Rational Equivalences on Surfaces using Hyperelliptic Subcurves

Jonathan Love* joint with Evangelia Gazaki**

*McGill University, CRM-ISM **University of Virginia, NSF

Québec-Maine Number Theory Conference October 15, 2022

Let X be a smooth irreducible projective variety.

Let X be a smooth irreducible projective variety.

Definition

A zero-cycle on X is a formal sum of the form

$$a_1[P_1] + \cdots + a_n[P_n],$$

where $a_i \in \mathbb{Z}$ and P_i are closed points of X.

Rational Equivalence

Given a curve C in X, and a rational function f on C, we can define a zero-cycle on X:

$$\operatorname{div}(f) := \sum_{P \in C} \operatorname{ord}_f(P)[P].$$

・ 得 ト ・ ヨ ト ・ ヨ ト

Rational Equivalence

Given a curve C in X, and a rational function f on C, we can define a zero-cycle on X:

$$\mathsf{div}(f) := \sum_{P \in C} \mathsf{ord}_f(P)[P].$$

Definition

A zero-cycle is a rational equivalence (or rationally equivalent to 0) if it can be written as a linear combination of divisors of rational functions on curves in X.

$$CH_0(X) := (Group of zero-cycles on X)/(rational equivalence)$$

 $A_0(X) := (zero-cycles with $\sum a_i \deg(P_i) = 0)/(rational equivalence).$$

Problem

Given a zero-cycle z on X, determine whether it is a rational equivalence.

Alb X: Albanese variety

3

Alb X: Albanese variety There is a surjection $\Sigma : A_0(X) \to Alb X(k)$:

$$\Sigma\left(\sum a_i[P_i]
ight) = \sum a_iP_i$$

(formal sum) \mapsto (sum using group law)

Alb X: Albanese variety There is a surjection $\Sigma : A_0(X) \rightarrow \text{Alb } X(k)$:

$$\Sigma\left(\sum a_i[P_i]
ight) = \sum a_i P_i$$

(formal sum) \mapsto (sum using group law)

If a zero-cycle is a rational equivalence, then it sums to 0 in Alb X(k)!

Alb X: Albanese variety There is a surjection $\Sigma : A_0(X) \to Alb X(k)$:

$$\Sigma\left(\sum a_i[P_i]
ight) = \sum a_i P_i$$

(formal sum) \mapsto (sum using group law)

If a zero-cycle is a rational equivalence, then it sums to 0 in Alb X(k)!

Wishful Thinking

The map Σ is an isomorphism.

If true, a zero-cycle is a rational equivalence if and only if it sums to 0 in Alb X(k).

Let $X = E_1 \times E_2$ for elliptic curves E_1, E_2 over a field k.

Let $X = E_1 \times E_2$ for elliptic curves E_1, E_2 over a field k.

Theorem 1¹

If $k = \overline{\mathbb{F}_p}$ then ker $\Sigma = 0$ (Σ is an isomorphism).

イロト イポト イヨト イヨト

¹Spencer Bloch. "An example in the theory of algebraic cycles". In: *Algebraic K-theory* (*Proc. Conf., Northwestern Univ., Evanston, III., 1976*). 1976, 1–29. Lecture Notes in Math., Vol. 551, Attributed to Richard Swan.

Let $X = E_1 \times E_2$ for elliptic curves E_1, E_2 over a field k.

Theorem 1¹

If $k = \overline{\mathbb{F}_p}$ then ker $\Sigma = 0$ (Σ is an isomorphism).

Theorem 2²

If $k = \mathbb{C}$, then ker Σ is infinite-dimensional.

¹Bloch, "An example in the theory of algebraic cycles", Attributed to Richard Swan. ²D. Mumford. "Rational equivalence of 0-cycles on surfaces". In: *J. Math. Kyoto Univ.* 9.2 (1969), pp. 195–204.

Let $X = E_1 \times E_2$ for elliptic curves E_1, E_2 over a field k.

Theorem 1¹

If $k = \overline{\mathbb{F}_p}$ then ker $\Sigma = 0$ (Σ is an isomorphism).

Theorem 2²

If $k = \mathbb{C}$, then ker Σ is infinite-dimensional.

Theorem 3³

If $k = \mathbb{Q}_p$ and E_1, E_2 have ordinary good reduction, then ker Σ is a finite group times a divisible group.

 $^1\text{Bloch},$ "An example in the theory of algebraic cycles", Attributed to Richard Swan. $^2\text{Mumford},$ "Rational equivalence of 0-cycles on surfaces".

³Evangelia Gazaki and Isabel Leal. "Zero Cycles on a Product of Elliptic Curves Over a p-adic Field". In: *International Mathematics Research Notices* (Mar. 2021). ISSN: 1073-7928.

Let X be an abelian variety over a field k.

イロト イポト イヨト イヨト

⁴Spencer Bloch. "Algebraic cycles and values of L-functions.". In: *Journal für die reine und angewandte Mathematik* 350 (1984), pp. 94–108.

⁵A.A. Beilinson. "Higher regulators and values of L-functions". In: *J Math Sci* 30 (1985), pp. 2036–2070.

Let X be an abelian variety over a field k.

Conjecture 4 (BB)^{4,5}

If k is a number field, then ker Σ is a finite group.

⁴Bloch, "Algebraic cycles and values of L-functions."
 ⁵Beilinson, "Higher regulators and values of L-functions".

Jonathan Love (McGill)

Let X be an abelian variety over a field k.

Conjecture 4 (BB)^{4,5}

If k is a number field, then ker Σ is a finite group.

Other than curves, no known examples!

⁴Bloch, "Algebraic cycles and values of L-functions."
 ⁵Beilinson, "Higher regulators and values of L-functions".

Jonathan Love (McGill)

Let X be an abelian variety over a field k.

Conjecture 4 (BB)^{4,5}

If k is a number field, then ker Σ is a finite group.

Other than curves, no known examples!

One problem: X has points of arbitrarily large degree.

⁴Bloch, "Algebraic cycles and values of L-functions."
 ⁵Beilinson, "Higher regulators and values of L-functions".

Jonathan Love (McGill)

Let X be an abelian variety over a field k.

Conjecture 4 (BB)^{4,5}

If k is a number field, then ker Σ is a finite group.

Other than curves, no known examples!

One problem: X has points of arbitrarily large degree. Idea: restrict to zero-cycles generated by a smaller set of points.

⁴Bloch, "Algebraic cycles and values of L-functions."

⁵Beilinson, "Higher regulators and values of L-functions".

Let C_1, \ldots, C_d be curves over k, and $X = C_1 \times \cdots \times C_d$. Let $\pi_i : X \to C_i$ be the projection map.

Let C_1, \ldots, C_d be curves over k, and $X = C_1 \times \cdots \times C_d$. Let $\pi_i : X \to C_i$ be the projection map.

Definition

Let z_i be a closed point of C_i The subgroup of $CH_0(X)$ generated by zero-cycles of the form $\pi_1^*(z_1) \cap \cdots \cap \pi_d^*(z_d)$ is the componentwise subgroup $A_{comp}(X)$.

Note that $A_{comp}(X)$ contains all zero-cycles supported on X(k).

ヘロト 不得 とくほう くほう しほ

Definition

Let z_i be a closed point of C_i The subgroup of $CH_0(X)$ generated by zero-cycles of the form $\pi_1^*(z_1) \cap \cdots \cap \pi_d^*(z_d)$ is the componentwise subgroup $A_{comp}(X)$.

Definition

Let z_i be a closed point of C_i The subgroup of $CH_0(X)$ generated by zero-cycles of the form $\pi_1^*(z_1) \cap \cdots \cap \pi_d^*(z_d)$ is the componentwise subgroup $A_{comp}(X)$.

$$((\mathbb{Z} \times J_1(k)) \otimes \cdots \otimes (\mathbb{Z} \times J_d(k))/\mathbb{Z} \twoheadrightarrow A_{comp}(X) \twoheadrightarrow J_1(k) \times \cdots \times J_d(k)$$

rank $(r_1 + 1) \cdots (r_d + 1) - 1$??? rank $r_1 + \cdots + r_d$

Definition

Let z_i be a closed point of C_i The subgroup of $CH_0(X)$ generated by zero-cycles of the form $\pi_1^*(z_1) \cap \cdots \cap \pi_d^*(z_d)$ is the componentwise subgroup $A_{comp}(X)$.

$$((\mathbb{Z} \times J_1(k)) \otimes \cdots \otimes (\mathbb{Z} \times J_d(k))/\mathbb{Z} \twoheadrightarrow A_{comp}(X) \twoheadrightarrow J_1(k) \times \cdots \times J_d(k)$$

rank $(r_1 + 1) \cdots (r_d + 1) - 1$??? rank $r_1 + \cdots + r_d$

Conjecture 5 (WBB)

If k is a number field, then ker $\Sigma \cap A_{comp}(X)$ is finite.

Previously known pairs of curves $E_1, E_2/\mathbb{Q}$ satisfying WBB:

Previously known pairs of curves $E_1, E_2/\mathbb{Q}$ satisfying WBB:

- Either $E_1(k)$ or $E_2(k)$ is finite.
- 2 $E_1(k)$ and $E_2(k)$ are rank 1 and E_1 is isogenous to E_2 .

・得下 ・ヨト ・ヨト ・ヨ

Previously known pairs of curves $E_1, E_2/\mathbb{Q}$ satisfying WBB:

- Either $E_1(k)$ or $E_2(k)$ is finite.
- **2** $E_1(k)$ and $E_2(k)$ are rank 1 and E_1 is isogenous to E_2 .
- Prasanna and Srinivas: E₁ and E₂ both have conductor 37, or both have conductor 91. Uses Heegner points on a common modular parametrization.⁶

⁶Kartik Prasanna and Vasudevan Srinivas. "Zero Cycles on a Product of Elliptic Curves". Private correspondence. 2018.

Previously known pairs of curves $E_1, E_2/\mathbb{Q}$ satisfying WBB:

- Either $E_1(k)$ or $E_2(k)$ is finite.
- **2** $E_1(k)$ and $E_2(k)$ are rank 1 and E_1 is isogenous to E_2 .

Prasanna and Srinivas: E₁ and E₂ both have conductor 37, or both have conductor 91. Uses Heegner points on a common modular parametrization.⁶

• E_1 is a rank 1 curve of the form $y^2 = x^3 - 3t^2x + b$, with no torsion point with x-coordinate equal to t; E_2 is any rank 1 curve in certain a one-parameter family depending on E_1 . Uses rational curves in the Kummer surfaces of $E_1 \times E_2$.⁷

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

⁶Prasanna and Srinivas, "Zero Cycles on a Product of Elliptic Curves".

⁷ Jonathan Love. "Rational Equivalences on Products of Elliptic Curves in a Family". In: *Journal de Théorie des Nombres de Bordeaux* 32.3 (2020), pp. 923–938. ISSN: 12467405, 21188572.

Previously known pairs of curves $E_1, E_2/\mathbb{Q}$ satisfying WBB:

- Either $E_1(k)$ or $E_2(k)$ is finite.
- **2** $E_1(k)$ and $E_2(k)$ are rank 1 and E_1 is isogenous to E_2 .
- Prasanna and Srinivas: E_1 and E_2 both have conductor 37, or both have conductor 91. Uses Heegner points on a common modular parametrization.⁶
- E_1 is a rank 1 curve of the form $y^2 = x^3 3t^2x + b$, with no torsion point with x-coordinate equal to t; E_2 is any rank 1 curve in certain a one-parameter family depending on E_1 . Uses rational curves in the Kummer surfaces of $E_1 \times E_2$.⁷

What about products of three or more curves? Elliptic curves of higher rank? Higher genus curves?

⁶Prasanna and Srinivas, "Zero Cycles on a Product of Elliptic Curves".

⁷Love, "Rational Equivalences on Products of Elliptic Curves in a Family".

Theorem 6 (Gazaki-L. '22)

Let S be a set of smooth projective curves over k such that $C(k) \neq \emptyset$ for all $C \in S$, and all pairs $C, C' \in S$ satisfy BB (resp. WBB). If $X = C_1 \times \cdots \times C_d$ with $C_i \in S$ for all $i \in \{1, \ldots, d\}$, then X satisfies BB (resp. WBB).

Theorem 6 (Gazaki-L. '22)

Let S be a set of smooth projective curves over k such that $C(k) \neq \emptyset$ for all $C \in S$, and all pairs $C, C' \in S$ satisfy BB (resp. WBB). If $X = C_1 \times \cdots \times C_d$ with $C_i \in S$ for all $i \in \{1, \ldots, d\}$, then X satisfies BB (resp. WBB).

Proof Idea: Raskind and Spiess⁸ established an isomorphism

$$A_0(X) \simeq \prod_{\nu=1}^d \prod_{1 \leq i_1 < \cdots < i_\nu \leq d} K(k; J_{i_1}, \ldots, J_{i_\nu}),$$

where $K(k; J_{i_1}, \ldots, J_{i_{\nu}})$ are Somekawa K-groups. Use the defining relations of these K-groups to prove a product formula.

⁸Wayne Raskind and Michael Spiess. "Milnor K-groups and zero-cycles on products of curves over p-adic fields". In: *Compositio Math.* 121.1 (2000), pp. 1–33. ISSN: 0010-437X.

다 지 귀 지 지 말 지 않 지

Let C_1 , C_2 be smooth curves over k, with fixed k-rational points O_1 , O_2 . Let J_i denote the Jacobian variety of C_i . The Albanese variety of $C_1 \times C_2$ is $X := J_1 \times J_2$.

く得 とく ヨ とく ヨ とう

Let C_1 , C_2 be smooth curves over k, with fixed k-rational points O_1 , O_2 . Let J_i denote the Jacobian variety of C_i . The Albanese variety of $C_1 \times C_2$ is $X := J_1 \times J_2$. Given $P \in C_1(k)$ and $Q \in C_2(k)$, define

$$egin{aligned} D_{P,Q} &:= ([P] - [O_1]) \otimes ([Q] - [O_2]) \ &= [(P,Q)] - [(P,O_2)] - [(O_1,Q)] + [(O_1,O_2)]. \end{aligned}$$

Let C_1, C_2 be smooth curves over k, with fixed k-rational points O_1, O_2 . Let J_i denote the Jacobian variety of C_i . The Albanese variety of $C_1 \times C_2$ is $X := J_1 \times J_2$. Given $P \in C_1(k)$ and $Q \in C_2(k)$, define

$$egin{aligned} D_{P,Q} &:= ([P] - [O_1]) \otimes ([Q] - [O_2]) \ &= [(P,Q)] - [(P,O_2)] - [(O_1,Q)] + [(O_1,O_2)]. \end{aligned}$$

Lemma 6

Let *H* be an elliptic (resp. hyperelliptic) curve, $P \in H(k)$, and $\phi_i : H \to C_i$ be a regular map for each i = 1, 2.

Let C_1, C_2 be smooth curves over k, with fixed k-rational points O_1, O_2 . Let J_i denote the Jacobian variety of C_i . The Albanese variety of $C_1 \times C_2$ is $X := J_1 \times J_2$. Given $P \in C_1(k)$ and $Q \in C_2(k)$, define

$$egin{aligned} D_{P,Q} &:= ([P] - [O_1]) \otimes ([Q] - [O_2]) \ &= [(P,Q)] - [(P,O_2)] - [(O_1,Q)] + [(O_1,O_2)]. \end{aligned}$$

Lemma 6

Let *H* be an elliptic (resp. hyperelliptic) curve, $P \in H(k)$, and $\phi_i : H \to C_i$ be a regular map for each i = 1, 2. Suppose there exists $W \in H(\overline{k})$, fixed by negation (resp. the hyperelliptic involution) ι , such that $[\phi_i(W)] - [O_i] \in J_i(\overline{k})$ is torsion for i = 1, 2.

Let C_1, C_2 be smooth curves over k, with fixed k-rational points O_1, O_2 . Let J_i denote the Jacobian variety of C_i . The Albanese variety of $C_1 \times C_2$ is $X := J_1 \times J_2$. Given $P \in C_1(k)$ and $Q \in C_2(k)$, define

$$egin{aligned} D_{P,Q} &:= ([P] - [O_1]) \otimes ([Q] - [O_2]) \ &= [(P,Q)] - [(P,O_2)] - [(O_1,Q)] + [(O_1,O_2)]. \end{aligned}$$

Lemma 6

Let *H* be an elliptic (resp. hyperelliptic) curve, $P \in H(k)$, and $\phi_i : H \to C_i$ be a regular map for each i = 1, 2. Suppose there exists $W \in H(\overline{k})$, fixed by negation (resp. the hyperelliptic involution) ι , such that $[\phi_i(W)] - [O_i] \in J_i(\overline{k})$ is torsion for i = 1, 2. Then the zero-cycle $D_{\phi_1(P),\phi_2(P)}$ is torsion.

イロト 不得 とくほう 不良 とうせい

A useful lemma

Lemma 6

Let H be an elliptic (resp. hyperelliptic) curve, $P \in H(k)$, and $\phi_i : H \to C_i$ be a regular map for each i = 1, 2. Suppose there exists $W \in H(\overline{k})$, fixed by negation (resp. the hyperelliptic involution) ι , such that $[\phi_i(W)] - [O_i] \in J_i(\overline{k})$ is torsion for i = 1, 2. Then the zero-cycle $D_{\phi_1(P),\phi_2(P)}$ is torsion.

く得 とく ヨ とく ヨ とう

13/19

A useful lemma

Lemma 6

Let H be an elliptic (resp. hyperelliptic) curve, $P \in H(k)$, and $\phi_i : H \to C_i$ be a regular map for each i = 1, 2. Suppose there exists $W \in H(\overline{k})$, fixed by negation (resp. the hyperelliptic involution) ι , such that $[\phi_i(W)] - [O_i] \in J_i(\overline{k})$ is torsion for i = 1, 2. Then the zero-cycle $D_{\phi_1(P),\phi_2(P)}$ is torsion.

Proof Idea: Use a "diagonal" map $H \to X$ given by $P \mapsto (\phi_1(P), \phi_2(P))$, as well as "vertical/horizontal" maps $P \mapsto (\phi_1(P), Q)$ and $P \mapsto (Q, \phi_2(P))$.

A useful lemma

Lemma 6

Let H be an elliptic (resp. hyperelliptic) curve, $P \in H(k)$, and $\phi_i : H \to C_i$ be a regular map for each i = 1, 2. Suppose there exists $W \in H(\overline{k})$, fixed by negation (resp. the hyperelliptic involution) ι , such that $[\phi_i(W)] - [O_i] \in J_i(\overline{k})$ is torsion for i = 1, 2. Then the zero-cycle $D_{\phi_1(P),\phi_2(P)}$ is torsion.

Proof Idea: Use a "diagonal" map $H \to X$ given by $P \mapsto (\phi_1(P), \phi_2(P))$, as well as "vertical/horizontal" maps $P \mapsto (\phi_1(P), Q)$ and $P \mapsto (Q, \phi_2(P)).$

Since $[P] + [\iota(P)] - 2[W]$ is principal, its pushforward along any of these maps is a rational equivalence; find a combination that equals a multiple of $D_{\phi_1(P),\phi_2(P)}$.

This lemma subsumes the previous results:

Prasanna-Srinivas: For N = 37 or N = 91, X₀(N) is hyperelliptic. Use modular parametrizations φ_i : X₀(N) → E_i and a Heegner point P ∈ X₀(N)(Q).

This lemma subsumes the previous results:

- Prasanna-Srinivas: For N = 37 or N = 91, X₀(N) is hyperelliptic. Use modular parametrizations φ_i : X₀(N) → E_i and a Heegner point P ∈ X₀(N)(Q).
- L.: A rational curve in the Kummer surface lifts to a hyperelliptic curve in $E_1 \times E_2$.

An example with k an imaginary quadratic field K:

Corollary

Let E/\mathbb{Q} such that $E_{\overline{\mathbb{Q}}}$ has CM by \mathcal{O}_{K} . If $E(\mathbb{Q})$ has rank 1 and E(K) has rank 2, then $(E \times E)_{K}$ satisfies WBB.

く得た くほた くほん

Examples with higher genus curves:

Corollary

Let *H* be a hyperelliptic curve over *k* with Jacobian *J*. Suppose J(k) has rank 1, and there exist $P, W \in H(k)$ with *W* a Weierstrass point and [P] - [W] of infinite order. Then $H \times H$ satisfies WBB.

Examples with higher genus curves:

Corollary

Let *H* be a hyperelliptic curve over *k* with Jacobian *J*. Suppose J(k) has rank 1, and there exist $P, W \in H(k)$ with *W* a Weierstrass point and [P] - [W] of infinite order. Then $H \times H$ satisfies WBB.

LMFDB has 860 genus 2 curves over $\mathbb Q$ with conductor \leq 10000 satisfying the above conditions.

Applications

Given $E_1, E_2/\mathbb{Q}$, we can construct a hyperelliptic curve H with Jacobian isogenous to $E_1 \times E_2$. Then each $P \in H(\mathbb{Q})$ gives a rational equivalence on $E_1 \times E_2$.

イロト 不得下 イヨト イヨト 二日

Applications

Given $E_1, E_2/\mathbb{Q}$, we can construct a hyperelliptic curve H with Jacobian isogenous to $E_1 \times E_2$. Then each $P \in H(\mathbb{Q})$ gives a rational equivalence on $E_1 \times E_2$.

If we can find $(\operatorname{rk} E_1(\mathbb{Q})) \cdot (\operatorname{rk} E_2(\mathbb{Q}))$ independent rational equivalences, then $E_1 \times E_2$ satisfies WBB.

イロト 不得下 イヨト イヨト 二日

Applications

Given $E_1, E_2/\mathbb{Q}$, we can construct a hyperelliptic curve H with Jacobian isogenous to $E_1 \times E_2$. Then each $P \in H(\mathbb{Q})$ gives a rational equivalence on $E_1 \times E_2$.

If we can find $(\operatorname{rk} E_1(\mathbb{Q})) \cdot (\operatorname{rk} E_2(\mathbb{Q}))$ independent rational equivalences, then $E_1 \times E_2$ satisfies WBB.

$\#$ of E_1	$rk \mathit{E}_1(\mathbb{Q})$	$\#$ of E_2	$rk E_2(\mathbb{Q})$	total # of pairs	# WBB
100	1	100	1	4950	2602
100	1	100	2	10000	3311
500	1	20	3	10000	955
100	2	100	2	4950	995
500	2	20	3	10000	615
20	3	20	3	190	17

Table: Number of pairs of elliptic curves over $\mathbb Q$ provably satisfying WBB.

Further work

These methods have not yet been able to show every pair of rank 1 curves over ${\mathbb Q}$ satisfies WBB.

Further work

These methods have not yet been able to show every pair of rank 1 curves over ${\mathbb Q}$ satisfies WBB.

Some pairs of curves (e.g. Cremona labels 37a1 and 43a1) have been shown to satisfy WBB using bielliptic curves (a degree 2 cover of an elliptic curve). So in general, more complicated curves and/or principal divisors on them may be necessary.

Further work

These methods have not yet been able to show every pair of rank 1 curves over ${\mathbb Q}$ satisfies WBB.

Some pairs of curves (e.g. Cremona labels 37a1 and 43a1) have been shown to satisfy WBB using bielliptic curves (a degree 2 cover of an elliptic curve). So in general, more complicated curves and/or principal divisors on them may be necessary.

Question

Are hyperelliptic curves sufficient to generate every rational equivalence in $A_{comp}(X)$, at least when $X = E_1 \times E_2$?

Related to a conjecture of Bogolomov: every \overline{k} -rational point on a K3 surface X/k lies on a rational curve in X defined over \overline{k} .⁹

⁹Fedor Bogomolov and Yuri Tschinkel. "Rational Curves and Points on K3 Surfaces". In: *American Journal of Mathematics* 127.4 (2005), pp. 825–835. ISSN: 00029327, 10806377.

Thank you for listening! Any questions?

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

< 3 >