Part II
Applications of the method of multipliers

What do we do next with the identity

$$
\begin{aligned}
& \left(\phi_{0} u, D_{0} u\right)_{L^{2}(M)}-\left(-\Delta_{M} u, u\right)_{L^{2}(M)} \\
& \left.=\int_{\Omega}(2]_{a} \underset{\vec{F}}{ }[\nabla U, \nabla U]-|\nabla U|^{2} d_{i v} \vec{F}\right) ?
\end{aligned}
$$

For a fixed \vec{F}, the RHS is a quadratic form in $|\nabla U|$ with bounded coefficients, and thus its modulus is bounded above by $C\|\nabla U\|_{\Omega}^{2}=C\left(D_{0} u, u\right)_{M}$ Thus we have

$$
\left|\left(D_{0} u, D_{0} u\right)_{M}-\left(-\Delta_{M} u, u\right)_{M}\right| \leqslant C\left(D_{0} u, u\right)_{M}
$$

C maybe expressed via some geometric characteristics of Ω and M [Colbois/Gir./Hass'18; Provenzano/Stubbe' 19$]$

A functional awalysis problem: given two non-negative self-adjoint operators A, B in a Hilbert space Il s.t. $\left|(A u, A u)_{\mu}-(B u, u)_{\text {ye }}\right| \leqslant C(A u, u)_{\text {ye }}$ for all $u \in \operatorname{Dom}(B) \cap \operatorname{Dom}\left(A^{2}\right)$, what can be said about the eigenvalues $\left\{\alpha_{j}\right\}$ of A and $\left\{\beta_{j}\right\}$ of β ?
Tm [Girovard/Karpukhin/ML/Polterovich'22] We have $\left|\alpha_{k}-\sqrt{\beta_{k}}\right| \leqslant C \quad \forall k \in \mathbb{N}$.
Idea of proof: Use variational principles for both operators with test spaces constructed of eigerfunctions of the
other operator

In our case, this implies that

$$
\left|\sigma_{k}(\Omega)-\sqrt{\lambda_{k}\left(-\Delta_{M}\right)}\right| \leqslant C \quad \forall k
$$

Steklov e.v. e.v. of the boundary Laplacian
Uniform bound! Recall that for the disk $C=0$
Remarks: Smoothess assumptions on $M=\partial \Omega$ may be relaxed to $C^{2, \alpha}, \alpha>0$ for $d>2$ and $C^{1,1}$ for planar domains
and Analogues exist for domains on manifolds

- Will be important later for asymptotics of \vec{b}_{k} for large k.

Weill take a slight detour now to discuss the paramer-dependent DEN map D Given $\Lambda \notin \operatorname{Spec}\left(-\Delta_{\Omega}^{\operatorname{Dir}}\right)$ and $u \in H^{1 / 2}(\partial \Omega)$, \hat{R} we can uniquely solve a non-homog problem $\left\{\begin{array}{l|l}-\Delta U=\Lambda U \text { in } \Omega & U:=\xi_{1} u \text { is called } \\ \left.U\right|_{M}=u \text { on } M=\partial \Omega & \Lambda \text {-Helmholtz extension } \\ \text { of } x\end{array}\right.$ Then $\mathscr{D}_{\Lambda}: H^{1 / 2}(M) \rightarrow H^{-1 / 2}(M)$ is defined by

$$
D_{\Lambda} u=\left.\left(\partial_{n} U\right)\right|_{M}=\left.\left(\partial_{n} \varepsilon_{\Lambda} u\right)\right|_{M}
$$

Main facts about D_{Δ} :

- self-adjoint, with discrete real spectrum $\sigma_{\Lambda, 1} \leqslant \sigma_{\Lambda, 2} \leqslant \ldots \leqslant \sigma_{\Lambda, k} \leqslant \ldots,+\infty$
- $\left(D_{\Lambda} u, u\right)_{L^{2}(M)}=\|\nabla U\|_{L^{2}(\Omega)}^{2}-\Lambda\|U\|_{L^{2}(\Omega)}^{2}$
- variational principle
- definition of D_{\wedge} can be extended to $\Lambda \in \operatorname{Spec}\left(-\Delta_{\Omega}^{\operatorname{Dir}}\right)$ if we restrict its domain to the orthogonal complement of the subspace of normal derivatives of the corresponding Dirichlet eigenspace
- DtN - Robin duality:

$$
\sigma \in \operatorname{Spec}\left(D_{\Lambda}\right) \Longleftrightarrow \Lambda \in \operatorname{Spec}\left(-\Delta_{\Omega} \text { Robin, }-\sigma\right)
$$

with the same multiplicities!
[Friedlander'91; Arendt/Mazzeo'12; Hassannezhad/Sher'22 +history]

Example: Eigenvalues of D_{Λ} for the unit disk as

These observations can be turned into rigorous this not only for a disk but for a general Lipschitz Euclidean domain or a Riem. manifld with boundary, and in particular imply Tm. [Friedlauder; Arendt-Mazzeo]

$$
\begin{aligned}
& W_{\Omega}^{\operatorname{Nev}}(\Lambda)-W_{\Omega}^{\operatorname{Dir}}(\Lambda)=W^{D_{\Lambda}}(0) \\
& \text { number of negative } \forall \Lambda \in \mathbb{R} \\
& \text { eigenvalues of } D_{1}
\end{aligned}
$$

Corollary. If $\Omega \subset \mathbb{R}^{d}$, then $\lambda_{k+1}^{\text {eigenvalue of }}<\lambda_{k}^{D i r} \quad \forall k \in \mathbb{N}$ Proof uses the fact that $W^{D_{\lambda}}(0) \geqslant 1$ for $\Lambda>\lambda_{1}^{\text {Dir }}$ (alternative elementary proof by [Filonov'O4]) (the corollary may not hold in Piemannian case)

We now ask the following question: Can we compare the eigenvalues of $D_{\Lambda}(\Omega)$ with those of $-\Delta_{\partial \Omega}$ for (some) $\wedge \neq 0$?
We have
The Let $\Omega \subset \mathbb{R}^{d}$ be a bod domain with smooth bdry $M=\partial \Omega$. Then for $\Lambda \leqslant 0$ we have

$$
\left|\sigma_{k}^{\wedge}-\sqrt{\lambda_{k}\left(-\Delta_{m}\right)-\Lambda}\right| \leqslant C \quad k \in \mathbb{N}
$$

with some constant C uniformly in both k and Λ

Ideas of proof: [GKLP'22]

- Avariant of generalised Pohozhaev's identity for Hemholtz [Hassannezhad Siffert'20]
- Hence a variant of generalised Hörmander's inequality

$$
\left|\left(D_{\wedge} u, D_{\lambda} u\right)_{M}-\left(\left(-\Delta_{M}-\Lambda\right) u, u\right)_{M}\right| \leqslant C\left(D_{\wedge} u, u\right)_{M}
$$

- Use abstract bound with $A=D_{\Lambda}, B B=-\Delta_{M}-\Lambda$ Remark We will see later that no analogue of this result may hold if boundary has corners

Illustration: the unit disk

Before we proceed, some further references (full bibliograph will appear at the end of the last set of slides)
[Chandler-Wilde/Graham/Langdon/Spence'12] for a historical overview of the method of multipliers
[Hassell Ta, T_{02}] for applications to bounds of $\left\|B_{n} u_{j}^{\operatorname{Dir}}\right\|_{L^{2}(\partial \Omega)}^{2}$ on normal derivatives of Dirichlet e.f.s
[Rudnick Wigman Yesha'21] for bounds on
$\left\|u_{j}^{R o b, \gamma}\right\|_{L^{2}(\partial \Omega)}^{2}$ on traces of Robin e.f.s.
etc, etc,...

Part III.
Spectral asymptotic for the $D t N$ map D_{0}

For the rest of this course we will be looking at the asymptotic behaviour of eigenvalues of the Steklov problem on $\Omega \subset R^{d}$ [mostly $d=2$] (the DIN map ∇_{0}), both in terms of asymptotics of eigenvalues
$\sigma_{k}, k>+\infty$ and the counting function

$$
\mathcal{N}^{s}(\sigma):=\left\{k: \sigma_{k} \leqslant \sigma\right\} \text { as } \sigma \nearrow+\infty
$$

I'll start by listing some relatively well-khown facts.

Suppose that Ω has a smooth boundary M Then D_{0} is an elliptic psuerdodifferential operator of order 1 . Its principal symbol is given by $|\xi|$ and coincides with that of $\sqrt{-\Delta_{M}}$. Hence these two operators have the same leading form Weyl's asyuptotics, and

$$
\begin{gathered}
N^{S}(\sigma)=C_{d-1}|M|_{d-1} \sigma^{d-1}+O\left(\sigma^{d-1}\right) \\
\text { Weyl constant } \quad \text { as } \sigma \rightarrow+\infty
\end{gathered}
$$

- By our previous comparison result, the same asyuptotics holds if $\partial \Omega$ is not C^{∞} but smooth enough
- On the other hand, for ∞^{∞} boundary in the smooth planar's case, error term is much better [Rozenblyum' 86]] [Award 93 after $\begin{gathered}\text { Evieleminin/Merrexi] }\end{gathered}$

$$
\vec{\sigma}_{k}(\Omega)=\sigma_{k}\left(\Omega^{*}\right)+o\left(k^{-N}\right) \forall N
$$

Ω^{*}-disk with the same perimeter as Ω

- For general Lipschitz domains in $d \geqslant 3$ the one-term Weyl's asymptotics is still an open conjecture In $d=2$ it was proved very recently by different techniques
[Karpukhin Lagace'Polferovich'22]
So the question is: "what is happenning for "not so smooth" planar domains, say polygons, and can we improve Weal's asymptotics there?

We start with a seemingly simple
Example, $\Omega=(-1,1)^{2}$ a square
[Girooard/Puterovich'17]
We try to find eigenfunctions by separation of variables which gives us

Eigenfunction	Equation for κ	Eigenvalue σ	Multiplicity
$U^{0}:=1$		0	1
$U^{1}:=x y$		1	1
$U_{\kappa}^{2}:=\cos (\kappa x) \cosh (\kappa y)$	$\tan \kappa+\tanh \kappa=0$	$\kappa \tanh \kappa$	2
$U_{\kappa}^{3}:=\cosh (\kappa x) \cos (\kappa y)$			
$U_{\kappa}^{4}:=\sin (\kappa x) \cosh (\kappa y)$	$\tan \kappa-\operatorname{coth} \kappa=0$	$\tanh \kappa$	2
$U_{\kappa}^{5}:=\cosh (\kappa x) \sin (\kappa y)$			
$U_{\kappa}^{6}:=\cos (\kappa x) \sinh (\kappa y)$	$\tan \kappa+\operatorname{coth} \kappa=0$	$\kappa \operatorname{coth} \kappa$	2
$U_{\kappa}^{7}:=\sinh (\kappa x) \cos (\kappa y)$			
$U_{\kappa}^{8}:=\sin (\kappa x) \sinh (\kappa y)$	$\tan \kappa-\tanh \kappa=0$	$\kappa \operatorname{coth} \kappa$	2
$U_{\kappa}^{9}:=\sinh (\kappa x) \sin (\kappa y)$			

each intersection of a dotted curve with a solid curve gives a double er.

But how do we prove that we have found all the eigenvalues and haven't missed any? To do this, we have to take two sidesteps.

$19^{\text {th }}$ century hydrodynamics!

Whatever reasonable b.c. we impose on \forall), we always have

- the spectrum of the sloshing problem (or another mixed Steklov-Dirichlet-Neumarn problem) is discrete and non-negative the eigenfunction restricted to $\&$ form a basis in $L^{2}(\zeta)$
Sloshing problem will ve-appear later.

The second trick we need is the symmetry reduction

domain with a hyperplane of symmetry, then every eigenfunction problem and b.c. symmetric antisymmetric or symmetric

$$
\text { Spec of }{ }^{\prime}=\operatorname{Spec}\left(\frac{\square}{\text { Dirichlet }}\right) \cup \operatorname{Spec}\left(\prod_{\text {Neumann }}\right)
$$

Returning now to our Steklov problem on a square: using diagonals as lines of symmetry, we get

four mixed Steklov-Dir -
Newman problems in
$45^{\circ}-45^{\circ}-90^{\circ}$ triangles
Look at problem I:
from found eigen functions of the square we construct
eff ss $U^{0}, U^{1}, U_{\alpha}^{2}+U_{R}^{3}, U_{\alpha^{2}}^{8}+U_{2}^{9}$ for it.
Why is it the full set? Their traces on S form the full set of eff. of $f^{(r)}(x)=R^{4} f(x), f^{\prime \prime}(\pm 1)=f^{\prime \prime \prime}(\pm 1)=0$ and therefore the basis in $L^{2}(S)$. Now repeat for II, II, IV ...

So, we know that all eigenvalues of steklov on $(-1,1)^{2}$ are given by

Eigenfunction	Equation for κ	Eigenvalue σ	Multiplicity
$U^{0}:=1$		0	1
$U^{1}:=x y$		1	1
$U_{\alpha}^{2}:=\cos (\kappa x) \cosh (\kappa y)$	$\tan \kappa+\tanh \kappa=0$	$\kappa \tanh \kappa$	2
$U_{\alpha}^{3}:=\cosh (\kappa x) \cos (\kappa y)$			
$U_{\alpha}^{4}:=\sin (\kappa x) \cosh (\kappa y)$	$\tan \kappa-\operatorname{coth} \kappa=0$	$\kappa \tanh \kappa$	2
$U_{\alpha}^{5}:=\cosh (\kappa x) \sin (\kappa y)$	2		
$U_{\alpha}^{6}:=\cos (\kappa x) \sinh (\kappa y)$	$\tan \kappa+\operatorname{coth} \kappa=0$	$\kappa \operatorname{coth} \kappa$	2
$U_{\alpha}^{:}:=\sinh (\kappa x) \cos (\kappa y)$		2	
$U_{\alpha}^{:}:=\sin (\kappa x) \sinh (\kappa y)$	$\tan \kappa-\tanh \kappa=0$	$\kappa \operatorname{coth} \kappa$	2
$U_{\alpha}^{9}:=\sinh (\kappa x) \sin (\kappa y)$			

Corollary Steklov eigenvalues of this square satisfy

$$
\begin{aligned}
& \sigma_{4 m-k}=\left(m-\frac{1}{2}\right) \frac{\pi}{2}+O\left(m^{-\infty}\right) \\
& m \in \mathbb{N}, k \in\{0, \ldots, 3\} \text { as } m / \gamma_{\infty}
\end{aligned}
$$

Eigenvalues asymptotically come in clusters of 4 Q: Is it because we have 4 (equal) sides? Would they appear in clusters of 5 for
a regular pentagon?

Part IV.
Asymptotic of Steklov eigenvalues in curvilinear polygons
Most of the material in this part is covered by two long papers
ML + Parnovski+ Polterovich + Sher J.d'Anal Math. 2021
2022 but notation here is slightly different

curvilinear polygon $g_{\vec{\alpha}, \vec{l}}$ vector of angles $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, $0<\alpha_{j}<\pi$ vector of side lengths $\vec{l}=\left(l_{1}, \ldots, l_{n}\right)$ side l_{j} of length l_{j} joins vertices V_{j-1} and V_{j} $L=|\partial g|=l_{1}+\ldots+l_{n}$

Before stating the main result on the asymptotics of $\zeta_{m}\left(g_{\vec{\alpha}, \vec{l}}\right), m l+\infty$ I need another side. step into the theory of quantum graphs [Berkolaita Kuchment'rs]

metric graph G edges E_{j} have lengths

$$
-\Delta_{G}:=\left.\oplus\left(-\frac{d^{2}}{d s}\right)\right|_{E_{j}}
$$

plus some self-adjoint boundary/ matching conditions
Looks deceptively simple in fact, deep subject!

Our main result, philosophy: Once more, compare the Steklov eigenvalues to those of a "boundary operator" but this time the boundary operator is a quantum graph associated with a curvilinear pulggon ${T_{\overrightarrow{2}}, \vec{l}}^{l}$

As the $Q G M_{\vec{\alpha}, \vec{l}}$ depends only on $\vec{\alpha}$ and \vec{l}, we have
Corollary If Ω^{I}, Ω^{I} are two curvilinear polygons with the same angles and sidelengths taken in the same order then

$$
\left|\sigma_{m}^{I}-\sigma \frac{I}{m}\right| \approx O\left(m^{-\varepsilon}\right) \quad m /+\infty
$$

Defn From now on, the numbers $\tau_{m}:=\sqrt{\nu_{m}}$ are called the quasi-eigenvalues of the Steklov problem on 9 .

