We haven't done much so far: just replaced our Steklov problem by another (maybe, slightly easier) problem. Q: What can be said about quasi-eigenvalues τ_{m} ?
Thy A number $\tau \geqslant 0$ is a quasi-eigenvalue of a polygon $\vec{\alpha} \vec{\alpha}, \vec{e}$ iff it is a root of a particular trigonometric fr $F_{\vec{\alpha}, \vec{l}}(\tau)$? leiden. multiplicity of quasi-ev $\tau>0=\begin{aligned} & \text { milt of } \tau \text { as } \\ & \\ & \text { a root of } F\end{aligned}$ a root of F $\begin{aligned} & \text { null. of } q \text {-e } \tau=0 \\ & \text { (if present }\end{aligned}=\frac{1}{2}\binom{$ mule, of $\tau}{$ a mot of $F}$

Constructing trig function $F_{\vec{x}, \vec{l}}(\tau)$

$$
\begin{aligned}
& \mathcal{j}^{n}:=\{ \pm 1\}^{n} \\
& F_{\vec{\alpha}, \vec{l}}=\sum_{\vec{\xi} \in j^{n}} p_{\vec{\xi}} \cos (\langle\vec{l}, \vec{\zeta}\rangle \tau)-\prod_{j=1}^{\infty} \sin \frac{\pi^{2}}{2 \alpha j} \\
& C h(\vec{\xi})=\left\{j \in\{1, \ldots, n\} \mid \zeta, \neq \zeta_{j+1}\right\} \text { set of sign-chnngesin } \overrightarrow{\}} \\
& \operatorname{e\cdot g}, \quad \operatorname{Ch}((1,1,1))=\varnothing, \operatorname{Ch}((-1,-1,1,1))=\{2,4,\} \\
& P_{\vec{\xi}}:=\prod_{j \in \operatorname{Ch}(\vec{\xi})} \cos \frac{\pi^{2}}{2 \alpha j}
\end{aligned}
$$

$\vec{\zeta}$	$\langle\vec{l}, \vec{\zeta}\rangle$	$C h(\zeta)$	$\rho_{\vec{\xi}}$
$(t,+,+)$	$2+\sqrt{2}$	\varnothing	1
$(+,+,-)$	$\sqrt{2}$	$\{2,3\}$	-1
$(+,-,+)$	$2-\sqrt{2}$	$\{1,2\}$	1
$(+,-,-)$	$-\sqrt{2}$	$\{1,3\}$	-1
	Also $\prod_{j=1}^{3} \sin \frac{\pi^{2}}{2 \alpha_{j}}=0$		

Thus $F_{\bar{\alpha}, \vec{l}}(\tau)=\cos ((2+\sqrt{2}) \tau)-2 \cos (\sqrt{2} \tau)+\cos ((2-\sqrt{2}) \tau)$ $=-4\left(\cos ^{2} \tau-1\right) \cos (\sqrt{2} \tau) \Rightarrow$ we have

- a single ge $\tau=0 \quad$ single ge's at
- double $q e$ e's at $\tau=\pi m, m \in \mathbb{N} \left\lvert\, \tau=\frac{\pi}{\sqrt{2}}\binom{\left.m-\frac{1}{2}\right)}{m \in N V}\right.$

More can be said about the asymptotics of Steklov eigenvalues and eigenfunctions

- As we will see, a particular role is played by some arithmetic properties of the angles, specifically by the presence or absence of the exceptional angles from the set ε Er $:=\left\{\frac{\pi}{2 k}, k \in \mathbb{N}\right\}$
- Weill also mention special angles

$$
g:=\left\{\frac{\pi}{2 k-1}, k \in \mathbb{N}\right\}
$$

- In either case $\alpha \in \tilde{G} \cup K$, the oddity of the angle is defined as $O(\alpha)=(-1)^{k}$.

In the presence of exceptional angles $\alpha_{1}^{\varepsilon}, \ldots, \alpha_{k}^{\varepsilon}$: we need some re-labelling

- they split the boundary into K exceptional boundary components Y_{R}, each with on pieces, $R=1, \ldots, K$, so

$$
n_{1}+\ldots+n_{k}=n
$$

 and angles $\vec{\alpha}^{(\infty)}=\left(\alpha_{1}^{(x)}, \ldots, \alpha_{n-1}^{(\infty)}\right)$

Nor-exceptional case VS Exceptional case

In the last line equidistributed means that for any arc I $\subset \partial \mathcal{O}$ (does not have to be a side)

$$
\lim _{m \rightarrow \infty} \frac{\left\|u_{m}\right\|_{L^{2}(I)}}{\left\|u_{m}\right\|_{L^{2}(\partial g)}}=\frac{|I|}{|\partial g|}
$$

non-exceptional case, equilateral Δ-ale
exceptional case, $90^{\circ}-45^{\circ}-45^{\circ} \Delta$-gee

MAIN STEPS OF THE PROOFS

- The result about $F_{\overrightarrow{2}, \vec{l}}(\tau)$ is obtained by just writing out the secular equation of our quantum graph $M_{\vec{d}, \vec{l}}$: requires some trickery, but generally straightforward
- The difficult part is about quasi-eigenvalues, and we first need another classical hydrodynamics problem...

The sloping beach problems in an infinite sector

Answers: yes if one takes particular values of constant

$$
\xi= \begin{cases}\xi_{\alpha / 2}, \text { Nev }=\frac{\pi}{4}-\frac{\pi^{2}}{4 \alpha} & \text { for Nev on the bottom } \\ \xi_{\alpha / 2, D i r}=\frac{\pi}{4}+\frac{\pi^{2}}{4 \alpha} & \text { for Dir on the bottom }\end{cases}
$$

[originally due to Lewy and Peters 40s-50s, improved/extended by US; we can take $r=\pi / 2$ in the remainder $]$
We will denote the corresponding solutions

$$
\Phi_{\alpha / 2, \operatorname{Nev}}(x, y) \text { and } \Phi_{\alpha / 2, \operatorname{Dir}}(x, y)
$$

Robin problem in the "full" sector \mathbb{S}_{α}

Consider now a non-trivial linear comb. of $\Phi_{\text {ssm }}, \Phi_{\text {antisym }}$ It solves the Robin problem in the full sector.
Moreover, its traces on the boundary rays $I_{\text {in/out }}$ behave as

$$
\left.\widetilde{\Phi}\right|_{I_{i n}}(s)=h_{i n, 1} e^{i \tau s}+h_{i n, 2} e^{-i t s}+o(1)
$$

$\left.\widetilde{\Phi}\right|_{I_{\text {out }}} ^{I_{\text {in }}}(s)=h_{\text {out }, 1} e^{i \tau s}+h_{\text {out }, 2} e^{-i t s}+o(1)$

$$
(*)
$$

with some vectors $\vec{h}_{\text {in/out }}=\binom{h_{\text {in/out, }}}{h_{\text {in/out, } 2}} \in \mathbb{C}^{2}$
We call such a solution $\widetilde{\Phi}_{\tau}\left(x, y ; \vec{h}_{\text {in }}, \vec{h}_{\text {out }}\right)$
a Peters solution

Next question: What should be the relations (if any) between the vectors $\vec{h}_{\text {in }}, \vec{h}_{\text {out }}$ for a Peters soln with given asymptotics to exist?
Some linear algebra + trigonometry gives
Thm let $\alpha \notin \dot{G}$. Then for every $\overrightarrow{h_{i n}} \in \mathbb{C}^{2}$
there exists a Peters soln $\widetilde{\Phi}_{\tau}\left(x, y, \vec{h}_{\text {in }}, \vec{h}_{\text {out }}\right)$ if we take $\vec{h}_{\text {out }}=\left(\begin{array}{cc}\operatorname{cosec} \pi^{2} / 4 \alpha & -i \cot \pi^{2} / 4 \alpha \\ i \cot \pi^{2} / 4 \alpha & \operatorname{cosec} \pi^{2} / 4 \alpha\end{array}\right) \vec{h}_{\text {in }}$

$$
\stackrel{\ddot{i}}{A(\alpha)}
$$

contd...

- let $\alpha=\frac{\pi}{2 k} \in \xi, k \in \mathbb{N}$. Then a Peters soln exists if the vectors $\vec{h}_{\text {in }}, \vec{h}_{\text {out }}$ satisfy

$$
\begin{gathered}
\left\langle\vec{h}_{\text {in }}, \vec{X}\right\rangle_{\mathbb{C}^{2}}=\left\langle\vec{h}_{\text {out }}, \overline{\vec{X}}\right\rangle_{\mathbb{C}^{2}}=0, \text { where } \\
\vec{X}=\binom{e^{(-1)^{k+1} i \pi / 4}}{e^{(-1)^{k} i \pi / 4}}
\end{gathered}
$$

Remarks: in both cases we choose two of the four quantities $\vec{h}_{\text {in }}$, $\vec{h}_{\text {out }} \in \mathbb{C}^{2}$ but do this differently $A(\alpha)$ invertible $\Leftrightarrow \alpha \notin E$

Constructing the quasimodes for a straight polygon: an outline

local boundary coordinate S_{n} centred at V_{n}
$V_{j}:$ sects $V_{j+1} V_{j} V_{j+1} \mapsto$ sector $\mathcal{E}_{\alpha_{j}}$ $\left(x_{j}^{\prime}, y_{j}^{\prime}\right)=V_{j}(x, y)$ local Cart. coordinates

We seek quasimodes of the Steklov problem $\widetilde{U}_{\tau}(x, y)$ such that near each vertex

$$
\widetilde{U}_{\tau}(x, y)=\widetilde{\nabla}_{\tau}\left(x_{j}^{\prime}, y_{j}^{\prime} ; \vec{h}_{j, i n}, \vec{h}_{j, o u t}\right)
$$

with still unknown
vectors $\vec{h}_{j, i n}, \vec{h}_{\text {j, out }}$
For simplicity, assume there are no exceptional Then we must have $\vec{h}_{j, \text { out }}=A\left(\alpha_{j}\right) h_{j, \text { in }}$

We also have $\tilde{U}_{\tau} l_{\partial \rho}=\tilde{u}+o(1) \quad \tau \rightarrow \infty$
Consider $\left.\tilde{u}\right|_{\text {. . It may be written in two }}$ ways: side joining V_{j-1} and V_{j}
a trigonometric fr in a trig. fr in $\begin{aligned} \begin{array}{l}s_{j} \text { involving vectors } \\ \vec{h}_{j, i n}, \vec{h}_{j, \text { out }} \\ \left.\text { (using Peters sold near } V_{j}\right)\end{array} & S_{j-1} \text { using vectors } \\ & \left.\text { (using Peters sold near } V_{j-1}\right)\end{aligned}$ A calculation gives
$\vec{h}_{j, \text { in }}=B(l, \tau) \vec{h}_{j-1, \text { out }}$ where $B(l, \tau):=\left(\begin{array}{cc}e^{i t \tau} & 0 \\ 0 & e^{-i l \tau}\end{array}\right)$

So, what do we get?

Thus, we've arrived at the equation

$$
\vec{h}_{n, \text { out }}=\underbrace{A\left(\alpha_{n}\right) B\left(l_{n}, \tau\right) A\left(\alpha_{n-1}\right) B\left(l_{n-1, \tau}\right) \cdots A\left(\alpha_{1}\right) B\left(l_{1, \tau}\right)}_{i=\vec{T}(\vec{\alpha}, \vec{l})} \vec{h}_{\text {ont }}^{n}
$$

product of $2 n 2 \times 2$ matrices
Therefore the matrix $T(\vec{\alpha}, \vec{l})$ has an eigenvalue 1 (easy check)

$$
\operatorname{Tr}(T(\vec{\alpha}, \vec{l}))=2 \underset{\substack{(\text { difficult } \\ \text { check })}}{\Longleftrightarrow} F_{\vec{\alpha}, \vec{l}}(\tau)=0
$$

What remains to be done?

- Rigorous construction of the quasimodes $\widetilde{U}_{\tau_{m}}$ using appropriate cut-offs
- Then it is relatively easy to see that

$$
\left\|\partial_{n} \widetilde{U}_{\tau_{m}}-\tau_{m} \tilde{U}_{\tau_{m}}\right\|_{L^{2}(\partial \Omega)} \vec{q}_{\text {quantative }} 0
$$

so they are indeed quasimodes: there exists a subsequence of exact steklov e.v's $d_{i_{m}}$ s.t.

$$
\left|\tau_{m}-\sigma_{i_{m}}\right|=O(1)
$$

- the most difficult part: show that

$$
i_{m}=m
$$

(in other words, we haven't missed any e-v's) Done with the help of Dirichlet-Neumann bracketing

* add cuts with Dirichlet or Newman (one by one)
* compare with $\overrightarrow{\text { more }}$ asymptotics of sloshing/ other mixed Steklovlater Dirichlet-Nevmanr problems + transplantation tricks
- account for curved boundaries away from the vertices (easy, there is a good an cate)
- account for curved boundary near the vertices (hard, potential theory in the spirit of Costabel)
- adjust for presence of exceptional angles

Asymptotics of eigenvalues of the sloshing and related problems

$$
\begin{gathered}
\left\{\begin{array}{l}
\alpha / 2 \\
Q_{D}
\end{array}, W_{D} \amalg \|_{N}\right. \\
\left\{\begin{array}{l}
\Delta U=0 \text { in } \Omega \\
\left.U\right|_{W D}=\left.0 \quad \partial_{n} U\right|_{W}=0 \\
\partial_{n} U=\sigma U \text { on } j_{N}
\end{array}\right.
\end{gathered}
$$

Done in the same manner as pure Steklov, by matching solns of the sloping beach problems hear the corners
The [LPPS'21] For $0<\frac{\alpha}{2}, \frac{\beta}{2}<\frac{\pi}{2}$

$$
|S| \sigma_{m}=\pi\left(m-\frac{1}{2}\right)+\frac{\pi^{2}}{8}\left(\pm \frac{2}{\alpha} \pm \frac{2}{\beta}\right)+0(1)
$$

where + is taken for the Dirichlet condition near the corner and - for Neumann
Remarks. Also works for $\frac{\alpha}{2}, \frac{\beta}{2}=\frac{\pi}{2}$ with some extra - If walls are straight near the corners, o-term is better Proves conj of Fox-Kuttler 1980s

Some open problems:

- Numerics suggest that our asymptotics "work" for angles $\in[\pi, 2 \pi)$ for the Steklov, and $\frac{\alpha}{2}, \frac{\beta}{2} \in[\pi / 2, \pi)$ for sloshing etc. We couldn't prove it as our remainder estimate for the sloping beach aroblen is not good enough.
- Numerics / hand-waving arguments also suggest that the next-order correction in the asymptotic for σ_{m} should come from the boundary curvature at the vertices
- What happens in 3D and higher? Only basics/specific examples are known so far, * Steklov:[lvrii2019]+ for cuboids [Girovard+ Lagacé+ polterovich + Savo'19]
* sloshing in a particular prism [Mayrand t Senécalt St-Amant '21]

Remark. Recall that in the smooth case we had the uniform bound $\left|\sigma_{\Lambda, k}-\sqrt{\lambda_{k}\left(-\Delta_{M}\right)-\Lambda}\right| \leqslant C$ for eigenvalues of \mathcal{D}_{\wedge}. Is it possible to have a similar uniform bound for polygons, maybe with $-\Delta_{M}$ replaced by some other "boundary" operator (independent of Λ). The answer is NO, and it follows from Robin-DtN duality and results on asymptotics of $\vec{\sigma}_{\Lambda, k}$ as $\Lambda \rightarrow-\infty$ for a fixed k derived from that and [Khalile'18], [Khalile/ Pankrashkin' 18 J , etc.

Part V
Inverse Steklov problems

We start with a
Defn Two Riemannian manifolds with bdry, or two Euclidean domains are called Steklov isospectral if their Steklov spectra coincide
Two examples from [Giromard/Parnovski/Pisterovich/sher/4] If M_{1}, M_{2} are isospectral $(-\Delta)$ If g_{1} and $g_{2}=\rho g_{1}$ are two Riem manifolds, then $M_{j} \times(0, h)$ are Steklov isospectral conf. equiva lent metrics on Ω with $\rho l_{\partial \Omega}=1$, then $\left(\Omega, g_{j}\right)$ are Steklor isospectral

At the same time,
Open Question: do there exist nonisometric Steklov isospectral planar Euclidean domains?
Defn. We say that two domains Ω_{I} and $\Omega_{\text {II }}$ are asymptotically (yitelicos) quasi-isospectral if

$$
\left|\sigma_{k}\left(\Omega_{1}\right)-\sigma_{k}\left(\Omega_{\|}\right)\right|=0(1) \quad k>\infty
$$

Fact Any two simply connected smooth planar domains with the same perimeter are asymptotically Steklor isospectral
Q: Which Steklov spectral invariants do we have, i.e. What geometric information can we recover from Steklov spectrum?
A. In the smooth case, the perimeter + in a non-simply connected case, the number of boundary components and their length [GPpS'14]

We will now concentrate on curvilinear polygons only, a separate set of slides

