Aspects of dynamical Mahler measure

Annie Carter, Matilde Lalín*, Michelle Manes, Alison Miller, Lucia Mocz

Université de Montréal
matilde.lalin@umontreal.ca
http://www.dms.umontreal.ca/~mlalin

Conférence de théorie des nombres Québec-Maine in honor of Andrew Granville

Université Laval
October 15th, 2022

CENTRE
DE RECHERCHES
MATHEMATIQUES

Mahler measure of multivariable polynomials

$P \in \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)^{\times}$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
\mathrm{m}(P) & =\int_{0}^{1} \cdots \int_{0}^{1} \log \left|P\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{n}}\right)\right| d \theta_{1} \ldots d \theta_{n} \\
& =\frac{1}{(2 \pi i)^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(z_{1}, \ldots, z_{n}\right)\right| \frac{d z_{1}}{z_{1}} \cdots \frac{d z_{n}}{z_{n}} .
\end{aligned}
$$

where $\mathbb{T}^{n}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{i}\right|=1\right\}$.

Mahler measure of multivariable polynomials

$P \in \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)^{\times}$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \cdots \int_{0}^{1} \log \left|P\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{n}}\right)\right| d \theta_{1} \ldots d \theta_{n} \\
& =\frac{1}{(2 \pi i)^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(z_{1}, \ldots, z_{n}\right)\right| \frac{d z_{1}}{z_{1}} \cdots \frac{d z_{n}}{z_{n}} .
\end{aligned}
$$

where $\mathbb{T}^{n}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{i}\right|=1\right\}$.
Jensen's formula gives

$$
\begin{gathered}
\mathrm{m}(P)=\log |a|+\sum_{\left|\alpha_{i}\right|>1} \log \left|\alpha_{i}\right| \quad \text { if } P(x)=a \prod_{i}\left(x-\alpha_{i}\right) \\
M(P):=\exp (\mathrm{m}(P))
\end{gathered}
$$

Mahler measure is ubiquitous!

- Heights
- Distribution of values
- Volumes in hyperbolic space
- Special values of L-functions

Mahler measure is ubiquitous!

- Heights
- Distribution of values
- Volumes in hyperbolic space
- Special values of L-functions

Lehmer's question (1933)
Given $\varepsilon>0$, can we find a polynomial $P(x) \in \mathbb{Z}[x]$ such that $0<\mathrm{m}(P)<\varepsilon$?

Arithmetic dynamics

Arithmetic dynamics studies the iterations of morphisms in varieties and the orbits of points that are interesting from the number theoretic point of view.

Arithmetic dynamics

Arithmetic dynamics studies the iterations of morphisms in varieties and the orbits of points that are interesting from the number theoretic point of view.

$$
f: X / K \rightarrow X / K
$$

$$
f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{\text {composition } n \text { times }} .
$$

Arithmetic dynamics

Arithmetic dynamics studies the iterations of morphisms in varieties and the orbits of points that are interesting from the number theoretic point of view.

$$
f: X / K \rightarrow X / K \quad f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{\text {composition } n \text { times }} .
$$

Given $\alpha \in X(K)$, the (forward) f-orbit of α is

$$
\mathcal{O}_{f}(\alpha)=\left\{f^{n}(\alpha): n \geq 0\right\} .
$$

Arithmetic dynamics

Arithmetic dynamics studies the iterations of morphisms in varieties and the orbits of points that are interesting from the number theoretic point of view.

$$
f: X / K \rightarrow X / K \quad f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{\text {composition } n \text { times }} .
$$

Given $\alpha \in X(K)$, the (forward) f-orbit of α is

$$
\mathcal{O}_{f}(\alpha)=\left\{f^{n}(\alpha): n \geq 0\right\} .
$$

- α is periodic if $f^{n}(\alpha)=\alpha$ for some $n>0$.

Arithmetic dynamics

Arithmetic dynamics studies the iterations of morphisms in varieties and the orbits of points that are interesting from the number theoretic point of view.

$$
f: X / K \rightarrow X / K \quad f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{\text {composition } n \text { times }} .
$$

Given $\alpha \in X(K)$, the (forward) f-orbit of α is

$$
\mathcal{O}_{f}(\alpha)=\left\{f^{n}(\alpha): n \geq 0\right\} .
$$

- α is periodic if $f^{n}(\alpha)=\alpha$ for some $n>0$.
- α is preperiodic if $f^{n}(\alpha)=f^{m}(\alpha)$ for some $n>m \geq 0$.

Arithmetic dynamics

Arithmetic dynamics studies the iterations of morphisms in varieties and the orbits of points that are interesting from the number theoretic point of view.

$$
f: X / K \rightarrow X / K \quad f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{\text {composition } n \text { times }} .
$$

Given $\alpha \in X(K)$, the (forward) f-orbit of α is

$$
\mathcal{O}_{f}(\alpha)=\left\{f^{n}(\alpha): n \geq 0\right\} .
$$

- α is periodic if $f^{n}(\alpha)=\alpha$ for some $n>0$.
- α is preperiodic if $f^{n}(\alpha)=f^{m}(\alpha)$ for some $n>m \geq 0$.
- α is wandering otherwise.

The Julia set

Let $f: X \rightarrow X$ be a morphism in the metric space X. (For simplicity, $X=\mathbb{P}^{N}$.)

The Julia set

Let $f: X \rightarrow X$ be a morphism in the metric space X. (For simplicity, $X=\mathbb{P}^{N}$.)

- The Fatou set of f is the maximal open set for which the family $\left\{f^{n}\right\}_{n \geq 1}$ is equicontinuous.

The Julia set

Let $f: X \rightarrow X$ be a morphism in the metric space X. (For simplicity, $X=\mathbb{P}^{N}$.)

- The Fatou set of f is the maximal open set for which the family $\left\{f^{n}\right\}_{n \geq 1}$ is equicontinuous.
- The Julia set of f is the complement of the Fatou set. We write J_{f}.

The Julia set

Let $f: X \rightarrow X$ be a morphism in the metric space X. (For simplicity, $X=\mathbb{P}^{N}$.)

- The Fatou set of f is the maximal open set for which the family $\left\{f^{n}\right\}_{n \geq 1}$ is equicontinuous.
- The Julia set of f is the complement of the Fatou set. We write J_{f}.
- The filled Julia set of a polynomial f is the set of all z such that $f^{n}(z) \nrightarrow \infty$. We write K_{f}. We have $J_{f}=\partial K_{f}$.

The Julia set

Let $f: X \rightarrow X$ be a morphism in the metric space X. (For simplicity, $X=\mathbb{P}^{N}$.)

- The Fatou set of f is the maximal open set for which the family $\left\{f^{n}\right\}_{n \geq 1}$ is equicontinuous.
- The Julia set of f is the complement of the Fatou set. We write J_{f}.
- The filled Julia set of a polynomial f is the set of all z such that $f^{n}(z) \nrightarrow \infty$. We write K_{f}. We have $J_{f}=\partial K_{f}$.

Informally, points in J_{f} tend to wander away from one another as f is iterated, so f behaves chaotically on its Julia set.

The Julia set

Let $f: X \rightarrow X$ be a morphism in the metric space X. (For simplicity, $X=\mathbb{P}^{N}$.)

- The Fatou set of f is the maximal open set for which the family $\left\{f^{n}\right\}_{n \geq 1}$ is equicontinuous.
- The Julia set of f is the complement of the Fatou set. We write J_{f}.
- The filled Julia set of a polynomial f is the set of all z such that $f^{n}(z) \nrightarrow \infty$. We write K_{f}. We have $J_{f}=\partial K_{f}$.

Informally, points in J_{f} tend to wander away from one another as f is iterated, so f behaves chaotically on its Julia set.

Really informally, the Julia set is where the action is. Dynamically speaking.

Pretty pictures!

(a) Filled Julia set for $f(z)=z^{2}$

(b) Filled Julia set for $f(z)=z^{2}-1$

(c) (Filled) Julia set for
$f(z)=z^{2}+0.3$

Equilibrium measures

Brolin (1965), Lyubich (1983), Freire-Lopes-Mañé (1983)
Let $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ polynomial of degree $d \geq 2$. There is a unique Borel probability measure $\mu=\mu_{f}$ in \mathbb{P}^{1} such that

- μ is invariant under (the push-forward by) f :

$$
f_{*} \mu=\mu, \quad f_{*}(\mu(B))=\mu\left(f^{-1}(B)\right)
$$

- $\operatorname{Supp}(\mu)=J_{f}$;
- μ has maximal energy

$$
I(\mu):=\int_{J_{f}} \int_{J_{f}} \log |z-w| d \mu(z) d \mu(w)
$$

among all Borel probability measures on J_{f}.

Equilibrium measures

Brolin (1965), Lyubich (1983), Freire-Lopes-Mañé (1983)
Let $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ polynomial of degree $d \geq 2$. There is a unique Borel probability measure $\mu=\mu_{f}$ in \mathbb{P}^{1} such that

- μ is invariant under (the push-forward by) f :

$$
f_{*} \mu=\mu, \quad f_{*}(\mu(B))=\mu\left(f^{-1}(B)\right)
$$

- $\operatorname{Supp}(\mu)=J_{f}$;
- μ has maximal energy

$$
I(\mu):=\int_{J_{f}} \int_{J_{f}} \log |z-w| d \mu(z) d \mu(w)
$$

among all Borel probability measures on J_{f}.

$$
\mu \text { is the equilibrium measure of } f \text { or of } J_{f} \text {. }
$$

A dynamical Mahler measure

If $f \in \mathbb{Z}[z]$ is monic, the f-dynamical Mahler mesure of $P \in \mathbb{C}\left(x_{1}, \ldots x_{n}\right)^{\times}$ is given by

$$
\mathrm{m}_{f}(P)=\int \cdots \int \log \left|P\left(z_{1}, \cdots, z_{n}\right)\right| d \mu_{f}\left(z_{1}\right) \cdots d \mu_{f}\left(z_{n}\right)
$$

The integral converges and $\mathrm{m}_{f}(P) \geq 0$ when $P \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.

The circle

-1
 $$
f(z)=z^{d}
$$

- $|\alpha|>1 \Rightarrow\left|\alpha^{d^{n}}\right| \rightarrow \infty$.
- $|\alpha|<1 \Rightarrow\left|\alpha^{d^{n}}\right| \rightarrow 0$.
- $|\alpha|=1 \Rightarrow\left|\alpha^{d^{n}}\right|=1$.

Université fln de Montréal

C CENTRE
DERECHERCHES
MATHEMATIQUES

The circle

$$
-1
$$

- $|\alpha|>1 \Rightarrow\left|\alpha^{d^{n}}\right| \rightarrow \infty$.
- $|\alpha|<1 \Rightarrow\left|\alpha^{d^{n}}\right| \rightarrow 0$.
- $|\alpha|=1 \Rightarrow\left|\alpha^{d^{n}}\right|=1$.

$$
\begin{aligned}
& J_{f}=\{|z|=1\}, \quad \mu_{f}=\frac{\chi_{\mathbb{S}^{1}} d z}{2 \pi i z}, \quad \mathrm{~m}_{f}(P)=\mathrm{m}(P) .
\end{aligned}
$$

Université Im de Montréal

C CENTRE
DERECHERCHES
MATHEMATIQUES

Chebyshev polynomials

$f(z)=T_{d}(z)$, for $n \geq 2$, where T_{d} is the d-Chebyshev polynomial

$$
\begin{gathered}
T_{d}\left(z+z^{-1}\right)=z^{d}+z^{-d} \\
T_{d}(z)= \begin{cases}2 & d=0 \\
z & d=1 \\
z T_{d-1}(z)-T_{d-2}(z) & d \geq 2\end{cases}
\end{gathered}
$$

Chebyshev polynomials

$f(z)=T_{d}(z)$, for $n \geq 2$, where T_{d} is the d-Chebyshev polynomial

$$
\begin{gathered}
T_{d}\left(z+z^{-1}\right)=z^{d}+z^{-d} \\
T_{d}(z)= \begin{cases}2 & d=0 \\
z & d=1 \\
z T_{d-1}(z)-T_{d-2}(z) & d \geq 2\end{cases} \\
T_{d} \circ T_{e}(z)=T_{d e}(z)=T_{e} \circ T_{d}(z)
\end{gathered}
$$

Chebyshev polynomials

$f(z)=T_{d}(z)$, for $n \geq 2$, where T_{d} is the d-Chebyshev polynomial

$$
\begin{gathered}
T_{d}\left(z+z^{-1}\right)=z^{d}+z^{-d} \\
T_{d}(z)= \begin{cases}2 & d=0, \\
z & d=1, \\
z T_{d-1}(z)-T_{d-2}(z) & d \geq 2 .\end{cases} \\
T_{d} \circ T_{e}(z)=T_{d e}(z)=T_{e} \circ T_{d}(z) \Rightarrow T_{d}^{n}(z)=T_{d^{n}}(z) .
\end{gathered}
$$

Chebyshev polynomials

$f(z)=T_{d}(z)$, for $n \geq 2$, where T_{d} is the d-Chebyshev polynomial

$$
\begin{gathered}
T_{d}\left(z+z^{-1}\right)=z^{d}+z^{-d} \\
T_{d}(z)= \begin{cases}2 & d=0, \\
z & d=1, \\
z T_{d-1}(z)-T_{d-2}(z) & d \geq 2 .\end{cases} \\
T_{d} \circ T_{e}(z)=T_{d e}(z)=T_{e} \circ T_{d}(z) \Rightarrow T_{d}^{n}(z)=T_{d^{n}}(z) .
\end{gathered}
$$

- $\alpha \in[-2,2] \Rightarrow T_{d}(\alpha) \in[-2,2]$.
- $\alpha \notin[-2,2] \Rightarrow\left|T_{d}^{n}(\alpha)\right|=\left|T_{d^{n}}(\alpha)\right| \rightarrow \infty$.

Chebyshev polynomials

$f(z)=T_{d}(z)$, for $n \geq 2$, where T_{d} is the d-Chebyshev polynomial

$$
\begin{gathered}
T_{d}\left(z+z^{-1}\right)=z^{d}+z^{-d} \\
T_{d}(z)= \begin{cases}2 & d=0 \\
z & d=1 \\
z T_{d-1}(z)-T_{d-2}(z) & d \geq 2\end{cases}
\end{gathered}
$$

$$
T_{d} \circ T_{e}(z)=T_{d e}(z)=T_{e} \circ T_{d}(z) \Rightarrow T_{d}^{n}(z)=T_{d^{n}}(z)
$$

- $\alpha \in[-2,2] \Rightarrow T_{d}(\alpha) \in[-2,2]$.
- $\alpha \notin[-2,2] \Rightarrow\left|T_{d}^{n}(\alpha)\right|=\left|T_{d^{n}}(\alpha)\right| \rightarrow \infty$.
$J_{f}=[-2,2]$,

$$
\mu_{f}=\frac{\chi_{[-2,2]} d x}{\pi \sqrt{4-x^{2}}},
$$

Chebyshev polynomials

$f(z)=T_{d}(z)$, for $n \geq 2$, where T_{d} is the d-Chebyshev polynomial

$$
\begin{gathered}
T_{d}\left(z+z^{-1}\right)=z^{d}+z^{-d} \\
T_{d}(z)= \begin{cases}2 & d=0, \\
z & d=1, \\
z T_{d-1}(z)-T_{d-2}(z) & d \geq 2 .\end{cases} \\
T_{d} \circ T_{e}(z)=T_{d e}(z)=T_{e} \circ T_{d}(z) \Rightarrow T_{d}^{n}(z)=T_{d^{n}}(z) .
\end{gathered}
$$

- $\alpha \in[-2,2] \Rightarrow T_{d}(\alpha) \in[-2,2]$.
- $\alpha \notin[-2,2] \Rightarrow\left|T_{d}^{n}(\alpha)\right|=\left|T_{d^{n}}(\alpha)\right| \rightarrow \infty$.
$J_{f}=[-2,2]$,

$$
\mu_{f}=\frac{\chi_{[-2,2]} d x}{\pi \sqrt{4-x^{2}}}, \quad \mathrm{~m}_{f}(P)=\mathrm{m}\left(P \circ\left(z+z^{-1}\right)\right) .
$$

A two-variable case

$f \in \mathbb{Z}[z]$ monic of degree $d \geq 2$.

$$
m_{f}(x-y)=\iint \log \left|z_{1}-z_{2}\right| d \mu_{f}\left(z_{1}\right) d \mu_{f}\left(z_{2}\right)=0
$$

The energy $I\left(\mu_{f}\right)$ of the equilibrium measure is 0 when f is monic.

Dynamical Kronecker's Lemma

Kronecker (1857)
$P \in \mathbb{Z}[x], P \neq 0$,

$$
\mathrm{m}(P)=0 \Longleftrightarrow P(x)=x^{n} \prod \Phi_{i}(x)
$$

where the Φ_{i} are cyclotomic polynomials.

Dynamical Kronecker's Lemma

Kronecker (1857)
$P \in \mathbb{Z}[x], P \neq 0$,

$$
\mathrm{m}(P)=0 \Longleftrightarrow P(x)=x^{n} \prod \Phi_{i}(x)
$$

where the Φ_{i} are cyclotomic polynomials.
Dynamical version CLMMM (2022) $f \in \mathbb{Z}[z]$ monic of degree $d \geq 2$. $P(x)=a \prod_{j}\left(x-\alpha_{j}\right) \in \mathbb{Z}[x]$.

$$
\mathrm{m}_{f}(P)=0 \Longleftrightarrow|a|=1 \text { and } \alpha_{j} \text { preperiodic }
$$

Dynamical Boyd-Lawton Theorem

Boyd (1981), Lawton (1983)
For $P \in \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)^{\times}$,

$$
\lim _{k_{2} \rightarrow \infty} \ldots \lim _{k_{n} \rightarrow \infty} \mathrm{~m}\left(P\left(x, x^{k_{2}}, \ldots, x^{k_{n}}\right)\right)=\mathrm{m}\left(P\left(x_{1}, \ldots, x_{n}\right)\right)
$$

con $k_{2}, \ldots, k_{n} \rightarrow \infty$ independently.

Dynamical Boyd-Lawton Theorem

Boyd (1981), Lawton (1983)
For $P \in \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)^{\times}$,

$$
\lim _{k_{2} \rightarrow \infty} \ldots \lim _{k_{n} \rightarrow \infty} \mathrm{~m}\left(P\left(x, x^{k_{2}}, \ldots, x^{k_{n}}\right)\right)=\mathrm{m}\left(P\left(x_{1}, \ldots, x_{n}\right)\right)
$$

con $k_{2}, \ldots, k_{n} \rightarrow \infty$ independently.
(Weak) Dynamical version CLMMM (2022) Let $f \in \mathbb{Z}[z]$ monic of degree $d \geq 2$. and $P \in \mathbb{C}[x, y]$,

$$
\lim _{n \rightarrow \infty} \sup _{n \rightarrow} \mathrm{~m}_{f}\left(P\left(x, f^{n}(x)\right)\right) \leq \mathrm{m}_{f}(P(x, y))
$$

Dynamical Lehmer's Conjecture

Lehmer (1933)
Is there $\varepsilon>0$ such that if $P \in \mathbb{Z}[x]$,

$$
\mathrm{m}(P)>0 \Rightarrow \mathrm{~m}(P)>\varepsilon ?
$$

Université fl

CENTRE
MATHEMATIQUES

Dynamical Lehmer's Conjecture

Lehmer (1933)
Is there $\varepsilon>0$ such that if $P \in \mathbb{Z}[x]$,

$$
\mathrm{m}(P)>0 \Rightarrow \mathrm{~m}(P)>\varepsilon ?
$$

Dynamical version Is there $\varepsilon=\varepsilon_{f}>0$ such that if $P \in \mathbb{Z}[x]$,

$$
\mathrm{m}_{f}(P)>0 \Rightarrow \mathrm{~m}_{f}(P)>\varepsilon ?
$$

Multivariable Kronecker's Lemma

Everest-Ward (1999)
If $P \in \mathbb{Z}\left[x_{1}^{ \pm}, \ldots, x_{k}^{ \pm}\right]$is primitive (coprime coefficients),

$$
\begin{aligned}
\mathrm{m}(P)=0 \Longleftrightarrow & P \text { is the product of a monomial and } \Phi_{n_{i}} \\
& \text { evaluated in monomials. }
\end{aligned}
$$

Two-variable Dynamical Kronecker's Lemma

Theorem (CLMMM (2022, 2022+))
Let $f \in \mathbb{Z}[z]$ monic of degree $d \geq 2$, not conjugate to z^{d} nor $\pm T_{d}(z)$.
Assume either the Dynamical Lehmer's Conjecture or that $\operatorname{PrePer}(f) \subset J_{f}$. Let $P \in \mathbb{Z}[x, y]$ irreducible in $\mathbb{Z}[x, y]$ (with both variables)

$$
\mathrm{m}_{f}(P)=0 \Leftrightarrow P \text { divides in } \mathbb{C}[x, y] \text { a product of } \tilde{f}^{n}(x)-L\left(\tilde{f}^{m}(y)\right),
$$

$\underset{\sim}{L} \in \mathbb{C}[z]$ is linear and commutes with an iterate of f and $\tilde{f} \in \mathbb{C}[z]$ is not linear, commutes with an iterate of f and has minimal degree.

The proof uses a result of unlikely intersections due to Ghioca, Nguyen \& Ye (2019).

Ideas in the proof

Assume $\mathrm{m}_{f}(P(x, y))=0$.

- Use Weak Dynamical Boyd-Lawton and Dynamical Lehmer's question to obtain that

$$
\mathrm{m}_{f}\left(P\left(x, f^{n}(x)\right)\right)=0 \text { for } n \gg 0
$$

Ideas in the proof

Assume $\mathrm{m}_{f}(P(x, y))=0$.

- Use Weak Dynamical Boyd-Lawton and Dynamical Lehmer's question to obtain that

$$
m_{f}\left(P\left(x, f^{n}(x)\right)\right)=0 \text { for } n \gg 0
$$

- Show that

$$
\left\{\operatorname{ord}_{\alpha} P\left(x, f^{n}(x)\right)\right\}_{n}
$$

is bounded for every $\alpha \in \operatorname{PrePer}(f)$.

Ideas in the proof

Assume $\mathrm{m}_{f}(P(x, y))=0$.

- Use Weak Dynamical Boyd-Lawton and Dynamical Lehmer's question to obtain that

$$
\mathrm{m}_{f}\left(P\left(x, f^{n}(x)\right)\right)=0 \text { for } n \gg 0
$$

- Show that

$$
\left\{\operatorname{ord}_{\alpha} P\left(x, f^{n}(x)\right)\right\}_{n}
$$

is bounded for every $\alpha \in \operatorname{PrePer}(f)$.

- $\left\{\alpha: P\left(\alpha, f^{n}(\alpha)\right)=0\right.$ for some $\left.n\right\}$ is infinite.

Ideas in the proof

Assume $\mathrm{m}_{f}(P(x, y))=0$.

- Use Weak Dynamical Boyd-Lawton and Dynamical Lehmer's question to obtain that

$$
\mathrm{m}_{f}\left(P\left(x, f^{n}(x)\right)\right)=0 \text { for } n \gg 0
$$

- Show that

$$
\left\{\operatorname{ord}_{\alpha} P\left(x, f^{n}(x)\right)\right\}_{n}
$$

is bounded for every $\alpha \in \operatorname{PrePer}(f)$.

- $\left\{\alpha: P\left(\alpha, f^{n}(\alpha)\right)=0\right.$ for some $\left.n\right\}$ is infinite.

This gives infinitely many $\left(\alpha, f^{n}(\alpha)\right)$ preperiodic under $f \times f$.

Ideas in the proof

Assume $\mathrm{m}_{f}(P(x, y))=0$.

- Use Weak Dynamical Boyd-Lawton and Dynamical Lehmer's question to obtain that

$$
\mathrm{m}_{f}\left(P\left(x, f^{n}(x)\right)\right)=0 \text { for } n \gg 0
$$

- Show that

$$
\left\{\operatorname{ord}_{\alpha} P\left(x, f^{n}(x)\right)\right\}_{n}
$$

is bounded for every $\alpha \in \operatorname{PrePer}(f)$.

- $\left\{\alpha: P\left(\alpha, f^{n}(\alpha)\right)=0\right.$ for some $\left.n\right\}$ is infinite.

This gives infinitely many $\left(\alpha, f^{n}(\alpha)\right)$ preperiodic under $f \times f$.

- If $\operatorname{PrePer}(f) \subset J_{f}$, then $\mathrm{m}_{f}(P(\alpha, y))=0$ for any $\alpha \in J_{f}$.

Ideas in the proof

Assume $\mathrm{m}_{f}(P(x, y))=0$.

- Use Weak Dynamical Boyd-Lawton and Dynamical Lehmer's question to obtain that

$$
\mathrm{m}_{f}\left(P\left(x, f^{n}(x)\right)\right)=0 \text { for } n \gg 0
$$

- Show that

$$
\left\{\operatorname{ord}_{\alpha} P\left(x, f^{n}(x)\right)\right\}_{n}
$$

is bounded for every $\alpha \in \operatorname{PrePer}(f)$.

- $\left\{\alpha: P\left(\alpha, f^{n}(\alpha)\right)=0\right.$ for some $\left.n\right\}$ is infinite.

This gives infinitely many $\left(\alpha, f^{n}(\alpha)\right)$ preperiodic under $f \times f$.

- If $\operatorname{PrePer}(f) \subset J_{f}$, then $\mathrm{m}_{f}(P(\alpha, y))=0$ for any $\alpha \in J_{f}$. This gives infinitely many $\left(\alpha, f^{n}(\alpha)\right)$ preperiodic under $f \times f$. Univesitet th

A key result

Ghioca, Nguyen \& Ye (2019)
Let $f \in \mathbb{C}[z]$ of degree $d \geq 2$, not conjugate to z^{d} nor $\pm T_{d}(z)$.

$$
\begin{aligned}
& \Phi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \\
& \Phi(x, y)=(f(x), f(y)) .
\end{aligned}
$$

Let $C \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ an irreducible curve over \mathbb{C} which projects dominantly onto both coordinates.

A key result

Ghioca, Nguyen \& Ye (2019)
Let $f \in \mathbb{C}[z]$ of degree $d \geq 2$, not conjugate to z^{d} nor $\pm T_{d}(z)$.

$$
\begin{aligned}
& \Phi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \\
& \Phi(x, y)=(f(x), f(y)) .
\end{aligned}
$$

Let $C \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ an irreducible curve over \mathbb{C} which projects dominantly onto both coordinates.

Then C contains infinitely many preperiodic points under the action of Φ if and only if C is an irreducible component of the locus of an equation of the form

$$
\tilde{f}^{n}(x)=L\left(\tilde{f}^{m}(y)\right)
$$

where $L, \tilde{f} \in \mathbb{C}[z]$ as before.

Looking ahead

- More general f ?

DERECHERCHES
MATHEMATIQUES

Looking ahead

- More general f ?
- More concrete examples and formulas.

Université fl de Montréal

Looking ahead

- More general f ?
- More concrete examples and formulas.
- Dynamical Boyd-Lawton (full strength, more variables).

Looking ahead

- More general f ?
- More concrete examples and formulas.
- Dynamical Boyd-Lawton (full strength, more variables).
- Remove conditions for Dynamical Kronecker, also more than two variables.

Looking ahead

- More general f ?
- More concrete examples and formulas.
- Dynamical Boyd-Lawton (full strength, more variables).
- Remove conditions for Dynamical Kronecker, also more than two variables.
- Dynamical Lehmer's Question!

Happy birthday Andrew!!!

Joyeux anniversaire Andrew !!!
iiiFeliz cumpleaños Andrew!!!

