Inverse Steklov problem

Michael Levitin

with Stanislav Krymski, Leonid Parnovski, Iosif Polterovich, David Sher [IMRN'21]

University of Reading michaellevitin.net

GEMSTONE Lectures
2 September 2022

Direct problem summary

Direct problem summary

curvilinear
polygon \mathcal{P}

Direct problem summary

Direct problem summary and inverse problems statements

Direct problem summary and inverse problems statements

unconditional, pseudo-algorithmic

Direct problem summary and inverse problems statements

unconditional, pseudo-algorithmic

Direct problem summary and inverse problems statements

unconditional, pseudo-algorithmic genericity, fully algorithmic

Direct problem summary and inverse problems statements

unconditional, pseudo-algorithmic genericity, fully algorithmic

Inverse problems - isospectrality

Definition (Steklov isospectrality and and asymptotically isospectral ity)
We say that two domains Ω_{1} and Ω_{2} are (Steklov) isospectral if their Steklov spectra coincide, $\Sigma_{\Omega_{1}}=\Sigma_{\Omega_{2}}$.

Inverse problems - isospectrality

Definition (Steklov isospectrality and and asymptotically isospectral ity) We say that two domains Ω_{1} and Ω_{2} are (Steklov) isospectral if their Steklov spectra coincide, $\Sigma_{\Omega_{1}}=\Sigma_{\Omega_{2}}$. We say that two planar domains Ω_{1} and Ω_{2} are (Steklov) asymptotically isospectral if their Steklov spectra are asymptotically $o(1)$-close: $\sigma_{m}\left(\Omega_{1}\right)-\sigma_{m}\left(\Omega_{2}\right)=o(1)$ as $m \rightarrow \infty$.

Inverse problems - isospectrality

Definition (Steklov isospectrality and and asymptotically isospectral ity) We say that two domains Ω_{1} and Ω_{2} are (Steklov) isospectral if their Steklov spectra coincide, $\Sigma_{\Omega_{1}}=\Sigma_{\Omega_{2}}$. We say that two planar domains Ω_{1} and Ω_{2} are (Steklov) asymptotically isospectral if their Steklov spectra are asymptotically $o(1)$-close: $\sigma_{m}\left(\Omega_{1}\right)-\sigma_{m}\left(\Omega_{2}\right)=o(1)$ as $m \rightarrow \infty$.

Inverse problems - isospectrality

Definition (Steklov isospectrality and and asymptotically isospectral ity)
We say that two domains Ω_{1} and Ω_{2} are (Steklov) isospectral if their Steklov spectra coincide, $\Sigma_{\Omega_{1}}=\Sigma_{\Omega_{2}}$. We say that two planar domains Ω_{1} and Ω_{2} are (Steklov) asymptotically isospectral if their Steklov spectra are asymptotically $o(1)$-close: $\sigma_{m}\left(\Omega_{1}\right)-\sigma_{m}\left(\Omega_{2}\right)=o(1)$ as $m \rightarrow \infty$.

Remarks

(a) any two isospectral planar domains are also asymptotically isospectral ;

Inverse problems - isospectrality

Definition (Steklov isospectrality and and asymptotically isospectral ity)
We say that two domains Ω_{1} and Ω_{2} are (Steklov) isospectral if their Steklov spectra coincide, $\Sigma_{\Omega_{1}}=\Sigma_{\Omega_{2}}$. We say that two planar domains Ω_{1} and Ω_{2} are (Steklov) asymptotically isospectral if their Steklov spectra are asymptotically $o(1)$-close: $\sigma_{m}\left(\Omega_{1}\right)-\sigma_{m}\left(\Omega_{2}\right)=o(1)$ as $m \rightarrow \infty$.

Remarks

(a) any two isospectral planar domains are also asymptotically isospectral ; (b) it is not known if there exist any planar isospectral non-isometric domains;

Inverse problems - isospectrality

Definition (Steklov isospectrality and and asymptotically isospectral ity)
We say that two domains Ω_{1} and Ω_{2} are (Steklov) isospectral if their Steklov spectra coincide, $\Sigma_{\Omega_{1}}=\Sigma_{\Omega_{2}}$. We say that two planar domains Ω_{1} and Ω_{2} are (Steklov) asymptotically isospectral if their Steklov spectra are asymptotically $o(1)$-close: $\sigma_{m}\left(\Omega_{1}\right)-\sigma_{m}\left(\Omega_{2}\right)=o(1)$ as $m \rightarrow \infty$.

Remarks

(a) any two isospectral planar domains are also asymptotically isospectral ; (b) it is not known if there exist any planar isospectral non-isometric domains; (c) known Steklov spectral invariants are the perimeter (by Weyl's law),

Inverse problems - isospectrality

Definition (Steklov isospectrality and and asymptotically isospectral ity)
We say that two domains Ω_{1} and Ω_{2} are (Steklov) isospectral if their Steklov spectra coincide, $\Sigma_{\Omega_{1}}=\Sigma_{\Omega_{2}}$. We say that two planar domains Ω_{1} and Ω_{2} are (Steklov) asymptotically isospectral if their Steklov spectra are asymptotically $o(1)$-close: $\sigma_{m}\left(\Omega_{1}\right)-\sigma_{m}\left(\Omega_{2}\right)=o(1)$ as $m \rightarrow \infty$.

Remarks

(a) any two isospectral planar domains are also asymptotically isospectral ; (b) it is not known if there exist any planar isospectral non-isometric domains; (c) known Steklov spectral invariants are the perimeter (by Weyl's law), and in the smooth case also the number and lengths of connected boundary components [GPPS14];

Inverse problems - isospectrality

Definition (Steklov isospectrality and and asymptotically isospectral ity)
We say that two domains Ω_{1} and Ω_{2} are (Steklov) isospectral if their Steklov spectra coincide, $\Sigma_{\Omega_{1}}=\Sigma_{\Omega_{2}}$. We say that two planar domains Ω_{1} and Ω_{2} are (Steklov) asymptotically isospectral if their Steklov spectra are asymptotically $o(1)$-close: $\sigma_{m}\left(\Omega_{1}\right)-\sigma_{m}\left(\Omega_{2}\right)=o(1)$ as $m \rightarrow \infty$.

Remarks

(a) any two isospectral planar domains are also asymptotically isospectral ; (b) it is not known if there exist any planar isospectral non-isometric domains; (c) known Steklov spectral invariants are the perimeter (by Weyl's law), and in the smooth case also the number and lengths of connected boundary components [GPPS14]; (d) on the other hand, any two smooth planar simply connected domains with the same perimeter are Steklov asymptotically isospectral , and moreover $o\left(m^{-\infty}\right)$-asymptotically isospectral .

Inverse problems - notation and definitions

- For $\boldsymbol{\alpha} \in(0, \pi)^{n}$, its cosine vector is

$$
\mathbf{c}=\mathbf{c}_{\boldsymbol{\alpha}}=\left(c_{1}, \ldots, c_{n}\right) \in[-1,1]^{n}
$$

Inverse problems - notation and definitions

- For $\boldsymbol{\alpha} \in(0, \pi)^{n}$, its cosine vector is

$$
\mathbf{c}=\mathbf{c}_{\alpha}=\left(c_{1}, \ldots, c_{n}\right) \in[-1,1]^{n}, \quad c_{j}:=c\left(\alpha_{j}\right):=\cos \frac{\pi^{2}}{2 \alpha_{j}}
$$

- Note: α_{j} is not special iff $c\left(\alpha_{j}\right) \neq 0$

Inverse problems - notation and definitions

- For $\boldsymbol{\alpha} \in(0, \pi)^{n}$, its cosine vector is

$$
\mathbf{c}=\mathbf{c}_{\alpha}=\left(c_{1}, \ldots, c_{n}\right) \in[-1,1]^{n}, \quad c_{j}:=c\left(\alpha_{j}\right):=\cos \frac{\pi^{2}}{2 \alpha_{j}}
$$

- Note: α_{j} is not special iff $c\left(\alpha_{j}\right) \neq 0$

$$
\alpha_{j} \neq \frac{\pi}{2 k+1}
$$

Inverse problems - notation and definitions

- For $\boldsymbol{\alpha} \in(0, \pi)^{n}$, its cosine vector is

$$
\mathbf{c}=\mathbf{c}_{\boldsymbol{\alpha}}=\left(c_{1}, \ldots, c_{n}\right) \in[-1,1]^{n}, \quad c_{j}:=c\left(\alpha_{j}\right):=\cos \frac{\pi^{2}}{2 \alpha_{j}}
$$

- Note: α_{j} is not special iff $c\left(\alpha_{j}\right) \neq 0$, and α_{j} is not exceptional iff $\left|c\left(\alpha_{j}\right)\right|<1$.

Inverse problems - notation and definitions

- For $\boldsymbol{\alpha} \in(0, \pi)^{n}$, its cosine vector is

$$
\mathbf{c}=\mathbf{c}_{\boldsymbol{\alpha}}=\left(c_{1}, \ldots, c_{n}\right) \in[-1,1]^{n}, \quad c_{j}:=c\left(\alpha_{j}\right):=\cos \frac{\pi^{2}}{2 \alpha_{j}}
$$

- Note: α_{j} is not special iff $c\left(\alpha_{j}\right) \neq 0$, and α_{j} is not exceptional iff $\left|c\left(\alpha_{j}\right)\right|<1$.

$$
\alpha_{j} \neq \frac{\pi}{2 k}
$$

Inverse problems - notation and definitions

- For $\boldsymbol{\alpha} \in(0, \pi)^{n}$, its cosine vector is

$$
\mathbf{c}=\mathbf{c}_{\boldsymbol{\alpha}}=\left(c_{1}, \ldots, c_{n}\right) \in[-1,1]^{n}, \quad c_{j}:=c\left(\alpha_{j}\right):=\cos \frac{\pi^{2}}{2 \alpha_{j}}
$$

- Note: α_{j} is not special iff $c\left(\alpha_{j}\right) \neq 0$, and α_{j} is not exceptional iff $\left|c\left(\alpha_{j}\right)\right|<1$.

Inverse problems - notation and definitions

- For $\boldsymbol{\alpha} \in(0, \pi)^{n}$, its cosine vector is

$$
\mathbf{c}=\mathbf{c}_{\alpha}=\left(c_{1}, \ldots, c_{n}\right) \in[-1,1]^{n}, \quad c_{j}:=c\left(\alpha_{j}\right):=\cos \frac{\pi^{2}}{2 \alpha_{j}}
$$

- Note: α_{j} is not special iff $c\left(\alpha_{j}\right) \neq 0$, and α_{j} is not exceptional iff $\left|c\left(\alpha_{j}\right)\right|<1$.

Definition (Loose equivalence)

We say that two curvilinear polygons $\mathcal{P}(\boldsymbol{\alpha}, \ell)$ and $\tilde{\mathcal{P}}(\tilde{\boldsymbol{\alpha}}, \tilde{\ell})$ are loosely equivalent if one can choose the orientation and the enumeration of vertices of these polygons in such a way that $\ell=\tilde{\ell}$ and either $\mathbf{c}_{\alpha}=\mathbf{c}_{\tilde{\alpha}}$ or $\mathbf{c}_{\alpha}=-\mathbf{c}_{\tilde{\alpha}}$.

Generic conditions

We will assume, at some stage, that our polygons satisfy two generic conditions:

Generic conditions

We will assume, at some stage, that our polygons satisfy two generic conditions:
The lengths $\ell_{1}, \ldots, \ell_{n}$ are incommensurable over $\{-1,0,1\}$

Generic conditions

We will assume, at some stage, that our polygons satisfy two generic conditions:
The lengths $\ell_{1}, \ldots, \ell_{n}$ are incommensurable over $\{-1,0,1\}$
and
There are no special angles among $\alpha_{1}, \ldots, \alpha_{n}$

Generic conditions

We will assume, at some stage, that our polygons satisfy two generic conditions:
The lengths $\ell_{1}, \ldots, \ell_{n}$ are incommensurable over $\{-1,0,1\}$
and

$$
\text { There are no special angles among } \alpha_{1}, \ldots, \alpha_{n}
$$

Definition

The curvilinear polygons satisfying these two conditions will be called admissible.

Generic conditions

We will assume, at some stage, that our polygons satisfy two generic conditions:
The lengths $\ell_{1}, \ldots, \ell_{n}$ are incommensurable over $\{-1,0,1\}$
and

$$
\text { There are no special angles among } \alpha_{1}, \ldots, \alpha_{n}
$$

Definition

The curvilinear polygons satisfying these two conditions will be called admissible.
Subject to admissibility conditions, we have ...

Main Theorem, simplified variant

Before the main result, I state

Main Theorem, simplified variant

Before the main result, I state

Proposition

If two curvilinear polygons are asymptotically isospectral , they have exactly the same quasi-eigenvalues.

Main Theorem, simplified variant

Before the main result, I state

Proposition

their spectra are
asymptotically

$$
o(1) \text {-close }
$$

If two curvilinear polygons are asymptotically isospectral, they have exactly the same quasi-eigenvalues.
all of them!

Main Theorem, simplified variant

Before the main result, I state

Proposition

If two curvilinear polygons are asymptotically isospectral, they have exactly the same quasi-eigenvalues.

Our main result is
Theorem

Main Theorem, simplified variant

Before the main result, I state

Proposition

If two curvilinear polygons are asymptotically isospectral , they have exactly the same quasi-eigenvalues.

Our main result is
Theorem
Let \mathcal{P} and $\tilde{\mathcal{P}}$ be two asymptotically isospectral admissible curvilinear polygons.

Main Theorem, simplified variant

Before the main result, I state

Proposition

If two curvilinear polygons are asymptotically isospectral , they have exactly the same quasi-eigenvalues.

Our main result is
Theorem
Let \mathcal{P} and $\tilde{\mathcal{P}}$ be two asymptotically isospectral admissible curvilinear polygons. their spectra are o(1)-close at ∞

Main Theorem, simplified variant

Before the main result, I state

Proposition

If two curvilinear polygons are asymptotically isospectral , they have exactly the same quasi-eigenvalues.

Our main result is
Theorem
Let \mathcal{P} and $\tilde{\mathcal{P}}$ be two asymptotically isospectral admissible curvilinear polygons. Assume additionally that \mathcal{P} is not exceptional.

Main Theorem, simplified variant

Before the main result, I state

Proposition

If two curvilinear polygons are asymptotically isospectral , they have exactly the same quasi-eigenvalues.

Our main result is
Theorem
Let \mathcal{P} and $\tilde{\mathcal{P}}$ be two asymptotically isospectral admissible curvilinear polygons. Assume additionally that \mathcal{P} is not exceptional.

This can be dropped; the statement becomes
slightly more complicated; it will come later

Main Theorem, simplified variant

Before the main result, I state

Proposition

If two curvilinear polygons are asymptotically isospectral , they have exactly the same quasi-eigenvalues.

Our main result is
Theorem
Let \mathcal{P} and $\tilde{\mathcal{P}}$ be two asymptotically isospectral admissible curvilinear polygons. Assume additionally that \mathcal{P} is not exceptional. Then \mathcal{P} and $\tilde{\mathcal{P}}$ are loosely equivalent.

Main Theorem, simplified variant

Before the main result, I state

Proposition

If two curvilinear polygons are asymptotically isospectral , they have exactly the same quasi-eigenvalues.

Our main result is

Theorem

Let \mathcal{P} and $\tilde{\mathcal{P}}$ be two asymptotically isospectral admissible curvilinear polygons. Assume additionally that \mathcal{P} is not exceptional. Then \mathcal{P} and $\tilde{\mathcal{P}}$ are loosely equivalent.
ℓ and $\tilde{\ell}$ are the same
modulo a cyclic shift
and a change of orientation;
cosine vectors $\mathbf{c}_{\boldsymbol{\alpha}}$ and $\mathbf{c}_{\tilde{\alpha}}$
are the same
up to a change of sign

Main Theorem, simplified variant

Before the main result, I state

Proposition

If two curvilinear polygons are asymptotically isospectral , they have exactly the same quasi-eigenvalues.

Our main result is
Theorem
Let \mathcal{P} and $\tilde{\mathcal{P}}$ be two asymptotically isospectral admissible curvilinear polygons. Assume additionally that \mathcal{P} is not exceptional. Then \mathcal{P} and $\tilde{\mathcal{P}}$ are loosely equivalent.

Main Theorem, simplified variant

Before the main result, I state

Proposition

If two curvilinear polygons are asymptotically isospectral , they have exactly the same quasi-eigenvalues.

Our main result is

Theorem

Let \mathcal{P} and $\tilde{\mathcal{P}}$ be two asymptotically isospectral admissible curvilinear polygons. Assume additionally that \mathcal{P} is not exceptional. Then \mathcal{P} and $\tilde{\mathcal{P}}$ are loosely equivalent.

Corollary

Given the spectrum Σ of an admissible non-exceptional polygon \mathcal{P}, we can recover its number of vertices, side lengths up to change of orientation and cyclic shifts, and the cosine vector up to a change of sign.

Main Theorem, simplified variant

Before the main result, I state

Proposition

If two curvilinear polygons are asymptotically isospectral , they have exactly the same quasi-eigenvalues.

Our main result is

Theorem

Let \mathcal{P} and $\tilde{\mathcal{P}}$ be two asymptotically isospectral admissible curvilinear polygons. Assume additionally that \mathcal{P} is not exceptional. The equivalent.

Corollary

Given the spectrum Σ of an admissible non-exceptional polygon \mathcal{P}, we can recover its number of vertices, side lengths up to change of orientation and cyclic shifts, and the cosine vector up to a change of sign.

Main Theorem, simplified variant

Before the main result, I state

Proposition

If two curvilinear polygons are asymptotically isospectral , they have exactly the same quasi-eigenvalues.

Our main result is

Theorem

Let \mathcal{P} and $\tilde{\mathcal{P}}$ be two asymptotically isospectral admissible curvilinear polygons. Assume additionally that \mathcal{P} is not exceptional. Then \mathcal{P} and $\tilde{\mathcal{P}}$ are loosely equivalent.

Corollary

Given the spectrum Σ of an admissible non-exceptional polygon \mathcal{P}, we can recover its number of vertices, side lengths up to change of orientation and cyclic shifts, and the cosine vector up to a change of sign.

Ideas of Proof

Inverse Problem I: $\mathrm{QE} \rightarrow F$, recover a trigonometric polynomial by its roots

Ideas of Proof

Inverse Problem I: $\mathrm{QE} \rightarrow F$, recover a trigonometric polynomial by its roots
This is just a variant of Hadamard-Weierstrass Factorisation Theorem:

Ideas of Proof

Inverse Problem I: $\mathrm{QE} \rightarrow F$, recover a trigonometric polynomial by its roots

This is just a variant of Hadamard-Weierstrass Factorisation Theorem:

Theorem

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an even entire function of order one with a zero of order $2 m_{0}$ at $z=0$, and non-zero zeros $\pm \gamma_{j}$ repeated with multiplicities; denote by Γ the sequence (with multiplicities) consisting of $m_{0} z e r o s$ and γ_{j}.

Ideas of Proof

Inverse Problem I: $\mathrm{QE} \rightarrow F$, recover a trigonometric polynomial by its roots
This is just a variant of Hadamard-Weierstrass Factorisation Theorem:
$-\inf \left\{r \in \mathbb{R}: f(z)=O\left(\mathrm{e}^{|z|^{r}}\right)\right.$ as $\left.|z| \rightarrow \infty\right\}=1$
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an even entire function of order one with a zero of order $2 m_{0}$ at $z=0$, and non-zero zeros $\pm \gamma_{j}$ repeated with multiplicities; denote by Γ the sequence (with multiplicities) consisting of $m_{0} z e r o s$ and γ_{j}.

Ideas of Proof

Inverse Problem I: $\mathrm{QE} \rightarrow F$, recover a trigonometric polynomial by its roots

This is just a variant of Hadamard-Weierstrass Factorisation Theorem:

Theorem

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an even entire function of order one with a zero of order $2 m_{0}$ at $z=0$, and non-zero zeros $\pm \gamma_{j}$ repeated with multiplicities; denote by Γ the sequence (with multiplicities) consisting of m_{0} zeros and γ_{j}. Then there exists a constant C such that

$$
f(z)=C Q_{\Gamma}(z), \quad Q_{\Gamma}(z):=z^{2 m_{0}} \prod_{\gamma_{j} \in \Gamma \backslash\{0\}}\left(1-\frac{z^{2}}{\gamma_{j}^{2}}\right) .
$$

Ideas of Proof

Inverse Problem I: $\mathrm{QE} \rightarrow F$, recover a trigonometric polynomial by its roots

This is just a variant of Hadamard-Weierstrass Factorisation Theorem:

Theorem

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an even entire function of order one with a zero of order $2 m_{0}$ at $z=0$, and non-zero zeros $\pm \gamma_{j}$ repeated with multiplicities; denote by Γ the sequence (with multiplicities) consisting of m_{0} zeros and γ_{j}. Then there exists a constant C such that

$$
f(z)=C Q_{\Gamma}(z), \quad Q_{\Gamma}(z):=z^{2 m_{0}} \prod_{\gamma_{j} \in \Gamma \backslash\{0\}}\left(1-\frac{z^{2}}{\gamma_{j}^{2}}\right) .
$$

Proof.

Hadamard-Weierstrass Theorem immediately gives the result with an extra factor $\mathrm{e}^{g(z)}$, where $g(z)$ is linear.

Ideas of Proof

Inverse Problem I: $\mathrm{QE} \rightarrow F$, recover a trigonometric polynomial by its roots

This is just a variant of Hadamard-Weierstrass Factorisation Theorem:

Theorem

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an even entire function of order one with a zero of order $2 m_{0}$ at $z=0$, and non-zero zeros $\pm \gamma_{j}$ repeated with multiplicities; denote by Γ the sequence (with multiplicities) consisting of m_{0} zeros and γ_{j}. Then there exists a constant C such that

$$
f(z)=C Q_{\Gamma}(z), \quad Q_{\Gamma}(z):=z^{2 m_{0}} \prod_{\gamma_{j} \in \Gamma \backslash\{0\}}\left(1-\frac{z^{2}}{\gamma_{j}^{2}}\right) .
$$

Proof.

Hadamard-Weierstrass Theorem immediately gives the result with an extra factor $\mathrm{e}^{g(z)}$, where $g(z)$ is linear. But since f is even, so is g, which is therefore a constant.

Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

$$
F_{\boldsymbol{\alpha}, \ell}(\tau)=\sum_{k=1}^{\# \mathcal{T}} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \quad \mathcal{T}:=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\}
$$

We want to find all t_{k}, r_{k} from the infinite product $Q_{\mathrm{QE}}(\tau)$.

Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

$$
\Gamma_{Q_{\mathrm{QE}}(\tau):=\tau^{2 m_{0}} \prod_{\tau_{j} \in \mathrm{QE} \backslash\{0\}}^{\# \mathcal{T}}\left(1-\frac{\tau^{2}}{\tau_{j}^{2}}\right)} \quad \mathcal{T}:=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\} .
$$

We want to find all t_{k}, r_{k} from the infinite product $Q_{\mathrm{QE}}(\tau)$.

Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

$$
F_{\boldsymbol{\alpha}, \ell}(\tau)=\sum_{k=1}^{\# \mathcal{T}} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \quad \mathcal{T}:=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\}
$$

We want to find all t_{k}, r_{k} from the infinite product $Q_{\mathrm{QE}}(\tau)$. Define

$$
\mathbf{M}[f]:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(s) \mathrm{d} s
$$

Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

$$
F_{\boldsymbol{\alpha}, \ell}(\tau)=\sum_{k=1}^{\# \mathcal{T}} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \quad \mathcal{T}:=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\}
$$

We want to find all t_{k}, r_{k} from the infinite product $Q_{\mathrm{QE}}(\tau)$. Define

$$
\mathbf{M}[f]:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(s) \mathrm{d} s
$$

> Besicovitch mean of an almost periodic function f

Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

$$
F_{\boldsymbol{\alpha}, \boldsymbol{\ell}}(\tau)=\sum_{k=1}^{\# \mathcal{T}} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \quad \mathcal{T}:=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\}
$$

We want to find all t_{k}, r_{k} from the infinite product $Q_{\mathrm{QE}}(\tau)$. Define

$$
\mathbf{M}[f]:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(s) \mathrm{d} s, \quad(\mathcal{A}[f])(z):=\mathbf{M}\left[\mathrm{e}^{-\mathrm{i} \mathrm{~s} z} f(s)\right]
$$

Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

$$
F_{\boldsymbol{\alpha}, \boldsymbol{\ell}}(\tau)=\sum_{k=1}^{\# \mathcal{T}} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \quad \mathcal{T}:=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\}
$$

We want to find all t_{k}, r_{k} from the infinite product $Q_{\mathrm{QE}}(\tau)$. Define

$$
\mathbf{M}[f]:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(s) \mathrm{d} s, \quad(\mathcal{A}[f])(z):=\mathbf{M}\left[\mathrm{e}^{-\mathrm{i} \mathrm{~s} z} f(s)\right]
$$

Then

$$
\mathcal{T}=\{z \geq 0: \mathcal{A}[Q](z) \neq 0\}
$$

Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

$$
F_{\boldsymbol{\alpha}, \boldsymbol{\ell}}(\tau)=\sum_{k=1}^{\# \mathcal{T}} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \quad \mathcal{T}:=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\}
$$

We want to find all t_{k}, r_{k} from the infinite product $Q_{\mathrm{QE}}(\tau)$. Define

$$
\mathbf{M}[f]:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(s) \mathrm{d} s, \quad(\mathcal{A}[f])(z):=\mathbf{M}\left[\mathrm{e}^{-\mathrm{i} s z} f(s)\right]
$$

Then

$$
\mathcal{T}=\{z \geq 0: \mathcal{A}[Q](z) \neq 0\}, \quad r_{j}=2 C \mathcal{A}[Q]\left(t_{j}\right)
$$

Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

$$
F_{\boldsymbol{\alpha}, \boldsymbol{\ell}}(\tau)=\sum_{k=1}^{\# \mathcal{T}} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \quad \mathcal{T}:=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\}
$$

We want to find all t_{k}, r_{k} from the infinite product $Q_{\mathrm{QE}}(\tau)$. Define

$$
\mathbf{M}[f]:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(s) \mathrm{d} s, \quad(\mathcal{A}[f])(z):=\mathbf{M}\left[\mathrm{e}^{-\mathrm{i} s z} f(s)\right]
$$

Then

$$
\mathcal{T}=\{z \geq 0: \mathcal{A}[Q](z) \neq 0\}, \quad r_{j}=2 C \mathcal{A}[Q]\left(t_{j}\right), \quad r_{0}=-C \mathcal{A}[Q](0),
$$

Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

$$
F_{\boldsymbol{\alpha}, \ell}(\tau)=\sum_{k=1}^{\# \mathcal{T}} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \quad \mathcal{T}:=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\}
$$

We want to find all t_{k}, r_{k} from the infinite product $Q_{\mathrm{QE}}(\tau)$. Define

$$
\mathbf{M}[f]:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(s) \mathrm{d} s, \quad(\mathcal{A}[f])(z):=\mathbf{M}\left[\mathrm{e}^{-\mathrm{i} s z} f(s)\right]
$$

Then

$$
\mathcal{T}=\{z \geq 0: \mathcal{A}[Q](z) \neq 0\}, \quad r_{j}=2 C \mathcal{A}[Q]\left(t_{j}\right), \quad r_{0}=-C \mathcal{A}[Q](0),
$$

with C found from $2 C \mathcal{A}[Q](\max \mathcal{T})=1$.

Ideas of Proof

Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

$$
F_{\boldsymbol{\alpha}, \ell}(\tau)=\sum_{k=1}^{\# \mathcal{T}} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \quad \mathcal{T}:=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\}
$$

We want to find all t_{k}, r_{k} from the infinite product $Q_{\mathrm{QE}}(\tau)$. Define

$$
\mathbf{M}[f]:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(s) \mathrm{d} s, \quad(\mathcal{A}[f])(z):=\mathbf{M}\left[\mathrm{e}^{-\mathrm{i} \mathrm{~s} z} f(s)\right]
$$

Then

$$
\mathcal{T}=\{z \geq 0: \underset{\text { our polynomials are normalised }}{[\cap \cap](\sim)} \subset \cap) \underset{\sim}{\sim} C Q]\left(t_{j}\right), \quad r_{0}=-C \mathcal{A}[Q](0),
$$

with C found from $2 C \mathcal{A}[Q](\max \mathcal{T})=1$.

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Question

Does an $o(1)$-asymptotics of roots of a trigonometric function determine this function up to multiplication by a constant?

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Question

Does an $o(1)$-asymptotics of roots of a trigonometric function determine this function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr [2020].

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Question

Does an $o(1)$-asymptotics of roots of a trigonometric function determine this function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr [2020].

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Question

Does an $o(1)$-asymptotics of roots of a trigonometric function determine this function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr [2020].
Kurasov and Suhr's result immediately implies our Proposition.

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Question

Does an $o(1)$-asymptotics of roots of a trigonometric function determine this function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr [2020].
Kurasov and Suhr's result immediately implies our Proposition.

Asymptotically isospectral curvilinear polygons
have the same quasi-eigenvalues

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Question

Does an $o(1)$-asymptotics of roots of a trigonometric function determine this function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr [2020].

Kurasov and Suhr's result immediately implies our Proposition. But their proof is not constructive, and we want an algorithmic procedure, so we prove instead...

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Question

Does an $o(1)$-asymptotics of roots of a trigonometric function determine this function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr [2020].

Kurasov and Suhr's result immediately implies our Proposition. But their proof is not constructive, and we want an algorithmic procedure, so we prove instead...

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Proposition

If Σ is the spectrum of a curvilinear polygon $\mathcal{P}(\boldsymbol{\alpha}, \ell)$ then

$$
F_{\alpha, \ell}(\tau)=C Q_{\Sigma}(\tau)+o(1) \quad \text { as } \tau \rightarrow+\infty
$$

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Proposition

$$
Q_{\Sigma}(\tau):=\tau^{2 n_{0}} \prod_{\sigma_{j} \in \Sigma \backslash\{0\}}\left(1-\frac{\tau^{2}}{\sigma_{j}^{2}}\right)
$$

If Σ is the spectrum of a curvilinear polygon $\mathcal{P}(\boldsymbol{\alpha}, \ell)$ then

$$
F_{\boldsymbol{\alpha}, \ell}(\tau)=C Q_{\Sigma}(\tau)+o(1) \quad \text { as } \tau \rightarrow+\infty .
$$

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Proposition

If Σ is the spectrum of a curvilinear polygon $\mathcal{P}(\boldsymbol{\alpha}, \ell)$ then

$$
F_{\boldsymbol{\alpha}, \ell}(\tau)=C Q_{\Sigma}(\tau)+o(1) \quad \text { as } \tau \rightarrow+\infty
$$

Remarks

- Our statement requires a qualified convergence $\sigma_{m}-\tau_{m}=O\left(m^{-\epsilon}\right)$ as $m \rightarrow \infty$ rather than $o(1)$.

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Proposition

If Σ is the spectrum of a curvilinear polygon $\mathcal{P}(\boldsymbol{\alpha}, \ell)$ then

$$
F_{\alpha, \ell}(\tau)=C Q_{\Sigma}(\tau)+o(1) \quad \text { as } \tau \rightarrow+\infty .
$$

Remarks

- Our statement requires a qualified convergence $\sigma_{m}-\tau_{m}=O\left(m^{-\epsilon}\right)$ as $m \rightarrow \infty$ rather than $o(1)$.
- Proof is based on a technical bound $\lim _{\tau \rightarrow \infty}\left(Q_{\Sigma}(\tau)-C_{0} Q_{\mathrm{QE}}(\tau)\right)=0$ with some constant C_{0}.

Ideas of Proof

Inverse Problem II: $\Sigma \rightarrow F$, recover a trigonometric polynomial by its approximate roots

Proposition

If Σ is the spectrum of a curvilinear polygon $\mathcal{P}(\boldsymbol{\alpha}, \ell)$ then

$$
F_{\alpha, \ell}(\tau)=C Q_{\Sigma}(\tau)+o(1) \quad \text { as } \tau \rightarrow+\infty .
$$

Remarks

- Our statement requires a qualified convergence $\sigma_{m}-\tau_{m}=O\left(m^{-\epsilon}\right)$ as $m \rightarrow \infty$ rather than $o(1)$.
- Proof is based on a technical bound $\lim _{\tau \rightarrow \infty}\left(Q_{\Sigma}(\tau)-C_{0} Q_{\mathrm{QE}}(\tau)\right)=0$ with some constant C_{0}.
- Allows the recovery of the frequencies and amplitudes of $F_{\boldsymbol{\alpha}, \ell}(\tau)$ as before since $\mathcal{A}[f+o(1)](z)=\mathcal{A}[f](z)$ for all z.

Ideas of Proof

Inverse Problem III: $F \rightarrow \ell, \pm \mathbf{c}_{\alpha}$, recover geometric information from a trigonometric polynomial
At this step, we need our admissibility conditions.

Ideas of Proof

Inverse Problem III: $F \rightarrow \ell, \pm \mathbf{c}_{\alpha}$, recover geometric information from a trigonometric polynomial
At this step, we need our admissibility conditions.
ℓ incommensurable over $\{-1,1,0\}$; no special angles

Ideas of Proof

Inverse Problem III: $F \rightarrow \ell, \pm \mathbf{c}_{\alpha}$, recover geometric information from a trigonometric polynomial
At this step, we need our admissibility conditions.
$F_{\boldsymbol{\alpha}, \ell}(\tau)=\sum_{k=1}^{T} r_{k} \cos \left(t_{k} \tau\right)-r_{0}$,

Ideas of Proof

Inverse Problem III: $F \rightarrow \ell, \pm \mathbf{c}_{\alpha}$, recover geometric information from a trigonometric polynomial
At this step, we need our admissibility conditions.
$F_{\boldsymbol{\alpha}, \ell}(\tau)=\sum_{k=1}^{T} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \mathcal{T}=\left\{|\ell \cdot \zeta|: \zeta \in \mathfrak{Z}_{+}^{n}\right\}=\left\{t_{1} \leq t_{2} \leq \cdots \leq t_{T}\right\}$.
Admissibility conditions guarantee that

Ideas of Proof

Inverse Problem III: $F \rightarrow \ell, \pm \mathbf{c}_{\alpha}$, recover geometric information from a trigonometric polynomial
At this step, we need our admissibility conditions.
$F_{\boldsymbol{\alpha}, \ell}(\tau)=\sum_{k=1}^{T} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \mathcal{T}=\left\{|\ell \cdot \zeta|: \zeta \in \mathfrak{Z}_{+}^{n}\right\}=\left\{t_{1} \leq t_{2} \leq \cdots \leq t_{T}\right\}$.
Admissibility conditions guarantee that (i) all t_{k} are positive and distinct;

Ideas of Proof

Inverse Problem III: $F \rightarrow \ell, \pm \mathbf{c}_{\alpha}$, recover geometric information from a trigonometric polynomial
At this step, we need our admissibility conditions.
$F_{\boldsymbol{\alpha}, \ell}(\tau)=\sum_{k=1}^{T} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \mathcal{T}=\left\{|\ell \cdot \zeta|: \zeta \in \mathfrak{Z}_{+}^{n}\right\}=\left\{t_{1} \leq t_{2} \leq \cdots \leq t_{T}\right\}$.
Admissibility conditions guarantee that (i) all t_{k} are positive and distinct; (ii) all coefficients r_{k} are non-zero;

Ideas of Proof

Inverse Problem III: $F \rightarrow \ell, \pm \mathbf{c}_{\alpha}$, recover geometric information from a trigonometric polynomial
At this step, we need our admissibility conditions.
$F_{\boldsymbol{\alpha}, \ell}(\tau)=\sum_{k=1}^{T} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \mathcal{T}=\left\{|\ell \cdot \zeta|: \zeta \in \mathfrak{Z}_{+}^{n}\right\}=\left\{t_{1} \leq t_{2} \leq \cdots \leq t_{T}\right\}$.
Admissibility conditions guarantee that (i) all t_{k} are positive and distinct; (ii) all coefficients r_{k} are non-zero; (iii) $T=2^{n-1}$.

Ideas of Proof

Inverse Problem III: $F \rightarrow \ell, \pm \mathbf{c}_{\alpha}$, recover geometric information from a trigonometric polynomial
At this step, we need our admissibility conditions.
$F_{\boldsymbol{\alpha}, \ell}(\tau)=\sum_{k=1}^{T} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \mathcal{T}=\left\{|\ell \cdot \zeta|: \zeta \in \mathfrak{Z}_{+}^{n}\right\}=\left\{t_{1} \leq t_{2} \leq \cdots \leq t_{T}\right\}$.
Admissibility conditions guarantee that (i) all t_{k} are positive and distinct; (ii) all coefficients r_{k} are non-zero; (iii) $T=2^{n-1}$.
immediately gives us the number of vertices n

Ideas of Proof

Inverse Problem III: $F \rightarrow \ell, \pm \mathbf{c}_{\alpha}$, recover geometric information from a trigonometric polynomial
At this step, we need our admissibility conditions.
$F_{\boldsymbol{\alpha}, \ell}(\tau)=\sum_{k=1}^{T} r_{k} \cos \left(t_{k} \tau\right)-r_{0}, \mathcal{T}=\left\{|\ell \cdot \zeta|: \zeta \in \mathfrak{Z}_{+}^{n}\right\}=\left\{t_{1} \leq t_{2} \leq \cdots \leq t_{T}\right\}$.
Admissibility conditions guarantee that (i) all t_{k} are positive and distinct; (ii) all coefficients r_{k} are non-zero; (iii) $T=2^{n-1}$.

We will first find ℓ^{\prime} - the permutation of the vector of length in order of magnitude, $\ell_{1}^{\prime}<\ell_{2}^{\prime}<\cdots<\ell_{n}^{\prime}$.

Easier to show on a concrete example. We will not need r_{k} 's at this stage.

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlr}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & t_{j} \in \mathcal{T}=\left\{|\ell \cdot \boldsymbol{\zeta}|: \zeta \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau)
\end{array}
$$

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlr}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \zeta \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlr}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

- Look for the maximal frequency t_{8}

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlr}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23
$$

- Look for the maximal frequency $t_{8}=23$

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlr}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23
$$

- Look for the next biggest frequency t_{7}

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rll}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?=\quad t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau)
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23 \quad \ell^{\prime}=(2
$$

- Look for the next biggest frequency $t_{7}=19=L-2 \ell_{1}^{\prime}=23-2 \times 2$

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlr}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23 \quad \ell^{\prime}=(2
$$

- The next biggest frequency is t_{6}

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rll}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & t_{j} \in \mathcal{T}=\left\{|\ell \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau)
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23 \quad \ell^{\prime}=(2,3
$$

- The next biggest frequency is $t_{6}=17=L-2 \ell_{2}^{\prime}=23-2 \times 3$

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlr}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23 \quad \ell^{\prime}=(2,3,
$$

- Remove all remaining frequencies in which either ℓ_{1}^{\prime} or ℓ_{2}^{\prime} or both come with a minus: $13=23-2 \times 2-2 \times 3$

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlr}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23 \quad \ell^{\prime}=(2,3,
$$

- Remove all remaining frequencies in which either ℓ_{1}^{\prime} or ℓ_{2}^{\prime} or both come with a minus: $13=23-2 \times 2-2 \times 3$

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlrl}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & & t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23 \quad \ell^{\prime}=(2,3,
$$

- The biggest remaining frequency is t_{4}

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rll}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?=\quad t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23 \quad \ell^{\prime}=(2,3,7
$$

- The biggest remaining frequency is $t_{4}=9=L-2 \ell_{3}^{\prime}=23-2 \times 7$

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlr}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \boldsymbol{\zeta} \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23 \quad \ell^{\prime}=(2,3,7
$$

- Remove all remaining frequencies in which any of $\ell_{1}^{\prime}, \ell_{2}^{\prime}$, or ℓ_{3}^{\prime} comes with a minus

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlr}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \zeta \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23 \quad \ell^{\prime}=(2,3,7,
$$

- Remove all remaining frequencies in which any of $\ell_{1}^{\prime}, \ell_{2}^{\prime}$, or ℓ_{3}^{\prime} comes with a minus

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlr}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?= & t_{j} \in \mathcal{T}=\left\{|\boldsymbol{\ell} \cdot \boldsymbol{\zeta}|: \zeta \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \tau)+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23 \quad \ell^{\prime}=(2,3,7,
$$

remaining frequency is t_{1}

Ideas of Proof

Inverse Problem III: recover ℓ^{\prime}

Example (we don't care about amplitudes for now; terms ordered by frequencies):

$$
\begin{array}{rlr}
F(\tau) & =\sum_{j=1}^{8} ? \cos \left(t_{j} \tau\right)-?=\quad & t_{j} \in \mathcal{T}=\left\{|\ell \cdot \zeta|: \zeta \in \mathfrak{Z}_{+}^{n}\right\} \\
& ? \cos (1 \tau)+? \cos (3 \tau)+? \cos (5 \tau)+? \cos (9 \tau) \\
& ? \cos (13 \mathcal{I})+? \cos (17 \tau)+? \cos (19 \tau)+\cos (23 \tau) .
\end{array}
$$

Eight terms, so $n=4$.

$$
L=23 \quad \ell^{\prime}=(2,3,7,11)
$$

remaining frequency is $t_{1}=1=L-2 \ell_{4}^{\prime}=23-2 \times 11$

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

Now we can look at the full polynomial

$$
\begin{aligned}
F(\tau) & =\sum_{j=1}^{8} r_{j} \cos \left(t_{j} \tau\right)-r_{0} \\
& =\frac{1}{3} \cos (\tau)-\frac{1}{60} \cos (3 \tau)+\frac{1}{8} \cos (5 \tau)+\frac{1}{10} \cos (9 \tau) \\
& -\frac{2}{15} \cos (13 \tau)-\frac{1}{6} \cos (17 \tau)+\frac{1}{20} \cos (19 \tau)+\cos (23 \tau)+\frac{\sqrt{3}}{2 \sqrt{2}}
\end{aligned}
$$

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

Now we can look at the full polynomial

$$
\begin{aligned}
F(\tau) & =\sum_{j=1}^{8} r_{j} \cos \left(t_{j} \tau\right)-r_{0} \\
& =\frac{1}{3} \cos (\tau)-\frac{1}{60} \cos (3 \tau)+\frac{1}{8} \cos (5 \tau)+\frac{1}{10} \cos (9 \tau) \\
& -\frac{2}{15} \cos (13 \tau)-\frac{1}{6} \cos (17 \tau)+\frac{1}{20} \cos (19 \tau)+\cos (23 \tau)+\frac{\sqrt{3}}{2 \sqrt{2}}
\end{aligned}
$$

Each of the frequencies t_{j} is written as a linear combination of ℓ_{k}^{\prime} with + 's or - 's; write then

$$
r_{j}=R_{\mathcal{J}_{k}}^{\prime}, \quad \text { where } \mathcal{J}_{k}=\{\text { positions of minuses }\}
$$

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

Now we can look at the full polynomial

$$
\begin{aligned}
F(\tau) & =\sum_{j=1}^{8} r_{j} \cos \left(t_{j} \tau\right)-r_{0} \\
& =\frac{1}{3} \cos (\tau)-\frac{1}{60} \cos (3 \tau)+\frac{1}{8} \cos (5 \tau)+\frac{1}{10} \cos (9 \tau) \\
& -\frac{2}{15} \cos (13 \tau)-\frac{1}{6} \cos (17 \tau)+\frac{1}{20} \cos (19 \tau)+\cos (23 \tau)+\frac{\sqrt{3}}{2 \sqrt{2}}
\end{aligned}
$$

Each of the frequencies t_{j} is written as a linear combination of ℓ_{k}^{\prime} with + 's or - 's; write then

$$
r_{j}=R_{\mathcal{J}_{k}}^{\prime}, \quad \text { where } \mathcal{J}_{k}=\{\text { positions of minuses }\}
$$

For example, $t_{3}=5=-2+3-7+11=-\ell_{1}^{\prime}+\ell_{2}^{\prime}-\ell_{3}^{\prime}+\ell_{4}^{\prime}$, so that we write $r_{3}=\frac{1}{8}=R_{1,3}^{\prime}=R_{2,4}^{\prime}$.

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

Now we can look at the full polynomial

$$
\begin{aligned}
F(\tau) & =\sum_{j=1}^{8} r_{j} \cos \left(t_{j} \tau\right)-r_{0} \\
& =\frac{1}{3} \cos (\tau)-\frac{1}{60} \cos (3 \tau)+\frac{1}{8} \cos (5 \tau)+\frac{1}{10} \cos (9 \tau) \\
& -\frac{2}{15} \cos (13 \tau)-\frac{1}{6} \cos (17 \tau)+\frac{1}{20} \cos (19 \tau)+\cos (23 \tau)+\frac{\sqrt{3}}{2 \sqrt{2}}
\end{aligned}
$$

Each of the frequencies t_{j} is written as a linear combination of ℓ_{k}^{\prime} with + 's or - 's; write then

$$
r_{j}=R_{\mathcal{J}_{k}}^{\prime}, \quad \text { where } \mathcal{J}_{k}=\{\text { positions of minuses }\}
$$

For example, $t_{3}=5=-2+3-7+11=-\ell_{1}^{\prime}+\ell_{2}^{\prime}-\ell_{3}^{\prime}+\ell_{4}^{\prime}$, so that we write $r_{3}=\frac{1}{8}=R_{1,3}^{\prime}=R_{2,4}^{\prime}$. Continuing - we are only interested in coefficients with one or two (or $n-1, n-2$) minuses

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

Now we can look at the full polynomial

$$
\begin{aligned}
F(\tau) & =\sum_{j=1}^{8} r_{j} \cos \left(t_{j} \tau\right)-r_{0} \\
& =\frac{1}{3} \cos (\tau)-\frac{1}{60} \cos (3 \tau)+\frac{1}{8} \cos (5 \tau)+\frac{1}{10} \cos (9 \tau) \\
& -\frac{2}{15} \cos (13 \tau)-\frac{1}{6} \cos (17 \tau)+\frac{1}{20} \cos (19 \tau)+\cos (23 \tau)+\frac{\sqrt{3}}{2 \sqrt{2}} \\
& =R_{4,4}^{\prime} \cos (\tau)+R_{2,3}^{\prime} \cos (3 \tau)+R_{1,3}^{\prime} \cos (5 \tau)+R_{3,3}^{\prime} \cos (9 \tau) \\
& +R_{3,4}^{\prime} \cos (13 \tau)+R_{2,2}^{\prime} \cos (17 \tau)+R_{1,1}^{\prime} \cos (19 \tau)+\cos (23 \tau)+\frac{\sqrt{3}}{2 \sqrt{2}} .
\end{aligned}
$$

Each of the frequencies t_{j} is written as a linear combination of ℓ_{k}^{\prime} with + 's or - 's; write then

$$
r_{j}=R_{\mathcal{J}_{k}}^{\prime}, \quad \text { where } \mathcal{J}_{k}=\{\text { positions of minuses }\} .
$$

For example, $t_{3}=5=-2+3-7+11=-\ell_{1}^{\prime}+\ell_{2}^{\prime}-\ell_{3}^{\prime}+\ell_{4}^{\prime}$, so that we write $r_{3}=\frac{1}{8}=R_{1,3}^{\prime}=R_{2,4}^{\prime}$.

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

Now we can look at the full polynomial

$$
\begin{aligned}
F(\tau) & =\sum_{j=1}^{8} r_{j} \cos \left(t_{j} \tau\right)-r_{0} \\
& =\frac{1}{3} \cos (\tau)-\frac{1}{60} \cos (3 \tau)+\frac{1}{8} \cos (5 \tau)+\frac{1}{10} \cos (9 \tau) \\
& -\frac{2}{15} \cos (13 \tau)-\frac{1}{6} \cos (17 \tau)+\frac{1}{20} \cos (19 \tau)+\cos (23 \tau)+\frac{\sqrt{3}}{2 \sqrt{2}} \\
& =R_{4,4}^{\prime} \cos (\tau)+R_{2,3}^{\prime} \cos (3 \tau)+R_{1,3}^{\prime} \cos (5 \tau)+R_{3,3}^{\prime} \cos (9 \tau) \\
& +R_{3,4}^{\prime} \cos (13 \tau)+R_{2,2}^{\prime} \cos (17 \tau)+R_{1,1}^{\prime} \cos (19 \tau)+\cos (23 \tau)+\frac{\sqrt{3}}{2 \sqrt{2}} .
\end{aligned}
$$

Write now the coefficients as a matrix,

$$
R^{\prime}=\left(R_{p, q}^{\prime}\right)_{p, q,=1}^{n}=\left(\begin{array}{cccc}
\frac{1}{20} & -\frac{2}{15} & \frac{1}{8} & -\frac{1}{60} \\
-\frac{2}{15} & -\frac{1}{6} & -\frac{1}{60} & \frac{1}{8} \\
\frac{1}{8} & -\frac{1}{60} & \frac{1}{10} & -\frac{2}{15} \\
-\frac{1}{60} & \frac{1}{8} & -\frac{2}{15} & -\frac{1}{3}
\end{array}\right)
$$

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathbf{c}_{\boldsymbol{\alpha}}$

Write now the coefficients as a matrix,

$$
R^{\prime}=\left(R_{p, q}^{\prime}\right)_{p, q,=1}^{n}=\left(\begin{array}{cccc}
\frac{1}{20} & -\frac{2}{15} & \frac{1}{8} & -\frac{1}{60} \\
-\frac{2}{15} & -\frac{1}{6} & -\frac{1}{60} & \frac{1}{8} \\
\frac{1}{8} & -\frac{1}{60} & \frac{1}{10} & -\frac{2}{15} \\
-\frac{1}{60} & \frac{1}{8} & -\frac{2}{15} & -\frac{1}{3}
\end{array}\right)
$$

We will now use this matrix to recover the correct order of sides and the cosine vector. We need to find the permutation $\left(m_{k}\right)$ such that $\ell_{k}^{\prime}=\ell_{m_{k}}$.

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

Write now the coefficients as a matrix,

$$
R^{\prime}=\left(R_{p, q}^{\prime}\right)_{p, q,=1}^{n}=\left(\begin{array}{cccc}
\frac{1}{20} & -\frac{2}{15} & \frac{1}{8} & -\frac{1}{60} \\
-\frac{2}{15} & -\frac{1}{6} & -\frac{1}{60} & \frac{1}{8} \\
\frac{1}{8} & -\frac{1}{60} & \frac{1}{10} & -\frac{2}{15} \\
-\frac{1}{60} & \frac{1}{8} & -\frac{2}{15} & -\frac{1}{3}
\end{array}\right)
$$

We will now use this matrix to recover the correct order of sides and the cosine vector. We need to find the permutation $\left(m_{k}\right)$ such that $\ell_{k}^{\prime}=\ell_{m_{k}}$. Trick: create another symmetric matrix

$$
D^{\prime}=\left(\frac{R_{j, j}^{\prime} R_{k, k}^{\prime}}{R_{j, k}^{\prime}}\right)_{j, k=1}^{n}
$$

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathbf{c}_{\boldsymbol{\alpha}}$

Write now the coefficients as a matrix,

$$
R^{\prime}=\left(R_{p, q}^{\prime}\right)_{p, q,=1}^{n}=\left(\begin{array}{cccc}
\frac{1}{20} & -\frac{2}{15} & \frac{1}{8} & -\frac{1}{60} \\
-\frac{2}{15} & -\frac{1}{6} & -\frac{1}{60} & \frac{1}{8} \\
\frac{1}{8} & -\frac{1}{60} & \frac{1}{10} & -\frac{2}{15} \\
-\frac{1}{60} & \frac{1}{8} & -\frac{2}{15} & -\frac{1}{3}
\end{array}\right)
$$

We will now use this matrix to recover the correct order of sides and the cosine vector. We need to find the permutation $\left(m_{k}\right)$ such that $\ell_{k}^{\prime}=\ell_{m_{k}}$. Trick: create another symmetric matrix

$$
D^{\prime}=\left(\frac{R_{j, j}^{\prime} R_{k, k}^{\prime}}{R_{j, k}^{\prime}}\right)_{j, k=1}^{n}=\left(\begin{array}{cccc}
\frac{1}{20} & \frac{1}{16} & \frac{1}{25} & 1 \\
\frac{1}{16} & -\frac{1}{6} & 1 & \frac{4}{9} \\
\frac{1}{25} & 1 & \frac{1}{10} & \frac{1}{4} \\
1 & \frac{4}{9} & \frac{1}{4} & -\frac{1}{3}
\end{array}\right)
$$

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

$$
D^{\prime}=\left(\begin{array}{cccc}
\frac{1}{20} & \frac{1}{16} & \frac{1}{25} & 1 \\
\frac{1}{16} & -\frac{1}{6} & 1 & \frac{4}{9} \\
\frac{1}{25} & 1 & \frac{1}{10} & \frac{1}{4} \\
1 & \frac{4}{9} & \frac{1}{4} & -\frac{1}{3}
\end{array}\right)
$$

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

$$
D^{\prime}=\left(\begin{array}{cccc}
\frac{1}{20} & \frac{1}{16} & \frac{1}{25} & 1 \\
\frac{1}{16} & -\frac{1}{6} & 1 & \frac{4}{9} \\
\frac{1}{25} & 1 & \frac{1}{10} & \frac{1}{4} \\
1 & \frac{4}{9} & \frac{1}{4} & -\frac{1}{3}
\end{array}\right)
$$

Look at the off-diagonal elements of D^{\prime}.

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

$$
D^{\prime}=\left(\begin{array}{cccc}
\frac{1}{20} & \frac{1}{16} & \frac{1}{25} & 1 \\
\frac{1}{16} & -\frac{1}{6} & 1 & \frac{4}{9} \\
\frac{1}{25} & 1 & \frac{1}{10} & \frac{1}{4} \\
1 & \frac{4}{9} & \frac{1}{4} & -\frac{1}{3}
\end{array}\right)
$$

Look at the off-diagonal elements of D^{\prime}. If $D_{k, j}^{\prime} \neq 1$

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

$$
D^{\prime}=\left(\begin{array}{cccc}
\frac{1}{20} & \frac{1}{16} & \frac{1}{25} & 1 \\
\frac{1}{16} & -\frac{1}{6} & 1 & \frac{4}{9} \\
\frac{1}{25} & 1 & \frac{1}{10} & \frac{1}{4} \\
1 & \frac{4}{9} & \frac{1}{4} & -\frac{1}{3}
\end{array}\right)
$$

Look at the off-diagonal elements of D^{\prime}. If $D_{k, j}^{\prime} \neq 1$, then ℓ_{k}^{\prime} and ℓ_{j}^{\prime} are neighbours

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

$$
D^{\prime}=\left(\begin{array}{cccc}
\frac{1}{20} & \frac{1}{16} & \frac{1}{25} & 1 \\
\frac{1}{16} & -\frac{1}{6} & 1 & \frac{4}{9} \\
\frac{1}{25} & 1 & \frac{1}{10} & \frac{1}{4} \\
1 & \frac{4}{9} & \frac{1}{4} & -\frac{1}{3}
\end{array}\right)
$$

Look at the off-diagonal elements of D^{\prime}. If $D_{k, j}^{\prime} \neq 1$, then ℓ_{k}^{\prime} and ℓ_{j}^{\prime} are neighbours, and

$$
\left|\cos \frac{\pi^{2}}{2 \alpha_{\ell_{k}^{\prime}, \ell_{j}^{\prime}}}\right|=\sqrt{D_{k, j}^{\prime}}
$$

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathrm{c}_{\boldsymbol{\alpha}}$

$$
D^{\prime}=\left(\begin{array}{cccc}
\frac{1}{20} & \frac{1}{16} & \frac{1}{25} & 1 \\
\frac{1}{16} & -\frac{1}{6} & 1 & \frac{4}{9} \\
\frac{1}{25} & 1 & \frac{1}{10} & \frac{1}{4} \\
1 & \frac{4}{9} & \frac{1}{4} & -\frac{1}{3}
\end{array}\right)
$$

Look at the off-diagonal elements of D^{\prime}. If $D_{k, j}^{\prime} \neq 1$, then ℓ_{k}^{\prime} and ℓ_{j}^{\prime} are neighbours, and

$$
\left|\cos \frac{\pi^{2}}{2 \alpha_{\ell_{k}^{\prime}, \ell_{j}^{\prime}}}\right|=\sqrt{D_{k, j}^{\prime}}
$$

Thus we get

$$
\ell=\ell_{3}^{\prime}, \ell_{1}^{\prime}, \ell_{2}^{\prime} \quad\left|\mathbf{c}_{\alpha}\right|=\frac{1}{5}, \frac{1}{4}
$$

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and c_{α}

$$
D^{\prime}=\left(\begin{array}{cccc}
\frac{1}{20} & \frac{1}{16} & \frac{1}{25} & 1 \\
\frac{1}{16} & -\frac{1}{6} & 1 & \frac{4}{9} \\
\frac{1}{25} & 1 & \frac{1}{10} & \frac{1}{4} \\
1 & \frac{4}{9} & \frac{1}{4} & -\frac{1}{3}
\end{array}\right)
$$

Look at the off-diagonal elements of D^{\prime}. If $D_{k, j}^{\prime} \neq 1$, then ℓ_{k}^{\prime} and ℓ_{j}^{\prime} are neighbours, and

$$
\left|\cos \frac{\pi^{2}}{2 \alpha_{\ell_{k}^{\prime}, \ell_{j}^{\prime}}}\right|=\sqrt{D_{k, j}^{\prime}} \quad!
$$

Thus we get

$$
\ell=\left(\ell_{3}^{\prime}, \ell_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{4}^{\prime}\right)=(7,2,3,11) \quad\left|\mathbf{c}_{\alpha}\right|=\frac{1}{5}, \frac{1}{4}, \frac{2}{3}
$$

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and c_{α}

$$
D^{\prime}=\left(\begin{array}{cccc}
\frac{1}{20} & \frac{1}{16} & \frac{1}{25} & 1 \\
\frac{1}{16} & -\frac{1}{6} & 1 & \frac{4}{9} \\
\frac{1}{25} & 1 & \frac{1}{10} & \frac{1}{4} \\
1 & \frac{4}{9} & \frac{1}{4} & -\frac{1}{3}
\end{array}\right)
$$

Look at the off-diagonal elements of D^{\prime}. If $D_{k, j}^{\prime} \neq 1$, then ℓ_{k}^{\prime} and ℓ_{j}^{\prime} are neighbours, and

$$
\left|\cos \frac{\pi^{2}}{2 \alpha_{\ell_{k}^{\prime}, \ell_{j}^{\prime}}}\right|=\sqrt{D_{k, j}^{\prime}} \quad!
$$

Thus we get

$$
\ell=\left(\ell_{3}^{\prime}, \ell_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{4}^{\prime}\right)=(7,2,3,11) \quad\left|\mathbf{c}_{\alpha}\right|=\left(\frac{1}{5}, \frac{1}{4}, \frac{2}{3}, \frac{1}{2}\right)
$$

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and c_{α}

$$
D^{\prime}=\left(\begin{array}{cccc}
\frac{1}{20} & \frac{1}{16} & \frac{1}{25} & 1 \\
\frac{1}{16} & -\frac{1}{6} & 1 & \frac{4}{9} \\
\frac{1}{25} & 1 & \frac{1}{10} & \frac{1}{4} \\
1 & \frac{4}{9} & \frac{1}{4} & -\frac{1}{3}
\end{array}\right)
$$

Look at the off-diagonal elements of D^{\prime}. If $D_{k, j}^{\prime} \neq 1$, then ℓ_{k}^{\prime} and ℓ_{j}^{\prime} are neighbours, and

$$
\left|\cos \frac{\pi^{2}}{2 \alpha_{\ell_{k}^{\prime}, \ell_{j}^{\prime}}}\right|=\sqrt{D_{k, j}^{\prime}}
$$

Thus we get

$$
\ell=\left(\ell_{3}^{\prime}, \ell_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{4}^{\prime}\right)=(7,2,3,11) \quad\left|\mathbf{c}_{\alpha}\right|=\left(\frac{1}{5}, \frac{1}{4}, \frac{2}{3}, \frac{1}{2}\right)
$$

The signs of diagonal elements allow us to find

Ideas of Proof

Inverse Problem III: recover ℓ in proper order and $\mathbf{c}_{\boldsymbol{\alpha}}$

$$
D^{\prime}=\left(\begin{array}{cccc}
\frac{1}{20} & \frac{1}{16} & \frac{1}{25} & 1 \\
\frac{1}{16} & -\frac{1}{6} & 1 & \frac{4}{9} \\
\frac{1}{25} & 1 & \frac{1}{10} & \frac{1}{4} \\
1 & \frac{4}{9} & \frac{1}{4} & -\frac{1}{3}
\end{array}\right)
$$

Look at the off-diagonal elements of D^{\prime}. If $D_{k, j}^{\prime} \neq 1$, then ℓ_{k}^{\prime} and ℓ_{j}^{\prime} are neighbours, and

$$
\left|\cos \frac{\pi^{2}}{2 \alpha_{\ell_{k}^{\prime}, \ell_{j}^{\prime}}}\right|=\sqrt{D_{k, j}^{\prime}}
$$

Thus we get

$$
\ell=\left(\ell_{3}^{\prime}, \ell_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{4}^{\prime}\right)=(7,2,3,11) \quad\left|\mathbf{c}_{\alpha}\right|=\left(\frac{1}{5}, \frac{1}{4}, \frac{2}{3}, \frac{1}{2}\right)
$$

The signs of diagonal elements allow us to find $\mathbf{c}_{\alpha}= \pm\left(\frac{1}{5}, \frac{1}{4},-\frac{2}{3}, \frac{1}{2}\right)$.

A little bit of demystifying

A little bit of demystifying

A little bit of demystifying

(b)

A little bit of demystifying

Modification of the Main Theorem in the presence of exceptional angles

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case we have

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case we have

Theorem
Let \mathcal{P} be an admissible curvilinear polygon.

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightlv to allow for exceptional angles. In this case

ℓ incommensurable
over $\{-1,1,0\}$;
Theorem no special angles

Let \mathcal{P} be an admissible curvilinear polygon.

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case we have

Theorem
Let \mathcal{P} be an admissible curvilinear polygon. Then we can recover

- The number n of vertices

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case we have

Theorem
Let \mathcal{P} be an admissible curvilinear polygon. Then we can recover

- The number n of vertices
- The number K of exceptional components

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case we have

Theorem
Let \mathcal{P} be an admissible curvilinear polygon. Then we can recover

- The number n of vertices
- The number K of exceptional components (= number of exceptional angles)

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case we have

Theorem
Let \mathcal{P} be an admissible curvilinear polygon. Then we can recover

- The number n of vertices
- The number K of exceptional components (= number of exceptional angles)
- For each exceptional component $\mathcal{Y}_{\kappa}, \kappa=1, \ldots K$:

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case we have

Theorem
Let \mathcal{P} be an admissible curvilinear polygon. Then we can recover

- The number n of vertices
- The number K of exceptional components (= number of exceptional angles)
- For each exceptional component $\mathcal{Y}_{\kappa}, \kappa=1, \ldots K$:
- its side length vector $\ell^{(\kappa)}$ up to a change of orientation

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case we have

Theorem
Let \mathcal{P} be an admissible curvilinear polygon. Then we can recover

- The number n of vertices
- The number K of exceptional components (= number of exceptional angles)
- For each exceptional component $\mathcal{Y}_{\kappa}, \kappa=1, \ldots K$:
- its side length vector $\ell^{(\kappa)}$ up to a change of orientation
- its cosine vector $\mathbf{c}_{\boldsymbol{\alpha}^{(\kappa)}}$ up to multiplication by ± 1

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case we have

Theorem
Let \mathcal{P} be an admissible curvilinear polygon. Then we can recover

- The number n of vertices
- The number K of exceptional components (= number of exceptional angles)
- For each exceptional component $\mathcal{Y}_{\kappa}, \kappa=1, \ldots K$:
- its side length vector $\ell^{(\kappa)}$ up to a change of orientation
- its cosine vector $\mathbf{c}_{\boldsymbol{\alpha}^{(\kappa)}}$ up to multiplication by ± 1
- whether \mathcal{Y}_{κ} is even or odd

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case we have

Theorem
Let \mathcal{P} be an admissible curvilinear polygon. Then we can recover

- The number n of vertices
- The number K of exceptional components (= number of exceptional angles)
- For each exceptional component $\mathcal{Y}_{\kappa}, \kappa=1, \ldots K$:
- its side length vector $\ell^{(\kappa)}$ up to a change of orientation
- its cosine vector $\mathbf{c}_{\boldsymbol{\alpha}^{(\kappa)}}$ up to multiplication by ± 1
- whether \mathcal{Y}_{κ} is even or odd

Remark

We cannot recover the order in which the exceptional components are joined together.

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case we have

Theorem
Let \mathcal{P} be an admissible curvilinear polygon. Then we can recover

- The number n of vertices
- The number K of exceptional components (= number of exceptional angles)
- For each exceptional component $\mathcal{Y}_{\kappa}, \kappa=1, \quad$ We may have
- its side length vector $\ell^{(\kappa)}$ up to a change o
- its cosine vector $\mathbf{c}_{\boldsymbol{\alpha}}{ }^{(\kappa)}$ up to multiplication $D^{\prime}=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ - & \text { whether } \mathcal{Y}_{\kappa} \text { is even or odd }\end{array}\right.$

Remark
Then $\mathcal{Y}_{1}=\left(\ell_{1}^{\prime}\right), \mathcal{Y}_{2}=\left(\ell_{2}^{\prime}\right)$,

$$
\mathcal{Y}_{3}=\left(\ell_{3}^{\prime}, \ell_{4}^{\prime}\right) .
$$

We cannot recover the order in which the exceptional components are joined together.

Modification of the Main Theorem in the presence of exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case we have

Theorem
Let \mathcal{P} be an admissible curvilinear polygon. Then we can recover

- The number n of vertices
- The number K of exceptional components (= number of exceptional angles)
- For each exceptional component $\mathcal{Y}_{\kappa}, \kappa=1, \ldots K$:
- its side length vector $\ell^{(\kappa)}$ up to a change of orientation
- its cosine vector $\mathbf{c}_{\boldsymbol{\alpha}^{(\kappa)}}$ up to multiplication by ± 1
- whether \mathcal{Y}_{κ} is even or odd

Remark

We cannot recover the order in which the exceptional components are joined together.

Counterexamples

Counterexamples

If either condition of lengths incommensurability over $\{0, \pm 1\}$ or absence of special angles is not satisfiied, we can construct not loosely equivalent, asymptotically isospectral (but not isospectral) curvilinear polygons:

Counterexamples

If either condition of lengths incommensurability over $\{0, \pm 1\}$ or absence of special angles is not satisfiied, we can construct not loosely equivalent, asymptotically isospectral (but not isospectral) curvilinear polygons:
they have the same characteristic polynomial

Counterexamples

If either condition of lengths incommensurability over $\{0, \pm 1\}$ or absence of special angles is not satisfiied, we can construct not loosely equivalent, asymptotically isospectral (but not isospectral) curvilinear polygons:

Example 1 - presence of special angles
All parallelograms of perimeter 2 with angle $\frac{\pi}{5}$ are asymptotically isospectral .

Counterexamples

If either condition of lengths incommensurability over $\{0, \pm 1\}$ or absence of special angles is not satisfiied, we can construct not loosely equivalent, asymptotically isospectral (but not isospectral) curvilinear polygons:

Example 1 - presence of special angles
All parallelograms of perimeter 2 with angle $\frac{\pi}{5}$ are asymptotically isospectral .

Example 2 - presence of special angles

Two straight triangles with the same perimeter and angles $\boldsymbol{\alpha}=\left(\frac{\pi}{7}, \frac{\pi}{63}, \frac{53 \pi}{63}\right)$ and $\tilde{\boldsymbol{\alpha}}=\left(\frac{\pi}{9}, \frac{\pi}{21}, \frac{53 \pi}{63}\right)$ are asymptotically isospectral .

Counterexamples

If either condition of lengths incommensurability over $\{0, \pm 1\}$ or absence of special angles is not satisfiied, we can construct not loosely equivalent, asymptotically isospectral (but not isospectral) curvilinear polygons:

Example 1 - presence of special angles
All parallelograms of perimeter 2 with angle $\frac{\pi}{5}$ are asymptotically isospectral.

Example 2 - presence of special angles

Two straight triangles with the same perimeter and angles $\boldsymbol{\alpha}=\left(\frac{\pi}{7}, \frac{\pi}{63}, \frac{53 \pi}{63}\right)$ and $\tilde{\boldsymbol{\alpha}}=\left(\frac{\pi}{9}, \frac{\pi}{21}, \frac{53 \pi}{63}\right)$ are asymptotically isospectral.

Example 3 - sides commensurable

A pair of curvilinear triangles with sides $\boldsymbol{\ell}=(3,1,1)$ and $\tilde{\ell}=(2,2,1)$ and cosine vectors $\mathbf{c}=\left(\frac{1}{2}, \frac{1}{2}, \frac{-39+\sqrt{241}}{40}\right), \tilde{\mathbf{c}}=\left(\frac{1}{2}, \frac{7-\sqrt{241}}{12}, \frac{-19+\sqrt{241}}{40}\right)$ are asymptotically isospectral.

