Rational Equivalences on Surfaces using Hyperelliptic Subcurves

Jonathan Love* joint with Evangelia Gazaki**
*McGill University, CRM-ISM
**University of Virginia, NSF

Québec-Maine Number Theory Conference October 15, 2022

Zero-Cycles

Let X be a smooth irreducible projective variety.

Zero-Cycles

Let X be a smooth irreducible projective variety.

Definition

A zero-cycle on X is a formal sum of the form

$$
a_{1}\left[P_{1}\right]+\cdots+a_{n}\left[P_{n}\right]
$$

where $a_{i} \in \mathbb{Z}$ and P_{i} are closed points of X.

Rational Equivalence

Given a curve C in X, and a rational function f on C, we can define a zero-cycle on X :

$$
\operatorname{div}(f):=\sum_{P \in C} \operatorname{ord}_{f}(P)[P]
$$

Rational Equivalence

Given a curve C in X, and a rational function f on C, we can define a zero-cycle on X :

$$
\operatorname{div}(f):=\sum_{P \in C} \operatorname{ord}_{f}(P)[P]
$$

Definition

A zero-cycle is a rational equivalence (or rationally equivalent to 0) if it can be written as a linear combination of divisors of rational functions on curves in X.

$$
\begin{aligned}
\mathrm{CH}_{0}(X) & :=(\text { Group of zero-cycles on } X) /(\text { rational equivalence }) \\
A_{0}(X) & :=\left(\text { zero-cycles with } \sum a_{i} \operatorname{deg}\left(P_{i}\right)=0\right) /(\text { rational equivalence }) .
\end{aligned}
$$

Main Problem

Problem

Given a zero-cycle z on X, determine whether it is a rational equivalence.

Main Problem

$\operatorname{Alb} X$: Albanese variety

Main Problem

Alb X : Albanese variety
There is a surjection $\Sigma: A_{0}(X) \rightarrow \operatorname{Alb} X(k):$

$$
\begin{aligned}
\Sigma\left(\sum a_{i}\left[P_{i}\right]\right) & =\sum a_{i} P_{i} \\
(\text { formal sum }) & \mapsto(\text { sum using group law })
\end{aligned}
$$

Main Problem

Alb X : Albanese variety
There is a surjection $\Sigma: A_{0}(X) \rightarrow \operatorname{Alb} X(k):$

$$
\begin{aligned}
\Sigma\left(\sum a_{i}\left[P_{i}\right]\right) & =\sum a_{i} P_{i} \\
(\text { formal sum }) & \mapsto(\text { sum using group law })
\end{aligned}
$$

If a zero-cycle is a rational equivalence, then it sums to 0 in $\operatorname{Alb} X(k)$!

Main Problem

Alb X : Albanese variety
There is a surjection $\Sigma: A_{0}(X) \rightarrow \operatorname{Alb} X(k):$

$$
\begin{aligned}
\Sigma\left(\sum a_{i}\left[P_{i}\right]\right) & =\sum a_{i} P_{i} \\
(\text { formal sum }) & \mapsto(\text { sum using group law })
\end{aligned}
$$

If a zero-cycle is a rational equivalence, then it sums to 0 in $\operatorname{Alb} X(k)$!

Wishful Thinking

The map Σ is an isomorphism.
If true, a zero-cycle is a rational equivalence if and only if it sums to 0 in $\operatorname{Alb} X(k)$.

Positive and Negative Results

Let $X=E_{1} \times E_{2}$ for elliptic curves E_{1}, E_{2} over a field k.

Positive and Negative Results

Let $X=E_{1} \times E_{2}$ for elliptic curves E_{1}, E_{2} over a field k.

Theorem 1^{1}

If $k=\overline{\mathbb{F}_{p}}$ then $\operatorname{ker} \Sigma=0(\Sigma$ is an isomorphism $)$.

[^0]
Positive and Negative Results

Let $X=E_{1} \times E_{2}$ for elliptic curves E_{1}, E_{2} over a field k.

Theorem 1^{1}

If $k=\overline{\mathbb{F}_{p}}$ then $\operatorname{ker} \Sigma=0$ (Σ is an isomorphism $)$.

Theorem 2^{2}

If $k=\mathbb{C}$, then $k e r \Sigma$ is infinite-dimensional.

[^1]
Positive and Negative Results

$$
\text { Let } X=E_{1} \times E_{2} \text { for elliptic curves } E_{1}, E_{2} \text { over a field } k \text {. }
$$

Theorem 1^{1}

If $k=\overline{\mathbb{F}_{p}}$ then $\operatorname{ker} \Sigma=0$ (Σ is an isomorphism $)$.

Theorem 2^{2}

If $k=\mathbb{C}$, then $k e r$ is infinite-dimensional.

Theorem 3^{3}

If $k=\mathbb{Q}_{p}$ and E_{1}, E_{2} have ordinary good reduction, then $\operatorname{ker} \Sigma$ is a finite group times a divisible group.

[^2]
Bloch-Beilinson Conjecture

Let X be an abelian variety over a field k.

[^3]
Bloch-Beilinson Conjecture

Let X be an abelian variety over a field k.

Conjecture $4(\mathrm{BB})^{4,5}$

If k is a number field, then $\operatorname{ker} \Sigma$ is a finite group.

[^4]
Bloch-Beilinson Conjecture

Let X be an abelian variety over a field k.

Conjecture $4(\mathrm{BB})^{4,5}$

If k is a number field, then $\operatorname{ker} \Sigma$ is a finite group.

Other than curves, no known examples!

[^5]
Bloch-Beilinson Conjecture

Let X be an abelian variety over a field k.

Conjecture $4(\mathrm{BB})^{4,5}$

If k is a number field, then $\operatorname{ker} \Sigma$ is a finite group.

Other than curves, no known examples!

One problem: X has points of arbitrarily large degree.

[^6]
Bloch-Beilinson Conjecture

Let X be an abelian variety over a field k.

Conjecture $4(\mathrm{BB})^{4,5}$

If k is a number field, then $\operatorname{ker} \Sigma$ is a finite group.

Other than curves, no known examples!

One problem: X has points of arbitrarily large degree. Idea: restrict to zero-cycles generated by a smaller set of points.

[^7]
A Weak Variant of Bloch-Beilinson

Let C_{1}, \ldots, C_{d} be curves over k, and $X=C_{1} \times \cdots \times C_{d}$. Let $\pi_{i}: X \rightarrow C_{i}$ be the projection map.

A Weak Variant of Bloch-Beilinson

Let C_{1}, \ldots, C_{d} be curves over k, and $X=C_{1} \times \cdots \times C_{d}$. Let $\pi_{i}: X \rightarrow C_{i}$ be the projection map.

Definition

Let z_{i} be a closed point of C_{i} The subgroup of $\mathrm{CH}_{0}(X)$ generated by zero-cycles of the form $\pi_{1}^{*}\left(z_{1}\right) \cap \cdots \cap \pi_{d}^{*}\left(z_{d}\right)$ is the componentwise subgroup $A_{\text {comp }}(X)$.

Note that $A_{\text {comp }}(X)$ contains all zero-cycles supported on $X(k)$.

A Weak Variant of Bloch-Beilinson

Definition

Let z_{i} be a closed point of C_{i} The subgroup of $\mathrm{CH}_{0}(X)$ generated by zero-cycles of the form $\pi_{1}^{*}\left(z_{1}\right) \cap \cdots \cap \pi_{d}^{*}\left(z_{d}\right)$ is the componentwise subgroup $A_{\text {comp }}(X)$.

A Weak Variant of Bloch-Beilinson

Definition

Let z_{i} be a closed point of C_{i} The subgroup of $\mathrm{CH}_{0}(X)$ generated by zero-cycles of the form $\pi_{1}^{*}\left(z_{1}\right) \cap \cdots \cap \pi_{d}^{*}\left(z_{d}\right)$ is the componentwise subgroup $A_{\text {comp }}(X)$.

$$
\begin{array}{ccccc}
\left(\left(\mathbb{Z} \times J_{1}(k)\right) \otimes \cdots \otimes\left(\mathbb{Z} \times J_{d}(k)\right) / \mathbb{Z}\right. & \rightarrow & A_{\text {comp }}(X) & \rightarrow & J_{1}(k) \times \cdots \times J_{d}(k) \\
\operatorname{rank}\left(r_{1}+1\right) \cdots\left(r_{d}+1\right)-1 & ? ? ? & & \text { rank } r_{1}+\cdots+r_{d}
\end{array}
$$

A Weak Variant of Bloch-Beilinson

Definition

Let z_{i} be a closed point of C_{i} The subgroup of $\mathrm{CH}_{0}(X)$ generated by zero-cycles of the form $\pi_{1}^{*}\left(z_{1}\right) \cap \cdots \cap \pi_{d}^{*}\left(z_{d}\right)$ is the componentwise subgroup $A_{\text {comp }}(X)$.

$$
\begin{array}{ccccc}
\left(\left(\mathbb{Z} \times J_{1}(k)\right) \otimes \cdots \otimes\left(\mathbb{Z} \times J_{d}(k)\right) / \mathbb{Z}\right. & \rightarrow & A_{\text {comp }}(X) & \rightarrow & J_{1}(k) \times \cdots \times J_{d}(k) \\
\operatorname{rank}\left(r_{1}+1\right) \cdots\left(r_{d}+1\right)-1 & ? ? ? & & \text { rank } r_{1}+\cdots+r_{d}
\end{array}
$$

Conjecture 5 (WBB)

If k is a number field, then $\operatorname{ker} \sum \cap A_{\text {comp }}(X)$ is finite.

A Weak Variant of Bloch-Beilinson

Previously known pairs of curves $E_{1}, E_{2} / \mathbb{Q}$ satisfying WBB:

A Weak Variant of Bloch-Beilinson

Previously known pairs of curves $E_{1}, E_{2} / \mathbb{Q}$ satisfying WBB:
(1) Either $E_{1}(k)$ or $E_{2}(k)$ is finite.
(2) $E_{1}(k)$ and $E_{2}(k)$ are rank 1 and E_{1} is isogenous to E_{2}.

A Weak Variant of Bloch-Beilinson

Previously known pairs of curves $E_{1}, E_{2} / \mathbb{Q}$ satisfying WBB:
(1) Either $E_{1}(k)$ or $E_{2}(k)$ is finite.
(2) $E_{1}(k)$ and $E_{2}(k)$ are rank 1 and E_{1} is isogenous to E_{2}.
(0) Prasanna and Srinivas: E_{1} and E_{2} both have conductor 37, or both have conductor 91. Uses Heegner points on a common modular parametrization. ${ }^{6}$

[^8]
A Weak Variant of Bloch-Beilinson

Previously known pairs of curves $E_{1}, E_{2} / \mathbb{Q}$ satisfying WBB:
(1) Either $E_{1}(k)$ or $E_{2}(k)$ is finite.
(2) $E_{1}(k)$ and $E_{2}(k)$ are rank 1 and E_{1} is isogenous to E_{2}.
(0) Prasanna and Srinivas: E_{1} and E_{2} both have conductor 37, or both have conductor 91. Uses Heegner points on a common modular parametrization. ${ }^{6}$
(1) E_{1} is a rank 1 curve of the form $y^{2}=x^{3}-3 t^{2} x+b$, with no torsion point with x-coordinate equal to $t ; E_{2}$ is any rank 1 curve in certain a one-parameter family depending on E_{1}. Uses rational curves in the Kummer surfaces of $E_{1} \times E_{2} .{ }^{7}$

[^9]
A Weak Variant of Bloch-Beilinson

Previously known pairs of curves $E_{1}, E_{2} / \mathbb{Q}$ satisfying WBB:
(1) Either $E_{1}(k)$ or $E_{2}(k)$ is finite.
(2) $E_{1}(k)$ and $E_{2}(k)$ are rank 1 and E_{1} is isogenous to E_{2}.
(0) Prasanna and Srinivas: E_{1} and E_{2} both have conductor 37, or both have conductor 91. Uses Heegner points on a common modular parametrization. ${ }^{6}$
(- E_{1} is a rank 1 curve of the form $y^{2}=x^{3}-3 t^{2} x+b$, with no torsion point with x-coordinate equal to $t ; E_{2}$ is any rank 1 curve in certain a one-parameter family depending on E_{1}. Uses rational curves in the Kummer surfaces of $E_{1} \times E_{2} .{ }^{7}$
What about products of three or more curves? Elliptic curves of higher rank? Higher genus curves?

[^10]
More curves in the product

Theorem 6 (Gazaki-L. '22)

Let S be a set of smooth projective curves over k such that $C(k) \neq \emptyset$ for all $C \in S$, and all pairs $C, C^{\prime} \in S$ satisfy BB (resp. WBB). If $X=C_{1} \times \cdots \times C_{d}$ with $C_{i} \in S$ for all $i \in\{1, \ldots, d\}$, then X satisfies BB (resp. WBB).

More curves in the product

Theorem 6 (Gazaki-L. '22)

Let S be a set of smooth projective curves over k such that $C(k) \neq \emptyset$ for all $C \in S$, and all pairs $C, C^{\prime} \in S$ satisfy BB (resp. WBB). If $X=C_{1} \times \cdots \times C_{d}$ with $C_{i} \in S$ for all $i \in\{1, \ldots, d\}$, then X satisfies BB (resp. WBB).

Proof Idea: Raskind and Spiess ${ }^{8}$ established an isomorphism

$$
A_{0}(X) \simeq \prod_{\nu=1}^{d} \prod_{1 \leq i_{1}<\cdots<i_{\nu} \leq d} K\left(k ; J_{i_{1}}, \ldots, J_{i_{\nu}}\right)
$$

where $K\left(k ; J_{i_{1}}, \ldots, J_{i_{\nu}}\right)$ are Somekawa K-groups. Use the defining relations of these K-groups to prove a product formula.

[^11]
A useful lemma

Let C_{1}, C_{2} be smooth curves over k, with fixed k-rational points O_{1}, O_{2}. Let J_{i} denote the Jacobian variety of C_{i}. The Albanese variety of $C_{1} \times C_{2}$ is $X:=J_{1} \times J_{2}$.

A useful lemma

Let C_{1}, C_{2} be smooth curves over k, with fixed k-rational points O_{1}, O_{2}. Let J_{i} denote the Jacobian variety of C_{i}. The Albanese variety of $C_{1} \times C_{2}$ is $X:=J_{1} \times J_{2}$. Given $P \in C_{1}(k)$ and $Q \in C_{2}(k)$, define

$$
\begin{aligned}
D_{P, Q} & :=\left([P]-\left[O_{1}\right]\right) \otimes\left([Q]-\left[O_{2}\right]\right) \\
& =[(P, Q)]-\left[\left(P, O_{2}\right)\right]-\left[\left(O_{1}, Q\right)\right]+\left[\left(O_{1}, O_{2}\right)\right] .
\end{aligned}
$$

A useful lemma

Let C_{1}, C_{2} be smooth curves over k, with fixed k-rational points O_{1}, O_{2}. Let J_{i} denote the Jacobian variety of C_{i}. The Albanese variety of $C_{1} \times C_{2}$ is $X:=J_{1} \times J_{2}$. Given $P \in C_{1}(k)$ and $Q \in C_{2}(k)$, define

$$
\begin{aligned}
D_{P, Q} & :=\left([P]-\left[O_{1}\right]\right) \otimes\left([Q]-\left[O_{2}\right]\right) \\
& =[(P, Q)]-\left[\left(P, O_{2}\right)\right]-\left[\left(O_{1}, Q\right)\right]+\left[\left(O_{1}, O_{2}\right)\right] .
\end{aligned}
$$

Lemma 6

Let H be an elliptic (resp. hyperelliptic) curve, $P \in H(k)$, and $\phi_{i}: H \rightarrow C_{i}$ be a regular map for each $i=1,2$.

A useful lemma

Let C_{1}, C_{2} be smooth curves over k, with fixed k-rational points O_{1}, O_{2}. Let J_{i} denote the Jacobian variety of C_{i}. The Albanese variety of $C_{1} \times C_{2}$ is $X:=J_{1} \times J_{2}$. Given $P \in C_{1}(k)$ and $Q \in C_{2}(k)$, define

$$
\begin{aligned}
D_{P, Q} & :=\left([P]-\left[O_{1}\right]\right) \otimes\left([Q]-\left[O_{2}\right]\right) \\
& =[(P, Q)]-\left[\left(P, O_{2}\right)\right]-\left[\left(O_{1}, Q\right)\right]+\left[\left(O_{1}, O_{2}\right)\right] .
\end{aligned}
$$

Lemma 6

Let H be an elliptic (resp. hyperelliptic) curve, $P \in H(k)$, and $\phi_{i}: H \rightarrow C_{i}$ be a regular map for each $i=1,2$.
Suppose there exists $W \in H(\bar{k})$, fixed by negation (resp. the hyperelliptic involution) ι, such that $\left[\phi_{i}(W)\right]-\left[O_{i}\right] \in J_{i}(\bar{k})$ is torsion for $i=1,2$.

A useful lemma

Let C_{1}, C_{2} be smooth curves over k, with fixed k-rational points O_{1}, O_{2}. Let J_{i} denote the Jacobian variety of C_{i}. The Albanese variety of $C_{1} \times C_{2}$ is $X:=J_{1} \times J_{2}$. Given $P \in C_{1}(k)$ and $Q \in C_{2}(k)$, define

$$
\begin{aligned}
D_{P, Q} & :=\left([P]-\left[O_{1}\right]\right) \otimes\left([Q]-\left[O_{2}\right]\right) \\
& =[(P, Q)]-\left[\left(P, O_{2}\right)\right]-\left[\left(O_{1}, Q\right)\right]+\left[\left(O_{1}, O_{2}\right)\right] .
\end{aligned}
$$

Lemma 6

Let H be an elliptic (resp. hyperelliptic) curve, $P \in H(k)$, and $\phi_{i}: H \rightarrow C_{i}$ be a regular map for each $i=1,2$.
Suppose there exists $W \in H(\bar{k})$, fixed by negation (resp. the hyperelliptic involution) ι, such that $\left[\phi_{i}(W)\right]-\left[O_{i}\right] \in J_{i}(\bar{k})$ is torsion for $i=1,2$.
Then the zero-cycle $D_{\phi_{1}(P), \phi_{2}(P)}$ is torsion.

A useful lemma

Lemma 6

Let H be an elliptic (resp. hyperelliptic) curve, $P \in H(k)$, and $\phi_{i}: H \rightarrow C_{i}$ be a regular map for each $i=1,2$.
Suppose there exists $W \in H(\bar{k})$, fixed by negation (resp. the hyperelliptic involution) ι, such that $\left[\phi_{i}(W)\right]-\left[O_{i}\right] \in J_{i}(\bar{k})$ is torsion for $i=1,2$.
Then the zero-cycle $D_{\phi_{1}(P), \phi_{2}(P)}$ is torsion.

A useful lemma

Lemma 6

Let H be an elliptic (resp. hyperelliptic) curve, $P \in H(k)$, and $\phi_{i}: H \rightarrow C_{i}$ be a regular map for each $i=1,2$.
Suppose there exists $W \in H(\bar{k})$, fixed by negation (resp. the hyperelliptic involution) ι, such that $\left[\phi_{i}(W)\right]-\left[O_{i}\right] \in J_{i}(\bar{k})$ is torsion for $i=1,2$.
Then the zero-cycle $D_{\phi_{1}(P), \phi_{2}(P)}$ is torsion.
Proof Idea: Use a "diagonal" map $H \rightarrow X$ given by $P \mapsto\left(\phi_{1}(P), \phi_{2}(P)\right)$, as well as "vertical/horizontal" maps $P \mapsto\left(\phi_{1}(P), Q\right)$ and $P \mapsto\left(Q, \phi_{2}(P)\right)$.

A useful lemma

Lemma 6

Let H be an elliptic (resp. hyperelliptic) curve, $P \in H(k)$, and $\phi_{i}: H \rightarrow C_{i}$ be a regular map for each $i=1,2$.
Suppose there exists $W \in H(\bar{k})$, fixed by negation (resp. the hyperelliptic involution) ι, such that $\left[\phi_{i}(W)\right]-\left[O_{i}\right] \in J_{i}(\bar{k})$ is torsion for $i=1,2$.
Then the zero-cycle $D_{\phi_{1}(P), \phi_{2}(P)}$ is torsion.
Proof Idea: Use a "diagonal" map $H \rightarrow X$ given by $P \mapsto\left(\phi_{1}(P), \phi_{2}(P)\right)$, as well as "vertical/horizontal" maps $P \mapsto\left(\phi_{1}(P), Q\right)$ and $P \mapsto\left(Q, \phi_{2}(P)\right)$.

Since $[P]+[\iota(P)]-2[W]$ is principal, its pushforward along any of these maps is a rational equivalence; find a combination that equals a multiple of $D_{\phi_{1}(P), \phi_{2}(P)}$.

Applications

This lemma subsumes the previous results:

- Prasanna-Srinivas: For $N=37$ or $N=91, X_{0}(N)$ is hyperelliptic. Use modular parametrizations $\phi_{i}: X_{0}(N) \rightarrow E_{i}$ and a Heegner point $P \in X_{0}(N)(\mathbb{Q})$.

Applications

This lemma subsumes the previous results:

- Prasanna-Srinivas: For $N=37$ or $N=91, X_{0}(N)$ is hyperelliptic. Use modular parametrizations $\phi_{i}: X_{0}(N) \rightarrow E_{i}$ and a Heegner point $P \in X_{0}(N)(\mathbb{Q})$.
- L.: A rational curve in the Kummer surface lifts to a hyperelliptic curve in $E_{1} \times E_{2}$.

Applications

An example with k an imaginary quadratic field K :

Corollary

Let E / \mathbb{Q} such that $E_{\overline{\mathbb{Q}}}$ has CM by \mathcal{O}_{K}. If $E(\mathbb{Q})$ has rank 1 and $E(K)$ has rank 2, then $(E \times E)_{K}$ satisfies WBB.

Applications

Examples with higher genus curves:

Corollary

Let H be a hyperelliptic curve over k with Jacobian J. Suppose $J(k)$ has rank 1 , and there exist $P, W \in H(k)$ with W a Weierstrass point and $[P]-[W]$ of infinite order. Then $H \times H$ satisfies WBB.

Applications

Examples with higher genus curves:

Corollary

Let H be a hyperelliptic curve over k with Jacobian J. Suppose $J(k)$ has rank 1 , and there exist $P, W \in H(k)$ with W a Weierstrass point and $[P]-[W]$ of infinite order. Then $H \times H$ satisfies WBB.

LMFDB has 860 genus 2 curves over \mathbb{Q} with conductor ≤ 10000 satisfying the above conditions.

Applications

Given $E_{1}, E_{2} / \mathbb{Q}$, we can construct a hyperelliptic curve H with Jacobian isogenous to $E_{1} \times E_{2}$. Then each $P \in H(\mathbb{Q})$ gives a rational equivalence on $E_{1} \times E_{2}$.

Applications

Given $E_{1}, E_{2} / \mathbb{Q}$, we can construct a hyperelliptic curve H with Jacobian isogenous to $E_{1} \times E_{2}$. Then each $P \in H(\mathbb{Q})$ gives a rational equivalence on $E_{1} \times E_{2}$.

If we can find $\left(r k E_{1}(\mathbb{Q})\right) \cdot\left(r k E_{2}(\mathbb{Q})\right)$ independent rational equivalences, then $E_{1} \times E_{2}$ satisfies WBB.

Applications

Given $E_{1}, E_{2} / \mathbb{Q}$, we can construct a hyperelliptic curve H with Jacobian isogenous to $E_{1} \times E_{2}$. Then each $P \in H(\mathbb{Q})$ gives a rational equivalence on $E_{1} \times E_{2}$.

If we can find $\left(r k E_{1}(\mathbb{Q})\right) \cdot\left(r k E_{2}(\mathbb{Q})\right)$ independent rational equivalences, then $E_{1} \times E_{2}$ satisfies WBB.

\# of E_{1}	rk $E_{1}(\mathbb{Q})$	\# of E_{2}	rk $E_{2}(\mathbb{Q})$	total \# of pairs	\# WBB
100	1	100	1	4950	2602
100	1	100	2	10000	3311
500	1	20	3	10000	955
100	2	100	2	4950	995
500	2	20	3	10000	615
20	3	20	3	190	17

Table: Number of pairs of elliptic curves over \mathbb{Q} provably satisfying WBB.

Further work

These methods have not yet been able to show every pair of rank 1 curves over \mathbb{Q} satisfies WBB.

Further work

These methods have not yet been able to show every pair of rank 1 curves over \mathbb{Q} satisfies WBB.

Some pairs of curves (e.g. Cremona labels 37a1 and 43a1) have been shown to satisfy WBB using bielliptic curves (a degree 2 cover of an elliptic curve). So in general, more complicated curves and/or principal divisors on them may be necessary.

Further work

These methods have not yet been able to show every pair of rank 1 curves over \mathbb{Q} satisfies WBB.

Some pairs of curves (e.g. Cremona labels 37a1 and 43a1) have been shown to satisfy WBB using bielliptic curves (a degree 2 cover of an elliptic curve). So in general, more complicated curves and/or principal divisors on them may be necessary.

Question

Are hyperelliptic curves sufficient to generate every rational equivalence in $A_{\text {comp }}(X)$, at least when $X=E_{1} \times E_{2}$?

Related to a conjecture of Bogolomov: every \bar{k}-rational point on a K 3 surface X / k lies on a rational curve in X defined over $\bar{k} .{ }^{9}$

[^12]Thank you for listening! Any questions?

[^0]: ${ }^{1}$ Spencer Bloch. "An example in the theory of algebraic cycles". In: Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, III., 1976). 1976, 1-29. Lecture Notes in Math., Vol. 551, Attributed to Richard Swan.

[^1]: ${ }^{1}$ Bloch, "An example in the theory of algebraic cycles", Attributed to Richard Swan.
 ${ }^{2}$ D. Mumford. "Rational equivalence of 0-cycles on surfaces". In: J. Math. Kyoto Univ. 9.2 (1969), pp. 195-204.

[^2]: ${ }^{1}$ Bloch, "An example in the theory of algebraic cycles", Attributed to Richard Swan.
 ${ }^{2}$ Mumford, "Rational equivalence of 0 -cycles on surfaces".
 ${ }^{3}$ Evangelia Gazaki and Isabel Leal. "Zero Cycles on a Product of Elliptic Curves Over a p-adic Field". In: International Mathematics Research Notices (Mar. 2021). ISSN: 1073-7928.

[^3]: ${ }^{4}$ Spencer Bloch. "Algebraic cycles and values of L-functions.". In: Journal für die reine und angewandte Mathematik 350 (1984), pp. 94-108.
 ${ }^{5}$ A.A. Beilinson. "Higher regulators and values of L-functions". In: J Math Sci 30 (1985), pp. 2036-2070.

[^4]: ${ }^{4}$ Bloch, "Algebraic cycles and values of L-functions."
 ${ }^{5}$ Beilinson, "Higher regulators and values of L-functions".

[^5]: ${ }^{4}$ Bloch, "Algebraic cycles and values of L-functions."
 ${ }^{5}$ Beilinson, "Higher regulators and values of L-functions".

[^6]: ${ }^{4}$ Bloch, "Algebraic cycles and values of L-functions."
 ${ }^{5}$ Beilinson, "Higher regulators and values of L-functions".

[^7]: ${ }^{4}$ Bloch, "Algebraic cycles and values of L-functions."
 ${ }^{5}$ Beilinson, "Higher regulators and values of L-functions".

[^8]: ${ }^{6}$ Kartik Prasanna and Vasudevan Srinivas. "Zero Cycles on a Product of Elliptic Curves". Private correspondence. 2018.

[^9]: ${ }^{6}$ Prasanna and Srinivas, "Zero Cycles on a Product of Elliptic Curves".
 ${ }^{7}$ Jonathan Love. "Rational Equivalences on Products of Elliptic Curves in a Family". In: Journal de Théorie des Nombres de Bordeaux 32.3 (2020), pp. 923-938. ISSN: 12467405, 21188572.

[^10]: ${ }^{6}$ Prasanna and Srinivas, "Zero Cycles on a Product of Elliptic Curves".
 ${ }^{7}$ Love, "Rational Equivalences on Products of Elliptic Curves in a Family".

[^11]: ${ }^{8}$ Wayne Raskind and Michael Spiess. "Milnor K-groups and zero-cycles on products of curves over p-adic fields". In: Compositio Math. 121.1 (2000), pp. 1-33. ISSN: 0010-437X.

[^12]: ${ }^{9}$ Fedor Bogomolov and Yuri Tschinkel. "Rational Curves and Points on K3 Surfaces". In: American Journal of Mathematics 127.4 (2005), pp. 825-835. ISSN: 00029327, 10806377.

