
Part I
.

Applications of the method
of multipliers



What do we do next with the identity
(Dou , Dou )e(my - (- MUM )L4M )
=↳ (2)aces [ ☐0,00] - to

-

v12dirt) ?
For a fixed F→

,
the RHS is a quadratic form in /JU /

with bounded coefficients ,
and thus its modulus

is bounded above by CHOU /Is =C( Dou ,a)
µ

Thus we have

/ (Dou ,Dou)µ - (-Amu ,
4)
m / ≤ C(Down/ µ
←

C may be expressed via some geometric characteristics
of R andM [ Colbois /Gir . /Hass ' 18 ; Provenzano/Stubbe

'

19 ]



A functional analysis problem : given two non- negative
self-adjoint operators A ,

B in a Hilbert space Te

s
.
t . / (Au ,Aube - (Buie )get ≤ C (Au , a)ye
for all u c- Dom (B) n Dom (A2 ) ,
what can be said about the eigenvalues

{& ; } of A and {Bj } of B ?

TI?¥÷:¥;÷¥?¥¥"iii2#
we have

ldeaofpioof : Use variational principles for both operators
with test spaces constructed of eigenfunctions of the
other operator



In our cease
,

this implies that

/ Gdr) - FEM) / ≤ Cv-k-stekvdove.ir
.

↑
e. v. of the boundary Laplacian

Uniform bound ! Recall that for the disk C- 0

Rematks: • Smoothness assumptions on M=OR

may be relaxed to C'
&

,

a > 0 for d> 2
and C

"
'
"

for planar domains
• Analogues exist for domains on manifolds
• Will be important later for asymptotes
of 6k for large K .



We'll take a slight detour now to discuss
the paramer - dependent DTN map &, .

Given A -4 Spec C- A'Is ) and we H%(or) ,
¥

we can uniquely solve a non - homog . problem

{
-☐E- Air in r

UM =U on M-02 /
° ! = ¥14 is called
A- Helmholtz extension

of re

Then Da : H " (M )→ H
-% (M ) is defined by

Dna = Conti Hm = ONE,HIM



Main facts about Da :

M-adjintwi-hdio.cat real spectrum
Gan ≤ &, ,z≤ . . _

≤ &, ,k≤ . . .

+ as

• ( Dan , a) = 110011Eur, -1111011Eur)ECM )
• variational principle .

Ga ,k=
min max% {TEH 'M :

ICH"4M)ueI Elm ) -150-110=0}dimL=k 4--10

""moon "%¥m¥;%?÷=
min Max here by/ H' (R )
dim F- k 0=10 if /KAPH



• definition of &, can be extended to
Me spec C- Dig ) if we restrict its domain
to the orthogonal complement of the
subspace of normal derivatives of the
corresponding Dirichlet eigenspace

• DTN - Robin duality :

I E Spec (Da )⇔ Me spec f°ᵗih ,

-

6)r
with the same multiplicities !

[ Friedlander '91 ; Arendt /Mazzeo
'

12; Hassannez
had/Sher

'

22
+ history]



Examples : Eigenvalues of Da for the unit disk as
functions of A

|Exercise_:show-that in this case

the spectrum of&,
consists of eigenvalues

µ
" ☒Yinka ) . No
m

,

11=0

3m# 717TH ,
A >0

Observations .

• eigenvalue curves cross 6=0 single for m = 0

when HE spec C- AN
" ) double for m > 0

• eigenvalue curves
"blow up

"

FIE

11€ SpecC- Dirt .

• eigenvalue are monotone decreasing
in A otherwise



These observations can be turned into rigorous
thins not only for a disk but for a general
Lipschitz Eeuclideaa domain

or a Riem . manifold
with boundary , and in particular imply
Than . [ Friedlander ; Arendt - Mazzeo]

TN Neu (A) -W
Dir (A) =WACO )

r r

V-NER
number of negative
eigenvalues of ☆a

corollary . If Rc Rd ,
then anew

1<+1
< HE KKEAV

Proof uses the fact that WA (O ) ≥ 1 for A>Hir
( alternative elementary proof by [ Filonor

'04] )
( the corollary may not hold in Riemannian case)



We now ask the following question :

can we compare the eigenvalues of &, (d)
with those of -Don for (some) 11-+0 ?
We have

Thm_ Let RcRᵈ be a bold domain with

smooth bdry MIR .

Then for ^≤0_
we have

16: - V×kt☐m / ≤ C Kew

with some constant Cuniforme-yinbothka-n.LA



ldeasofproof [GKLP '
22]

• A variant of generalised Pohozhaev 's

identity for Hemholtz [ Hassannezhadl Siffert
'
20]

• Hence a variant of generalised Hiirmaudei 's

inequality
/ (Dau ,Qu)m - G-Am -A)um )µ / ≤ Corfu ,u)m
• Use abstract bound with it =D

, ,
B. = -Am-A.

Remarks We will see later that no analogue
of this result may

hold if boundary has corners



THEN : the unit disk

7

§id curves : 81 dashed curves:FÉ
ke {10%102,104,106,108} - ke {1,7%7,9}



Before we proceed ,
some further references (fullbibliographywill appear at the

end of the last set of slides)
[ Chandler -Wilde/Graham/Langdon/Spence ' 42] for a historical

overview of the method of multipliers
[ HassellTao

'02] for applications to bounds of
H&u%ʳ /12

man ,
on normal derivatives of Dirichlet e. f.s

[ RudnickWigman Yesha
'
21] for bounds on

Rob
, 8 11211 U
; por )

on traces of Robin e.f. s .

etc
,
etc
, . .

.



Part III.
Spectral asymptotics

for the DTN map &



For the rest of this course we will be

looking at the asymptotic behaviour of
eigenvalues of the Steklov problem on rapt

[mostly d=2]

(the DTN map Do ) , both in terms
of asymptotes of eigenvalues
6k ,

k + • and the counting function
W$ ( s ) : = { K : % ≤ so } as • + •

I'll start by listing some relatively
well - khown facts .



• Suppose that I has aʰ boundary M . .

Then Do is an elliptic pseudodifferential
operator of order 1 .

Its principal symbol
is given by 151 and coincides with that

of FAM .

Hence these two operators
have the same leading term Weyl 's
asymptotic ,

and

W 's
(d) = Can 1M¢

.

,Gᵈ-1+06-1-1 )
Weyl constant as 6 → +as



• By our previous comparison result ,
the same asymptotics holds if
OR is not cos but smooth enough
• On the other hand

,
for boundary

in the smooth¥Éase ,
error term

93 after
-is much better :[ Rozenblyum

' 86] [¥4.EE#min/Melrose]

6k(d) = 6 .k(R* ) + 0 ( K
- N ) FN
K → + as

→* - disk with the same perimeter
as I



• For general Lipschitz domains in
d ≥ 3 the one-term Weyl 's asymptotic
is still anopenconje-ture.tnit was proved very recently
by different techniques
[ Karpukhinlagacépolferovich

'

22]
So the question is : what is happening
for " not so smooth

"

planar domains ,
say polygons , and can we improve

Weyl 's asymptotics there ?



We start with a seemingly simple

-

.

D= (-1,1 )
≥
a square .Example

[Girouard/Polterovich
'

17]
We try to find eigenfunctions byseparatenesswhich gives us

each intersection of a dotted
curve with a solid
curve gives a double e.v.



But how do we prove that we have found
all the eigenvalues and haven't missed any?
To do this , we have to take

two sidesteps .

V = 0 inRsÉg{O=U
On -0=0 on W

ÉÉar
on W we may decompose

W=WN U WD
19ᵗʰ century hydrodynamics !/

and impose Neumann here "¥hlet



Whatever reasonable b. c. we impose on W, we

always have
• the spectrum of the sloshing problem (or
another mixed Steklov - Dirichlet - Neumann

problem ) is discrete and non - negative
• the eigenfunctions restricted to L form a
basis in L2 (5)

Sloshing problem will re-appear later !



The second trick we need is the symmetry
reduction

hyperplane of them every eigenfunctionE¥÷:÷:symmetry , is either

antisymmetric or
b. c. symmetric symmetric

¥¥sµ÷⇔µµfA¥



Returning now to our Steklov problem on a square:
using diagonals as lines of symmetry ⇒ we get

5 four mixed Steklov -Dir -

Neumann problems in
45° -45° - 90° triangles .

Look at problem I :
from found eigenfunctions
of the square we

construct

e.afs ,
-0
" ÑL+%iUoÉbi

for it .

Why is it the full set ? Their traces on S
' form the full

set of e.f. of f-
""
4) = piflx ) , f- " (± 1) = f-

"'(-1-1)--0
and therefore the basis in V45 ) . Now repeat for II.TI ,II. . .



So
,
we khow that all eigenvalues of Steklov

on C- 1 , 1)
2
are given by

corollary Steklov
eigenvalues of
this square satisfy
•
4m -k
- (m-E)¥+01m

-•

)
MEN

,
KE {0 , . . . ,3} as Mrs

Eigenvalues asymptotically come in clusters of 4
Q : Is it because we have 4 (equal) sides ?

Would they appear in
clusters of 3-for

a regular pentagon ?



Part II.
Asymptotic of Steklov eigenvalues in
curvilinear polygons

Most of the material in this part is
. covered by

two long papers
3. d 'Anal

.

Math
.

2021ML-ipa-nski-Polteoovich-shetproel.MS 2022

but notation here is slightly different



Setting : curvilinear polygon
n vertices %→,I

vector of angles
① Ñ=(4 ,

. . . ,dn )
,

I,E Ocdj < IT
vector of side lengths

side lj of length|÷÷::÷:{
Ñ=0 in ①

Vjy and Vj
On_U=éU on 00

1--1091--4-1 . . .
+ In



Before stating the main result on the asymptotic
of 6m E. e- ) ,

m + as I need another

side - step into the theory of quantum graphs
[Berkohaikokuchment 'B]

-

a- :=⊕t¥s;) /E
;•¥"; plus some

self-adjoint boundary/
watching conditionsmetric graph G-

↑ Looks deceptively simple -
ridges Ej have lengths in fact , deep subject !



Our main result
, philosophy : Once more

, compare
the Steklov eigenvalues to those of a

"

boundary operator
"

but this time the boundary operator is a quantum graph
associated with a curvilinear polygon %→

,

I

Thm_ Let qq.be a curvilinear
polygon , 6m its Steklov e.v.s

-¥2 f- =Vf and Vm - e.v. s of QG Up,e→
Thenkin '¥¥hg+o=@¥y. - o 6m=Ñm +01m-4@¥2;)f'↓; = (sin ,¥;)f

'

/
y. -0 for some E > 0 M+•



As the QG Up,e→ depends only on I and I ,
we have

Corollary If II. II are two curvilinear
polygons with the same angles and sidelengths
taken in the same order then

16£ -8in / ¥01m
-

E) m+•

Defy From now on
,
the numbers Tm :=Ñm

are called the quasi - eigenvalues of the Steklov
problem on ① .


