic cohomology:

$$_{c}g_{x_{1}} \smile _{c}g_{x_{2}} \in H^{2}(\mathcal{Y},\mathbb{Z}[1/6](2))$$

• Cup products in motivic cohomology:

$$_{c}g_{x_{1}} \smile _{c}g_{x_{2}} \in H^{2}(\mathcal{Y},\mathbb{Z}[1/6](2))$$

- Kato's explicit reciprocity law allows us to evaluate a p-adic regulator valued in M₂(Y, Z_p).
 - Essentially identified with

$$(x_1,x_2)^*\iota_{\partial z_1\otimes \partial z_2}[(d\log \wedge d\log)_c g\smile_c g]\sim E_1^{(c)}(au,x_1)E_1^{(c)}(au,x_2)$$

• Cup products in motivic cohomology:

$$_{c}g_{x_{1}} \smile _{c}g_{x_{2}} \in H^{2}(\mathcal{Y},\mathbb{Z}[1/6](2))$$

- Kato's explicit reciprocity law allows us to evaluate a p-adic regulator valued in M₂(Y, Z_p).
 - Essentially identified with

$$(x_1, x_2)^* \iota_{\partial z_1 \otimes \partial z_2}[(d \log \wedge d \log)_c g \smile _c g] \sim E_1^{(c)}(\tau, x_1)E_1^{(c)}(\tau, x_2)$$

• Applications towards special values of *L*-functions (Birch and Swinnerton-Dyer and related conjectures)

• Cup products in motivic cohomology:

$$_{c}g_{x_{1}} \smile _{c}g_{x_{2}} \in H^{2}(\mathcal{Y},\mathbb{Z}[1/6](2))$$

- Kato's explicit reciprocity law allows us to evaluate a p-adic regulator valued in M₂(Y, Z_p).
 - Essentially identified with

$$(x_1, x_2)^* \iota_{\partial z_1 \otimes \partial z_2}[(d \log \wedge d \log)_c g \smile _c g] \sim E_1^{(c)}(\tau, x_1)E_1^{(c)}(\tau, x_2)$$

- Applications towards special values of *L*-functions (Birch and Swinnerton-Dyer and related conjectures)
 - Eisenstein series compute *L*-values (Rankin-Selberg), can be *p*-adically interpolated via this algebraic construction

• Cup products in motivic cohomology:

$$_{c}g_{x_{1}} \smile _{c}g_{x_{2}} \in H^{2}(\mathcal{Y},\mathbb{Z}[1/6](2))$$

- Kato's explicit reciprocity law allows us to evaluate a p-adic regulator valued in M₂(Y, Z_p).
 - Essentially identified with

$$(x_1, x_2)^* \iota_{\partial z_1 \otimes \partial z_2}[(d \log \wedge d \log)_c g \smile _c g] \sim E_1^{(c)}(\tau, x_1)E_1^{(c)}(\tau, x_2)$$

- Applications towards special values of *L*-functions (Birch and Swinnerton-Dyer and related conjectures)
 - Eisenstein series compute *L*-values (Rankin-Selberg), can be *p*-adically interpolated via this algebraic construction
 - Motivic classes bound Selmer groups

• If we have a genus-g abelian family $\mathcal{A} \to \mathcal{S}$, can construct "big Eisenstein class" by specifying torsion section residues in any suitable cohomology theory:

$$\ldots
ightarrow H^{2g-1}(\mathcal{A})
ightarrow H^{2g-1}(\mathcal{A}-\mathcal{C})
ightarrow H^0(\mathcal{C})
ightarrow H^{2g}(\mathcal{A})
ightarrow \ldots$$

• If we have a genus-g abelian family $\mathcal{A} \to \mathcal{S}$, can construct "big Eisenstein class" by specifying torsion section residues in any suitable cohomology theory:

$$\ldots o H^{2g-1}(\mathcal{A}) o H^{2g-1}(\mathcal{A}-\mathcal{C}) o H^0(\mathcal{C}) o H^{2g}(\mathcal{A}) o \ldots$$

• $C \in H^0(C)^{deg=0}$ lifts to $\text{Eis}_{\mathcal{C}} \in H^{2g-1}(\mathcal{A} - C)$, remove ambiguity using "Lieberman projector"

• If we have a genus-g abelian family $\mathcal{A} \to \mathcal{S}$, can construct "big Eisenstein class" by specifying torsion section residues in any suitable cohomology theory:

$$\ldots o H^{2g-1}(\mathcal{A}) o H^{2g-1}(\mathcal{A}-\mathcal{C}) o H^0(\mathcal{C}) o H^{2g}(\mathcal{A}) o \ldots$$

- $C \in H^0(C)^{\text{deg}=0}$ lifts to $\text{Eis}_{\mathcal{C}} \in H^{2g-1}(\mathcal{A} C)$, remove ambiguity using "Lieberman projector"
- Equivariant theory H^{\bullet}_{Γ} will have Hochschild-Serre spectral sequence

 $H^p(\Gamma, H^q(X)) \Rightarrow H^{p+q}_{\Gamma}(X)$

• If we have a genus-g abelian family $\mathcal{A} \to \mathcal{S}$, can construct "big Eisenstein class" by specifying torsion section residues in any suitable cohomology theory:

$$\ldots o H^{2g-1}(\mathcal{A}) o H^{2g-1}(\mathcal{A}-\mathcal{C}) o H^0(\mathcal{C}) o H^{2g}(\mathcal{A}) o \ldots$$

- $C \in H^0(C)^{\text{deg}=0}$ lifts to $\text{Eis}_{\mathcal{C}} \in H^{2g-1}(\mathcal{A} C)$, remove ambiguity using "Lieberman projector"
- Equivariant theory H^{\bullet}_{Γ} will have Hochschild-Serre spectral sequence

$$H^p(\Gamma, H^q(X)) \Rightarrow H^{p+q}_{\Gamma}(X)$$

yielding an edge map to group cohomology

$$H^{2g-1}_{\Gamma}(\mathcal{A}-\mathcal{C})
ightarrow H^{g-1}(\Gamma, H^g(\mathcal{A}-\mathcal{C}))$$

if we shrink $\mathcal{A} - C$ enough to make some groups vanish. Obtain group cocycle

• If we have a genus-g abelian family $\mathcal{A} \to \mathcal{S}$, can construct "big Eisenstein class" by specifying torsion section residues in any suitable cohomology theory:

$$\ldots o H^{2g-1}(\mathcal{A}) o H^{2g-1}(\mathcal{A}-\mathcal{C}) o H^0(\mathcal{C}) o H^{2g}(\mathcal{A}) o \ldots$$

- $C \in H^0(C)^{deg=0}$ lifts to $Eis_C \in H^{2g-1}(\mathcal{A} C)$, remove ambiguity using "Lieberman projector"
- Equivariant theory H^{\bullet}_{Γ} will have Hochschild-Serre spectral sequence

$$H^p(\Gamma, H^q(X)) \Rightarrow H^{p+q}_{\Gamma}(X)$$

yielding an edge map to group cohomology

$$H^{2g-1}_{\Gamma}(\mathcal{A}-\mathcal{C}) \to H^{g-1}(\Gamma, H^{g}(\mathcal{A}-\mathcal{C}))$$

if we shrink A - C enough to make some groups vanish. Obtain group cocycle

 Can construct equivariant theory by taking equivariant versions of the complexes; e.g. Bloch's cycle complex for motivic cohomology, Dolbeault complex for coherent cohomology. Get cocycles Θ^M_C, Θ_C

• In the case of $\mathcal{E}^2 \to \mathcal{Y}$ (Sharifi-Venkatesh) equivariant complex is computable:

$$0 \to \mathcal{K}_2^M(\mathbb{Q}(\mathcal{E}^2))^{(0)} \to \left(\oplus_{D \in \mathcal{Y}^{(1)}} \mathcal{K}_1^M(\mathbb{Q}(D)) \right)^{(0)} \to \left(\oplus_{x \in \mathcal{Y}^{(2)}} \mathcal{K}_0^M(\mathbb{Q}(x)) \right)^{(0)}$$

• In the case of $\mathcal{E}^2 \to \mathcal{Y}$ (Sharifi-Venkatesh) equivariant complex is computable:

$$0 \to \mathcal{K}_2^M(\mathbb{Q}(\mathcal{E}^2))^{(0)} \to \left(\oplus_{D \in \mathcal{Y}^{(1)}} \mathcal{K}_1^M(\mathbb{Q}(D)) \right)^{(0)} \to \left(\oplus_{x \in \mathcal{Y}^{(2)}} \mathcal{K}_0^M(\mathbb{Q}(x)) \right)^{(0)}$$

Find that Θ^M_C ∈ H¹(Γ, K^M₂(ℚ(ε))) is valued in cup products of Siegel units (Kato elements!)

• In the case of $\mathcal{E}^2 \to \mathcal{Y}$ (Sharifi-Venkatesh) equivariant complex is computable:

$$0 \to \mathcal{K}_2^M(\mathbb{Q}(\mathcal{E}^2))^{(0)} \to \left(\oplus_{D \in \mathcal{Y}^{(1)}} \mathcal{K}_1^M(\mathbb{Q}(D)) \right)^{(0)} \to \left(\oplus_{x \in \mathcal{Y}^{(2)}} \mathcal{K}_0^M(\mathbb{Q}(x)) \right)^{(0)}$$

Find that Θ^M_C ∈ H¹(Γ, K^M₂(ℚ(E))) is valued in cup products of Siegel units (Kato elements!)

Theorem

The regulator $\Theta_{\mathcal{C}} = d \log^{\otimes 2} \Theta_{\mathcal{C}}^{\mathcal{M}}$ is given by the regularized Eisenstein theta lift of Bergeron-Charollois-Garcia.

• In the case of $\mathcal{E}^2 \to \mathcal{Y}$ (Sharifi-Venkatesh) equivariant complex is computable:

$$0 \to \mathcal{K}_2^M(\mathbb{Q}(\mathcal{E}^2))^{(0)} \to \left(\oplus_{D \in \mathcal{Y}^{(1)}} \mathcal{K}_1^M(\mathbb{Q}(D)) \right)^{(0)} \to \left(\oplus_{x \in \mathcal{Y}^{(2)}} \mathcal{K}_0^M(\mathbb{Q}(x)) \right)^{(0)}$$

Find that Θ^M_C ∈ H¹(Γ, K^M₂(ℚ(E))) is valued in cup products of Siegel units (Kato elements!)

Theorem

The regulator $\Theta_{\mathcal{C}} = d \log^{\otimes 2} \Theta_{\mathcal{C}}^{\mathcal{M}}$ is given by the **regularized Eisenstein theta lift** of Bergeron-Charollois-Garcia.

 Upshot: compute some interesting values of Θ_C: e.g. when γ = γ_F primitive hyperbolic for a real quadratic field F, get diagonal restriction of weight (1, 1)-Hilbert-Eisenstein series

$$\Theta_{\mathcal{C},x}(\gamma_F) \sim \sum_{(m,n)\in\mathcal{O}_F^2/\Delta} rac{1}{(m au+n+x)(m' au+n'+x')}$$

• Darmon-Pozzi-Vonk: ${f G}_s(\psi)$ family of Hilbert-Eisenstein series vanishing at s=1

- Darmon-Pozzi-Vonk: ${f G}_s(\psi)$ family of Hilbert-Eisenstein series vanishing at s=1
 - Derivative at s = 1 $\mathbf{G}'_1(\psi)$ related to *p*-adic regulators of Stark-Heegner points

- Darmon-Pozzi-Vonk: ${f G}_s(\psi)$ family of Hilbert-Eisenstein series vanishing at s=1
 - Derivative at s = 1 $\mathbf{G}'_1(\psi)$ related to *p*-adic regulators of Stark-Heegner points
 - By lifting construction to Θ^M_C and some *p*-adic Hodge theory, construct a *global p-adic motivic* analogue of **G**'₁(ψ), hence deduce...

- Darmon-Pozzi-Vonk: ${f G}_s(\psi)$ family of Hilbert-Eisenstein series vanishing at s=1
 - Derivative at s = 1 $\mathbf{G}'_1(\psi)$ related to *p*-adic regulators of Stark-Heegner points
 - By lifting construction to Θ^M_C and some *p*-adic Hodge theory, construct a *global p-adic motivic* analogue of **G**'₁(ψ), hence deduce...

Theorem

For a real quadratic field F and an inert prime p, there exists a p-adic motivic class in

 $H^{2}(\mathcal{Y}_{0}(p),\mathbb{Q}_{p}(1))=$ Mordell-Weil group of $J_{0}(p)\otimes_{\mathbb{Z}}\mathbb{Q}_{p}$

realizing each Stark-Heegner point ("almost algebraicity").

- Darmon-Pozzi-Vonk: ${f G}_s(\psi)$ family of Hilbert-Eisenstein series vanishing at s=1
 - Derivative at s = 1 $\mathbf{G}_1'(\psi)$ related to *p*-adic regulators of Stark-Heegner points
 - By lifting construction to Θ^M_C and some *p*-adic Hodge theory, construct a *global p-adic motivic* analogue of **G**'₁(ψ), hence deduce...

Theorem

For a real quadratic field F and an inert prime p, there exists a p-adic motivic class in

 $H^{2}(\mathcal{Y}_{0}(p),\mathbb{Q}_{p}(1))=$ Mordell-Weil group of $J_{0}(p)\otimes_{\mathbb{Z}}\mathbb{Q}_{p}$

realizing each Stark-Heegner point ("almost algebraicity").

• Kolyvagin-type applications

- Kudla program philosophy: derivatives at central values of incoherent Eisenstein series are related to algebraic cycles
 - Relation to constructions on *p*-adic symmetric spaces, the *p*-adic Kudla program
 - Applications to special values of *L*-functions
- Euler systems for other Shimura varieties