GEMSTONE minicourse The Steklov problem on hon-smooth domains
Michael Levitin, Univ. of Reading michaellevitin. net m.levitin@reading.ac.uk

Montreal, 29 Aug- 2 Sep 2022

The bibliography will be mentioned as we proceed and the list with references given in the end, but also
advertisement
most of the material of these lectures t much more will be in the forthcoming book ML + Dan Mangoubi + losif Polterovich, Topics in Spectral Geometry, a draft copy of which will be available from author's websites soon

Plan:
Today: Basics
Method of multipliers
Wednesday: Applications
Bounds for eigenvalues of $D+N$ map
Friday: Steklov problem in polygons

Notational/terminology conventions
$V N=\{1,2, \ldots\}$
$\ln \mathbb{R}^{d}, \quad \Delta=\sum_{j=1}^{d} \frac{\partial^{2}}{\partial x_{j}^{2}}$
ho minus!
In $\mathbb{R}^{d},\langle\vec{u}, \vec{v}\rangle=\sum_{j=1}^{d} u_{j} v_{j}$
all vectors are column
$\ln \mathbb{C}^{d},\langle\vec{u}, \vec{v}\rangle=\sum_{j=1}^{c} u_{j} \overline{v_{j}}$ vectors
$|\vec{u}|=\sqrt{\langle\vec{U}, \vec{u}\rangle}$
In an abstract Hilbert space Ie, the inner product is $(4, V)$ fe and the norm is $\|$ ullje
$\ln \mathbb{R}^{d}$,

$$
\begin{array}{rlr}
\operatorname{grad} u=\nabla u=\left(\frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{d}}\right) & \text { gradient } \\
\operatorname{div} \vec{u}=\frac{\partial u_{1}}{\partial x_{1}}+\ldots+\frac{\partial u_{d}}{\partial x_{d}} & \text { divergence }
\end{array}
$$

and therefore $\quad \Delta=\operatorname{div} \nabla$

$$
\begin{aligned}
& \mathbb{B}^{d}=\left\{x \in \mathbb{R}^{d}:|x| \leq 1\right\} \\
& \mathbb{S}^{d-1}=\partial \mathbb{B}^{d}=\left\{x \in \mathbb{R}^{d},|x|=1\right\}
\end{aligned}
$$

$\Omega \subset \mathbb{R}^{d}$ usually a domain (bod open connected set) Connectedness not required but assumed for simplicity
with boundary $\partial \Omega$ often $\partial \Omega=: M$
\vec{n} - exterior unit normal
Ω Lipschitz \Leftrightarrow
Ω has Lipschitz bdry
$\Leftrightarrow \partial \Omega$ can be locally represented as a graph of a lipschitz function

Part O.
DEFINITIONS \& BASICS

Main objects: various spectral $\frac{\text { problems involving Laplacian }}{\Omega-\text { a domain in } \mathbb{R}^{d}}$

$$
\begin{cases}-\Delta u=\lambda u \text { in } \Omega & \text { spectral problem } \\ \left.u\right|_{\partial \Omega}=0 & \text { for the Dirichlet }\end{cases}
$$

We are looking for $\lambda \in \mathbb{R}$ (eigenvalues) st there exists $u \neq 0$ (eigenfunction) solving this problem
for a given $\gamma \in \mathbb{R}$:

$$
\begin{cases}-\Delta u=\lambda_{u} \quad \text { in } \Omega & \begin{array}{l}
\text { spectral } \\
\text { problem for } \\
\text { the Robin }
\end{array} \\
\partial_{n} u+\gamma u=0 & \text { on } \partial \Omega \\
\text { Laplacian }\end{cases}
$$

For either of the Dirichlet, Neumann or Robin cases, we have note:

- We can construct unbounded self-adjoint operators $-\Delta_{\Omega}^{D},-\Delta_{\Omega}^{N},-\Delta_{\Omega}^{R} \gamma_{\Omega}$ acting in $L^{2}(\Omega)$, describe their domains, and treat the spectral problems in the operator-theoretical sense
- in each case, the spectrum $\operatorname{spec}\left(-\Delta^{\top}\right)$, is discrete and consists $\lambda^{\prime} \in\{D ; N ; R, \gamma\}$ of eigenvalues of finite multiplicity
accumulating only to to .
- We will demote the eigenvalues by

$$
\begin{array}{cc}
(0<) \lambda_{1}^{D}<\lambda_{2}^{D} \leqslant \ldots \leqslant \lambda_{m}^{D} \leqslant \ldots & \text { Dir } \\
0=\lambda_{1}^{N}<\lambda_{2}^{N} \leqslant \ldots & \text { Nev } \\
\lambda_{1}^{R} \gamma \leqslant \lambda_{2}^{R, \gamma} \leqslant \ldots & \text { Robin }
\end{array}
$$

- The corresponding eigenfunction $\left\{u_{m}^{\lambda^{\prime}}\right\}_{m=1}^{\infty}$ in each case form a basis in $L^{2}(\Omega)$, which may be chosen to be orthogonal.
- We have the variational principles

$$
\begin{aligned}
& \lambda_{k}^{D}=\min _{\mathscr{L} C H_{0}^{\prime}(\Omega) \max _{u \in \mathcal{L}-\{0\}} \frac{\|\nabla u\|_{L^{2}(\Omega)}^{2}}{\|u\|_{L^{2}(\Omega)}^{2}}}^{\operatorname{dim} \mathcal{L}^{2}=k} \begin{array}{ll}
\|L u\|^{2} \\
\|(-\Delta u, u)
\end{array} \\
& \lambda_{k}^{N}=\min _{\operatorname{Lin}_{\mathcal{L}} H^{\prime}(\Omega)} \max _{u \in \mathcal{L},\{0\}} \frac{\|\nabla u\|_{L^{2}(\Omega)}^{2}}{\|u\|_{L^{2}(\Omega)}^{2}} \\
& \lambda_{k}^{R, \gamma}=\min _{\left.\underset{\mathcal{L} C H^{\prime}(\Omega)}{ } \max _{u \in \mathcal{L}} \quad\{0\} \frac{\|\nabla u\|_{L^{2}(\Omega)}^{2}+\gamma\|u\|_{L^{2}(\partial \Omega)}^{2}}{\|u\|_{L^{2}(\Omega)}^{2}}\right)}^{\operatorname{dim}_{\mathcal{L}}=k}
\end{aligned}
$$

- As follows from variational principles, for $\gamma_{2} \geqslant \gamma_{1}$ we have

$$
\lambda_{k}^{R_{1} \gamma_{1}} \leqslant \lambda_{k}^{R_{1} \gamma_{2}} \leqslant \lambda_{k}^{D} \quad k \in \mathbb{N}
$$

and

$$
\lambda_{k}^{N} \leqslant \lambda_{k}^{D}
$$

(this can be significantly string themed!)

- Let us define, in each case, the eigenvalue counting function

$$
\mathcal{N} \lambda^{\prime}(\lambda):=\#\left\{j: \lambda_{j}^{\lambda} \leqslant \lambda\right\}
$$

Then we have Weyl's laws:

$$
\begin{aligned}
& N^{\lambda}(\lambda)=C_{d}|\Omega|_{d} \lambda^{d / 2}+o\left(\lambda^{d / 2}\right) \\
& C_{d}=\frac{\left|B^{d}\right|_{d}}{(2 \pi)^{d}}=\frac{1}{(4 \pi)^{d / 2} \Gamma(1+d / 2)}
\end{aligned}
$$

We will also use the spectrum of the LaplaceBeltrami operator on a smooth compact closed Riemannian manifold (M, g) of dimension $d, \quad g=\left\{g_{i j}\right\}_{i, j=1}^{d}$,

$$
-\Delta f=-\frac{1}{\sqrt{\operatorname{det} g}} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{i}}\left(g^{i j} \sqrt{\operatorname{det} g} \frac{\partial f}{\partial x_{j}}\right)=\lambda f
$$

The spectrum is discrete, $O=\lambda_{1}(M)<\lambda_{2}(M) \leqslant \ldots$, and the same variational principle as in the Neumann case applies. A simila Weyl's Law also holds.

A particular example will be important in the sequel.
Example. Let $M=\mathbb{S}^{1}$. Then the eigenvalues and eigenfunction of the Laplace-Beltrami operator $-\Delta_{5_{1}} \quad$ are

$$
\begin{array}{ll}
\lambda_{1}=0 & u_{1}=1 \\
\lambda_{2 j}=\lambda_{2 j+1}=j^{2} & \operatorname{span}\left\{u_{2 j}, u_{2 j+1}\right\} \\
& =\operatorname{span}\{\cos (j \theta), \sin (j \theta)\}
\end{array}
$$

Steklov problem:
For the moment, assume that $\Omega<\mathbb{R}^{d}$ is a bod domain with smooth boundary $\partial \Omega$. Let $u \in C^{\infty}(\partial \Omega)$. We define its harmonic extension $U:=\xi_{0} u$ as the unique soln of the non-homogeneous Dirichlet problem

$$
\left\{\begin{array}{l}
\Delta U=0 \quad \text { in } \Omega \\
\left.U\right|_{r}=u
\end{array}\right.
$$

The Dirichlet-to-Neumann (DIN) map is the operator $\Phi_{0}:\left.u \longmapsto\left(\partial_{n} G_{0} u\right)\right|_{\partial \Omega}$

$$
\left.\left(\partial_{n}^{\prime \prime} U\right)\right|_{\partial \Omega}
$$

The steklov problem is the eigenvalue problem for the operator D_{0} : find $\sigma \in \mathbb{R}$ and $U \neq 0$ st.

$$
\left\{\begin{array}{l}
\Delta U=0 \text { in } \Omega \\
\partial_{n} U=\sigma U \text { on } \partial \Omega
\end{array}\right.
$$

the spectral parameter is in the boundary condition!

Note a terminological dichotomy: if $\Delta U=0, \partial_{n} U=d U$, we call U an eigenfunction of the Steklov problem, At the same time, let $u=\left.U\right|_{\partial \Omega}$, so that $U=\varepsilon_{0} u$, and then $D_{0} u=\Delta u$, and we will call u an eigenfunction of the DEN map D_{0}
Notation $\mathcal{E}_{0}(\Omega)=\left\{U \in H^{1}(\Omega): \Delta U=0\right\}$ the space of harmonic functions

The definition of $D_{0} u$ can be extended to the case when $\partial \Omega$ is Lipschitz, and also when $u \in H^{1 / 2}(\partial \Omega)$, in which case $\xi_{0} u \in \mathcal{H}_{0}(\Omega)$, and $D_{0} u \in H^{-1 / 2}(\partial \Omega)$ It can be shown that the operator D_{0} defined in this way is a self-adjoint operator in $L^{2}(\partial \Omega)$ with a discrete spectrum $0=\sigma_{1}(\Omega)<\sigma_{2}(\Omega) \leqslant \ldots,+\infty$

Moreover, it can be shown that the eigenfunction of the DIN map form a basis in $L^{2}(\partial \Omega)$ and can be chosen to be orthogonal there

Important example Let $\Omega=\mathbb{D} \subset \mathbb{R}^{2}$ be the unit disk. Then, by separation of variables, its Steklov eigenvalues and eigenfunction are

$$
\begin{aligned}
& 0,1,1, \ldots, k, k, \ldots \quad k \in \mathbb{N} \\
& 1, r \sin \theta, r \cos \theta, \ldots, r^{k} \sin k \theta, r^{k} \cos k \theta, \ldots
\end{aligned}
$$

The Steklov eigenvalues of the disk are exactly the square roots of eigenvalues of $-\Delta_{\$ 1}$.

The variational principle for D_{0}
Using integration by parts, we immediately see

$$
\begin{aligned}
\left(D_{0} u, u\right)_{L^{2}(\partial \Omega)} & =\int_{\partial \Omega} \frac{\partial U}{\partial h} U=\int_{\Omega}|\nabla U|^{2} \\
U=\varepsilon_{0} u & =\left\|\nabla G_{0} u\right\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

The classical variational principle implies

$$
\begin{aligned}
\delta_{k}= & \min _{\tilde{\mathcal{L}} \subset H^{1 / 2}(\partial \Omega)} \max _{v \in \tilde{\mathcal{L}} \cdot\{0\}} \frac{\left\|\nabla \tilde{G}_{0} \cup\right\|_{L^{2}(\Omega)}^{2}}{\|v\|_{L^{2}(\partial \Omega)}} \\
& \operatorname{dim} \tilde{L}=k
\end{aligned}
$$

This can be rewritten as

$$
(*) \vec{\sigma}_{k}=\min _{\frac{\operatorname{Lic}}{\mathcal{L}_{0}(\Omega)}}^{\max _{\mathcal{L}=k}} V_{\in \mathcal{L}} \cdot\{0\} \quad \frac{\|\nabla V\|_{L^{2}(\Omega)}^{2}}{\left\|\left.V\right|_{\partial \Omega}\right\|_{L^{2}(\partial \Omega)}^{2}}
$$

But taking subspaces of the space of harmonic functions is awkward. Fortunately, we have
Prop In (*), one can replace $H_{0}(\Omega)$ with $H^{1}(\Omega)$

To prove this, we need
Lemma Let Ω be a bod open set in \mathbb{R}^{d}, Then $(* *) \quad H^{1}(\Omega)=\mathcal{H} e_{0}(\Omega) \oplus H_{0}^{1}(\Omega)$

The direct sum is not orthogonal, however

$$
(* * *)(\nabla U, \nabla \vee)_{L^{2}(\Omega)}=0 \quad \text { for any } U \in \mathcal{X}_{0}(\Omega), V \in H_{0}^{\prime}(\Omega)
$$

Proof Let $W \in H^{\prime}(\Omega)$. Set $\left.u \in W\right|_{\partial \Omega,} U=\varepsilon_{0} u \in \mathscr{H}_{b}(\Omega)$
Then $V=W-U \in H_{0}^{1}(\Omega)$ since $\left.U\right|_{\partial \Omega}=0$. As $H_{0}(\Omega) \cap H_{0}^{\prime}(\Omega)=\{0\},(* *)$ follows,
To prove $(* * *)$, we integrate by parts:

$$
(\nabla U, \nabla V)_{\Omega}=\left(-\underset{\substack{\| \\ 0}}{\left.(U, V)_{\Omega}+\left(\partial_{n} U, V\right)_{0}^{\prime}\right)_{\partial \Omega}=0}\right.
$$

Proof of the Proposition. We take $W \in H^{1}(\Omega)$, represent it as $W=U+V_{A}$, and $\hat{H}_{0}(\Omega) \hat{H}_{0}^{\prime}(\Omega)$
estimate Steklov's Rayleigh quotient

$$
\begin{aligned}
& \frac{\|\nabla W\|_{\Omega}^{2}}{\left\|\left.W\right|_{\partial \Omega}\right\|_{\partial \Omega}^{2}}=\frac{\|\nabla(U+V)\|_{\Omega}^{2}}{\left\|\left.U\right|_{\partial \Omega}\right\|_{\partial \Omega}^{2}}=\frac{\|\nabla U\|_{\Omega}^{2}+\|\nabla V\|_{\Omega}^{2}}{\left\|\left.U\right|_{\partial \Omega}\right\|_{\partial \Omega}^{2}} \\
& \geqslant \frac{\|\nabla U\|_{\Omega}^{2}}{\left\|U l_{\partial \Omega}\right\|_{\partial \Omega}^{2}}+\lambda_{1}^{D}(\Omega) \frac{\|V\|_{\Omega}^{2}}{\left\|\left.U\right|_{\partial \Omega}\right\|_{\partial \Omega}^{2}} .
\end{aligned}
$$

Minimisation procedure requires taking $V=0$

General task of Spectral geometry: find relations of spectra of various operators to underlying geometry

General difficulty:
very few problems can be solved explicitly Cor semi-explicitly, in terms of roots of some special functions or transcendental eqns): cuboids, balls, cylinders.
Hence the need for bounds/asymptotics.

Part I
Method of multipliers

Very general idea: let H be a self-adjoint operator acting in some Hilbert space He, semi-bounded below, with eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots$ and orthonormal basis of eigenfunction $\left\{u_{j}\right\}$, so that

$$
H v_{j}=\lambda v_{j}
$$

Let us act on both sides by some "suitable" self-adjoint operator G, then multiply by u_{j} in $($,$) ye, and see what happens$ a multiplier

For now, we act formally:

$$
\begin{aligned}
& G H u_{j}=\lambda_{j} G u_{j} \Rightarrow H G u_{j}-G H u_{j}=\left(H-\lambda_{j}\right) G u_{j} \\
& \Rightarrow[H, G] u_{j}=\left(H-\lambda_{j}\right) G u_{j} \\
& \left(G[H, G] v_{j}, U_{j}\right)_{x e}=\left(G\left(H-\lambda_{j}\right) G U_{j}, U_{j}\right)_{y} \\
& \left(-[[H, G], G] U_{j}, U_{j}\right)+\left([H, G] G u_{j}, v_{j}\right)\left(\left(H-\lambda_{j}\right) G u_{j}, G u_{j}\right) \\
& \begin{aligned}
= & -\left([[H, G], G] v_{j}, u_{j}\right) \\
& -\left(u_{j}, G[H, G] u_{j}\right) \\
= & -\frac{1}{2}\left([[H, G], G] u_{j}, u_{j}\right)
\end{aligned} \left\lvert\, \begin{array}{l}
\sum_{k=1}^{\infty}\left(\left(H-\lambda_{j}\right) G u_{j}, U_{k}\right)\left(u_{k}, G u_{j}\right) \\
=\sum_{k=1}^{\infty}\left(\lambda_{k}-\lambda_{j}\right)\left|\left(G u_{j}, u_{k}\right)\right|^{2}
\end{array}\right.
\end{aligned}
$$

To make this rigorous, we need to make sure all operations are well defined

Thm $[M L+$ Parnovski' 02, following Harrell-Stubbe'97] Let $H=H^{*}$ be as above, and let $G=G^{*}$ s.t. $G(\operatorname{Dom}(H)) \subseteq \operatorname{Dom}(H) \subseteq \operatorname{Dom}(G)$. Then for each fixed $j \in \mathbb{N}$,

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{\left|\left([H, G] U_{j}, U_{k}\right)_{r e}\right|^{2}}{\lambda_{k}-\lambda_{j}}=\sum_{k=1}^{\infty}\left(\lambda_{k}-\lambda_{j}\right)\left|\left(G U_{j}, U_{k}\right)_{r_{g l}}\right|^{2} \\
& \frac{\begin{array}{l}
0 \\
0:=0 \\
\text { an abstract } \\
\text { commutator trace identity }
\end{array}}{}=-\frac{1}{2}\left([[H, G], G] U_{j}, U_{j}\right)_{y e}
\end{aligned}
$$

Proof: we already proved the second equality t We use $\left([H, G] U_{j}, U_{k}\right)=\left(\lambda_{k}-\lambda_{j}\right)\left(G U_{j}, U_{k}\right)$

Example Let $H=-\Delta_{\Omega}^{D}, \Omega \in \mathbb{R}^{d}$

$$
G=x_{l} \cdot \quad, l=1, \ldots, d
$$

$$
[H, G] u=-\Delta\left(x_{e} u\right)+x_{l} \Delta u=-2\left\langle\nabla x_{e}, \nabla u\right\rangle
$$

$$
[[H, G], G] u=-2 \frac{\partial\left(x_{e} u\right)}{\partial x_{l}}+2 x_{l} \frac{\partial u}{\partial x_{l}}
$$

$$
\begin{aligned}
& \partial u \\
& \partial \frac{u}{\partial u} \\
& x_{l}
\end{aligned}
$$

$$
=-2 u \text {, and we get }
$$

$$
4 \sum_{k=1}^{\infty} \frac{\left(\int_{\Omega} \frac{\partial u_{j}}{\partial x_{l}} u_{k}\right)^{2}}{\lambda_{k}-\lambda_{j}}=\sum_{k=1}^{\infty}\left(\lambda_{k}-\lambda_{j}\right)\left(\int_{\Omega} x_{l} u_{j} u_{k}\right)^{2}=1
$$

known in quantum mechanics since 1920 s!

Let us play a bit more, in case of $-\Delta_{\Omega}^{D}$, with

$$
\frac{1}{4}=\sum_{k=1}^{\infty} \frac{\left|\left(\partial u_{j} / \partial x_{l}, v_{k}\right)_{\Omega}\right|^{2}}{\lambda_{k}-\lambda_{j}}
$$

First, sum over $j=1, \ldots, m$ for a fixed $m \in \mathbb{N}$, First, sum over then estimate, using shorthand $u_{j, l}=\frac{\partial u_{j}}{\partial x_{l}}$

$$
\begin{align*}
& \frac{m}{4}=\sum_{j=1}^{m} \sum_{k=1}^{\infty} \frac{\left|\left(u_{j, l}, u_{k}\right)\right|^{2}}{\lambda_{k}-\lambda_{j}}=\sum_{j=1}^{m} \sum_{k=m+1}^{\infty} \frac{\left|\left(u_{j, l}, v_{k}\right)\right|^{2}}{\lambda_{k}-\lambda_{j}} \\
& \begin{array}{l}
\text { all the terms } \\
\text { with } k \leq m \text { cancel out }
\end{array} \\
& \leqslant \frac{1}{\lambda_{m+1}-\lambda_{m}} \sum_{j=1}^{m} \sum_{k=1}^{\infty}\left|\left(u_{j, l}, v_{k}\right)\right|^{2}=\sum_{j=1}^{m}\left\|\frac{\partial u_{j}}{\partial x_{e}}\right\|_{L^{2}(\Omega}^{2} \tag{2}
\end{align*}
$$

Palest denominator and extend the sum

Thus, we have

$$
\lambda_{m+1}-\lambda_{m} \leqslant \frac{4}{m} \sum_{j=1}^{m}\left\|\frac{\partial u_{j}}{\partial x_{l}}\right\|_{L^{2}(\Omega)}^{2}
$$

Now sum over $l=1, \ldots d$, divide by d, and use $\left\|\nabla u_{j}\right\|^{2}=\lambda_{j}$. We arrive at

$$
\cdot \lambda_{m+1}^{D}-\lambda_{m}^{D} \leqslant \frac{4}{d m} \sum_{j=1}^{m} \lambda_{j}^{D} \quad m \in \mathbb{N}
$$

Payne - Pólya-Weinberger (1956) universal inequality for the Dirichlet Laplacian

So, we have got some inequalities with almost no work. Further (better) bounds can be derived in a general setting.

Advantages and disadvantages of commutator techniques

$$
+
$$

- "soft" analysis
- general scheme
- hard to apply to Nevmann/Robin - difficult
to find G to preserve $\operatorname{Dom}(H)$
- hard to apply to DIN map
- how does one compute commutators?

We therefore use a different flavour of the method of multipliers, which is variably associated with Franz Rellich (1940s), Lars Hormander $(1950$ s), Stanislav Pohozhaer (1960s), and Cathleen Morawetz (1970s)
For the moment, we work only with harmonic functions, $\Delta U=0$ in $\Omega \subset \mathbb{R}^{d}$
Basic idea: use the multiplier $\langle\vec{F}, \nabla\rangle$, where $\vec{F}(x)$ is a suitable vector field

We will need the following notions and identities from vector calculus:
$\Omega \subset \mathbb{R}^{d}$ - an open set
$a: \Omega \rightarrow \mathbb{R}, \vec{A}, \vec{B}: \Omega \rightarrow \mathbb{R}^{d}$ - sufficiently
$\operatorname{Jac}_{A}:=\left(\frac{\partial A_{i}}{\partial x_{j}}\right)_{i, j=1}^{d}$ the Jacobian of \vec{A}
Hes $a:=J a c{ }_{\nabla a}=\left(\frac{\partial^{2} a}{\partial x_{i} \partial x_{j}}\right)_{i, j=1}^{d}$ of a
for any linear peerator (matrix) $C: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ we write $C[\vec{A}, \vec{B}]:=\langle C \vec{A}, \vec{B}\rangle$ and denote by C^{*} the transpose of C

The following identities are standard (exercise):
(1) $\operatorname{div}(a \vec{A})=\langle\nabla a, \vec{A}\rangle+\operatorname{adiv} \vec{A}$
(2) $\nabla\langle\vec{A}, \vec{B}\rangle=J a c_{\vec{A}}^{*} \vec{B}+J a c_{\vec{B}}^{*} \vec{A}$
(3) $\nabla\left(|\nabla a|^{2}\right)=2$ Hes $_{a} \nabla a$

We will now prove the following
Thy. (Generalised Pohozhaev's identity for harmonic functions [Colbois, Girovard, Hassannezhad, 2018])
Let $\Omega \subset \mathbb{R}^{d}$ be a bod domain with smooth boundary $M=\partial \Omega$. Let \vec{F} be a smooth vector field on $\bar{\Omega}$, let $u \in H^{\prime}(M)$, and $U=\xi_{0} u$ a unique harmonic extension of u onto Ω. Then

$$
\begin{aligned}
& \int_{M}\langle\vec{F}, \nabla U\rangle \partial_{n} U-\frac{1}{2} \int_{M}|\nabla U|^{2}\langle\vec{F}, \vec{n}\rangle \\
& +\frac{1}{2} \int_{\Omega}|\nabla U|^{2} \operatorname{div} \vec{F}-\int_{\Omega} J a c_{\vec{F}}[\nabla U, \nabla U]=0
\end{aligned}
$$

Proof: We have $\Delta U=\operatorname{div} \nabla U=0$ in Ω.
Using vector identities (1) and (2), we get

$$
\operatorname{div}(\langle\vec{F}, \nabla U\rangle \nabla U)=\langle\nabla\langle\vec{F}, \nabla U\rangle, \nabla U\rangle
$$

$$
=J a c_{\vec{F}}[\nabla U, \nabla U]+\operatorname{Hes}_{U}[\vec{F}, \nabla U]
$$

Using (1) and (3), we get

$$
1 / 2 \operatorname{div}\left(|\nabla \cup|^{2} \vec{F}\right)=\operatorname{Hes}_{v}[\vec{F}, \nabla U]+\frac{1}{2}|\nabla V|^{2} \operatorname{div} \vec{F}
$$

Subtracting, we get

$$
\begin{aligned}
& \operatorname{div}\left(\langle\vec{F}, \nabla U\rangle \nabla U-\frac{1}{2}|\nabla U|^{2} \vec{F}\right)= \\
& \quad \exists a c_{\vec{F}}[\nabla U, \nabla U]-\frac{1}{2}|\nabla U|^{2} \operatorname{div} \vec{F}
\end{aligned}
$$

Finally, we integrate over Ω and use the Divergence Thu.

Let me repeat the result:

$$
\begin{aligned}
& \int_{M}\langle\vec{F}, \nabla U\rangle \partial_{n} U-\frac{1}{2} \int_{M}|\nabla U|^{2}\langle\vec{F}, \vec{n}\rangle \\
& +\frac{1}{2} \int_{\Omega}|\nabla U|^{2} \operatorname{div} \vec{F}-\int_{\Omega} J a c_{\vec{F}}[\nabla U, \nabla U]=0
\end{aligned}
$$

We now make a specific choice of \vec{F} due to Hörmander $(50$ s $) \quad \vec{F}$ is such that $\left.\vec{F}\right|_{M}=\vec{n}$ $\left.\begin{array}{r}\text { Then }\left\langle\left.\vec{F}\right|_{M}, \vec{n}\right\rangle=1,\left.\langle\vec{F}, \nabla U\rangle\right|_{M}=\partial_{n} U \\ \left.|\nabla U|^{2}\right|_{M}=\left|\nabla_{M} u\right|^{2}+\left(\partial_{n} U\right)^{2}, \quad \nabla_{0} u=\partial_{n} U\end{array}\right\}$ (recall $\left.v\right|_{M}=u$)

Substituting everything in, and using the formula for the quadratic form of $-\Delta_{M}$:

$$
\int_{M}\left(-\Delta_{M} u\right) u=\int_{M}\left|\nabla_{M} u\right|^{2} \text { we }
$$

obtain
Thin (Hörmander's identity, ~ 1954, rediscovered in 2018)
Under the conditions above,

$$
\begin{aligned}
& \left(D_{0} u, D_{0} u\right)_{L^{2}(M)}-\left(-\Delta_{M} u, u\right)_{L^{2}(M)} \\
& =\int_{\Omega}\left(2 J_{\vec{F}}[\nabla U, \nabla U]-|\nabla U|^{2} d_{i v} \vec{F}\right)
\end{aligned}
$$

