
We haven't done much soft : just replaced
our Steklov problem by another ( maybe ,
slightly easier ) problem .

Q : what can be

said about quasi - eigenvalues Im ?

Thm_ A number I ≥ 0 is a quasi -eigenvalue

of a polygon %→,e→ iff it is a root of
a particular trigonometric fn Fogg (e)

→
next

slides

multiplicity of quasi -eve> 0 = malt .of
c- as

a root off{malt . of g. - e .

c- = 0

( if present
≤Katt . f- easya root of F



Constructing trig function E-i. e- (t)

34={-1-1}
"

as

Fine = ?¥zn cos KIF>e) - Hsin 't
≥

Taj
j=1

Ch (5) = {je{ii.in}/5.≠3j+,} set of sign - changes in}
e.g .

Ch (11%11)--0
,
Cha-1 ,-1 , 1,1)) = {2,4}

Pj : = 17
je ch (5)

•$ +2%.



Examples aÉ¥P
e,=¥ʰ=r2 ( + , -1 , - ) V2 {2,3 } -1

ÉE¥ ( + , - it ) 2- V2 {1,2 } 1

↳ = 1 ( + , - , - ) -V2 {1,3} -1
Also ,Éfsin¥aj=O

Thus Fgs
,
@ (t )

= cos ((2+52 )E) - Zcostrzt )+cos(G-EH
= -4 ( cos't - 1) coscrzt ) ⇒ we have

• a single qe E- 0 • single qe 's at

• double qe 's at t=1Tm ,
MEN / e-=Fz(m-E)

MEN



More can be said about the asymptotic
of Steklov eigenvalues and eigenfunctions
• As we will see , a particular role is
played by some arithmetic properties of
the angles , specifically by the presence
or
absence of the exceptional angles from

the set 8 : - {¥ ,
KEN }

• We'll also mention spÉiae angles
8 : = {E¥i , KEN}

• In either case debark
,

the oddity of the
angle is defined as %) = C-1) K

.



In the presence of exceptional angles 29
,

. . . , 2£ :

we need some re - labelling
• they split the boundary
into K exceptional

boundary components
Y* ,

each with no
pieces , R = 1 , . . . , K , so

that _ . .
+ NK = he

• ☒ᵗʰ component has lengths 8*1--65 , . . . , I:& )
and angles I'M = (£1M1 >

- ^ -

,
✗
'

%, )
even

, 04%4--04%1• An exc
. boundary component maybe {€1,04:/ ≠ 045,1



Non - exceptional case vs Exceptional ease

" ° " " * " ""

[
" """""""""

j=1

÷;:i÷:÷::÷;÷÷:¥÷:÷÷¥:¥

eisen-f.ea.idistn-tmtea.ae?--:E:+Ya:%F3!#functions the whole boundary exceptional bound . components
◦ f- Do



In the last line equi distributed means that

for any arc
Ico (does not have to be aside )

him HUmHi
=

m→as Huntly (09 )

non - exceptional case , exceptional case ,

equilateral A-gle 90° -45°-45° -glee



MAIN STEPS OF THE PROOFS

• The result about 5-
I ,q (t )

is obtained

by just writing out the secular equation
of our quantum graph Mp, e- : requires
some trickery , but generallystraightforward

• The difficult part is about quasi - eigenvalues,
and we first need another classical

hydrodynamics problem . . .



The sloping beach problems in an infinite sector

=ÉÉy
Question :

are there solutions
\ 01=0 bounded inGI

¥12 and such that

/ QQ ,y )
= cosG- § )ép=¥:, + Rain

with

R(✗ iytlpvrlx ,y ) / = 0cg-7 ,
with some t> O p → as



Answers : Yes if one takes particular values

of constant
§ = {

¥2
,
Nev

= ¥ - ¥2 for Neu on the bottom

{42 , Dir
= ¥ + ¥2 for

Dir on the bottom

[originally due to Lewy and Peters 40s -50s
,

improved/extended by us ;
we can take r=%

in the remainder ]

We will denote the corresponding solutions

Nz , Nev
(✗ ' Y ) and %

,
Dir (✗ /Y)



Robin problem in the
"

full
" sector@

a

•
"

{÷:÷:On⑤ = c- OTE

tin \
-
t large

Q✗,y)-ÉtifQzNÉ
antis

.
(x , y ) - antisymm .

extension of 212 , Dir
G-✗sty )



Consider how a non-trivial linear comb _ of
,mm , antisym

It solves the Robin problem in the full sector .
Moreover

,
its traces on the boundary rays tinpot

behave as

0T / (s ) = him
,
,

e'☐ thin ,z e-
its
+09 )

Iin (*)
/
Int (s )

= trout
, i
e
""

+ hout.ae-
its

+ ◦ (1)

with some vectors Ñin ,• + = (h.in/out.1)ECZkin /out , 2

We call such a solution QIc× , × ; Rin ,
Trout )

a Peters solution



Next question : what should be the relations (if any )
between the vectors Tin ,

Ñ◦u+ for a Peters soln
with given asymptotic s to exist ?

Some linear algebra + trigonometry gives
→

Thin • let 248 .

Then for every Line €2
there exists a Peters solar QI (× ,Yihin

>
Trout ) if

→

we take Loot = [
see"% - icot%,

in
icot

a
cosec"% )Ñ
E-
AKI

contd
. . .



• let ✗ ± LIKE & ,
KEN

.
Then a Peters soln

exists if the vectors Train
,
Tout satisfy

→

out ,

= 0
,
where

<[
in ,
Ñ >

☒
a

= 4h

✗→ = (e
C-1)

'" '
in/4

e
e- 1)
"
it/4)

Remark__s : • in both cases we
choose two of

the four quantities Tin ,h%+ EEZ
but do this differently

• A (a) invertible ⇔ ✗¢-8
.



Constructing the quasimodes for a straight

polygon : an outline

local boundary☆At coordinate Sn

centred at Vn

r☒B
←Rrµ

Tj :sectopVjyVjVjy1-sector@djlxj.y;) = Vj ( × , y ) local cart . coordinates
-750



We seek quasi modes of the
Steklov problem

F- (× , y ) such that hear each vertex
→

I(× , y ) = § (✗j' , Yi 's hj.in , j >out )
=with still unknown

→ a Peters solution
vectors Tj , in a hj ,out
For simplicity ,

assume there arent exceptional
↳ angles

Then we must have /T.out-AK-lhj.in#f-



We also have Ff logs =Ñ -1011 ) c- → as

consider Ñ /
I

.

It may be written in
two

j→ side joining Vj _ , and Vj
ways :

a trigonometric fn in a trig . fn in

Sj involving
vectors Sj -1 using vectors

Ñj
,
in , Ñj ,out hj-i.in a j - I > out

(using Petersson near
V;)

= →

[

(using Petersson hear%)

AIatg.es#.=(ei00e-iec-)ñ
j.in -_B(lj,t)Ñj - i.out



So
,
what do we get ?

→

tii.in-BHDK.at

B ¥¥ut=Akz)Ñ
, in

"

s

.

.

Akin .in
In

, in

←
AE

↑ ↑
Jit

F. in
= B (4)Tin

,
out

startt①Input



Thus
,
we've arrived at the equation

→

hn
,
out
= Alan )B(ln.tl/tkn.,)BHn-i,i-)---Ak,1BAi.t)h
¥-7m

:

product of 2n 2×2 matrices

Therefore the matrix TCI
,E) has an eigenvalueI

(easy check )

Tr (1-1%1)=2 ←→ Fogg G) = 0
(difficult
check)



What remains to be done ?

• Rigorous construction of the quasi modes Ñum
using appropriate cut -offs

• Then it is relatively easy to see that

→ 011?nÑtm - Em Ñtm Hear ) quantatively
so they are indeed quasimodes :

there exists a subsequence of
exact Steklov e. ✓ 's Gim S.t.

Itm - Gim 1--011 )



• the most difficult part : show that

im = Me

( in other words , we haven't missed any e-V 's)
Done with the help of Dirichlet - Neumann

bracketing :

* add cuts with

Dirichlet or
Neumann (one by
one )

* compare
with

-3

more asymptotic of sloshing /other mixed Steklov-
later Dirichlet - Neumann problems + transplantation tricks



• account for curved boundaries away from
the vertices (easy ,

there is a good
anzssatsz)

• account for curved boundary near the
vertices ( hard , potential theory in the
spirit of Costabel )
• adjust for presence of exceptional
angl.es .



Asymptotic of eigenvalues of the sloshing
and related problems

W=W☐UWN

{
AT = 0 in r

they = 0 anti-war = 0
Onto = 80 0nF



Done in the same manner as pure Steklov ,

by matching solns of the sloping beach

problems near the corners

Thm [ LPPS ' 21 ] For 0 < & , E- < Iz

I / Gm = a- (m -E) +¥ (-1-3--1,3) + ◦ (1) ,
m →as

where + is taken for the Dirichlet condition
hear the corner and - for Neumann

Remarks_ • Also works for { , Pz = with some extra

geom cards

• If walls are straight near the corners , ◦- term
is better • Proves conj of Fox -Kittler

' 1980s



Some open problems :

• Nunneries suggest that our asymptotics
" work"

Fangles c- [ IT > 21T ) for the Steklov ,

and

t.PE [% ,
ñ) for sloshing etc .

We couldn't
-2 -2

prove it as our
remainder estimate for

the sloping beach sroblen
is not good enough .

• Numerical / hand - waving arguments also suggest
that the next -order correction in the asymptotics
for 8m should come from the boundary curvature
at the vertices



• What happens in 3D and higher? Only
basics/specific examples#¥ far ,
* Steklov :[lvrii 2019] -1 for cuboids [Girouard -1 Lagace't

polterovich + Savo ' 19 ]

* sloshing in a particular prism [Mayrand -1
Sehécalt St - Amant ' 21 ]



Remark_ Recall that in the smooth case we had the

uniform bound 16
,
,
, _iÑÉÉ / ≤ C

for eigenvalues of Da .

Is it possible to

have a similar uniform bound for polygons,
maybe with -Am replaced by some other
" boundary

"

operator (independent of A) .
The

answer is NO
,
and it follows from

Robin - Btw duality and *salts on
asymptotics of 6,1

,
,
as A→ - as forafi-xe.dk

derived from that and [Khalili 18 ] , [Khalil/
Pankrashkin ' 18 ] , etc . . .

.



Part I.
Inverse Steklov problems



We start with a

Defn_ Two Riemannian manifolds with bdng ,
or two Euclidean domains are called

Steklov isospectral if their Steklov
spectra coincide

Twoe×amples_ from [Girouard / Parnovski /Pollen
rich/Sher 14]

If Mi ,Mz are isospectral to )

y
tf g , and gz=pg , are

two

Riem
. manifolds , then conf . equivalent metrics on R

Mj ✗ (O ,
h) are Steklov with plan -_ 1 ,

then (Bg ;)
isospectral are Steklov isospectral



At the same time
,

Open Question : do there exist non
-

isometric isteklov isospectral planar

:ᵈ:÷:÷::÷÷÷,

RI are asymptotically'TiÉpedral or
quasi - is◦spectral if

16.1<02 , ) - 6k (Rn ) / = ◦ (1) Kaos



Fact Any two simply connected smooth planar
domains with the same perimeter are
asymptotically Steklov isospectral

Q : which Steklov spectral invariants do
we have

,
i. e. what geometric information

can we recover from Steklov spectrum ?

A. In the smooth case , the perimeter +
in a non - simply connected case , the
number of boundary components and
their length [ GPPS

'

14]



We will now concentrate

on curvilinear polygons
only , a separate set of slides


