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Inverse problems— isospectrality

Definition (Steklov isospectrality and and asymptotically isospectral ity)
We say that two domainsΩ1 andΩ2 are (Steklov) isospectral if their Steklov spectra
coincide,ΣΩ1 = ΣΩ2 .

We say that two planar domainsΩ1 andΩ2 are (Steklov)
asymptotically isospectral if their Steklov spectra are asymptotically o(1)-close:
σm(Ω1)− σm(Ω2) = o(1) asm → ∞.

Remarks
(a) any two isospectral planar domains are also asymptotically isospectral ; (b) it is
not known if there exist any planar isospectral non-isometric domains; (c) known
Steklov spectral invariants are the perimeter (byWeyl’s law), and in the smooth
case also the number and lengths of connected boundary components [GPPS14];
(d) on the other hand, any two smooth planar simply connected domains with the
same perimeter are Steklov asymptotically isospectral , and moreover
o(m−∞)-asymptotically isospectral .
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Inverse problems— notation and definitions

Forα ∈ (0, π)n, its cosine vector is

c = cα = (c1, . . . , cn) ∈ [−1, 1]n

, cj := c(αj) := cos
π2

2αj
.

Note: αj is not special iff c(αj) ̸= 0, andαj is not exceptional iff |c(αj)| < 1.

Definition (Loose equivalence)

We say that two curvilinear polygonsP(α, ℓ) and P̃(α̃, ℓ̃) are loosely equivalent
if one can choose the orientation and the enumeration of vertices of these
polygons in such a way that ℓ = ℓ̃ and either cα = cα̃ or cα = −cα̃.
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Generic conditions

Wewill assume, at some stage, that our polygons satisfy two generic conditions:

The lengths ℓ1, . . . , ℓn are incommensurable over {−1, 0, 1}

and
There are no special angles among α1, . . . , αn

Definition
The curvilinear polygons satisfying these two conditions will be called admissible.

Subject to admissibility conditions, we have . . .
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Main Theorem, simplified variant

Before the main result, I state

Proposition
If two curvilinear polygons are asymptotically isospectral , they have exactly the
same quasi-eigenvalues.

Our main result is
Theorem
LetP and P̃ be two asymptotically isospectral admissible curvilinear polygons.
Assume additionally thatP is not exceptional. ThenP and P̃ are loosely
equivalent.

Corollary
Given the spectrumΣ of an admissible non-exceptional polygonP , we can recover its
number of vertices, side lengths up to change of orientation and cyclic shifts, and the
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Ideas of Proof
Inverse Problem I: QE → F , recover a trigonometric polynomial by its roots

This is just a variant of Hadamard–Weierstrass Factorisation Theorem:

Theorem
Let f : C → C be an even entire function of order one with a zero of order 2m0 at
z = 0, and non-zero zeros±γj repeated with multiplicities; denote by Γ the sequence
(with multiplicities) consisting of m0 zeros and γj .Then there exists a constant C such
that

f (z) = CQΓ(z), QΓ(z) := z2m0
∏

γj∈Γ\{0}

(
1− z2

γ2j

)
.

Proof.
Hadamard-Weierstrass Theorem immediately gives the result with an extra factor
eg(z), where g(z) is linear. But since f is even, so is g, which is therefore a
constant.
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Ideas of Proof
Inverse Problem I: from an infinite product to the explicit form of a trigonometric polynomial

Write

Fα,ℓ(τ) =

#T∑
k=1

rk cos(tkτ)− r0, T := {|ℓ · ζ| : ζ ∈ Zn
+}.

Wewant to find all tk, rk from the infinite productQQE(τ).

Define

M[f ] := lim
t→∞

1
t

∫ t

0
f (s) ds, (A[f ])(z) := M

[
e−iszf (s)

]
.

Then

T = {z ≥ 0 : A[Q](z) ̸= 0}, rj = 2CA[Q](tj), r0 = −CA[Q](0),

with C found from 2CA[Q](max T ) = 1.
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Ideas of Proof
Inverse Problem II:Σ → F , recover a trigonometric polynomial by its approximate roots

Question
Does an o(1)-asymptotics of roots of a trigonometric function determine this
function up to multiplication by a constant?

Surprisingly very recent positive answer by Kurasov and Suhr [2020].

Kurasov and Suhr’s result immediately implies our Proposition. But their proof is
not constructive, and we want an algorithmic procedure, so we prove instead. . .
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Asymptotically isospectral curvilinear polygons
have the same quasi-eigenvalues

.
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Ideas of Proof
Inverse Problem II:Σ → F , recover a trigonometric polynomial by its approximate roots

Proposition
IfΣ is the spectrum of a curvilinear polygonP(α, ℓ) then

Fα,ℓ(τ) = CQΣ(τ) + o(1) as τ → +∞.

Remarks
Our statement requires a qualified convergence σm − τm = O(m−ϵ) as
m → ∞ rather than o(1).
Proof is based on a technical bound lim

τ→∞

(
QΣ(τ)− C0QQE(τ)

)
= 0 with

some constant C0.
Allows the recovery of the frequencies and amplitudes of Fα,ℓ(τ) as before
sinceA[f + o(1)](z) = A[f ](z) for all z.
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Ideas of Proof
Inverse Problem III: F → ℓ,±cα, recover geometric information from a trigonometric polynomial

At this step, we need our admissibility conditions.

Fα,ℓ(τ) =

T∑
k=1

rk cos(tkτ)−r0, T = {|ℓ·ζ| : ζ ∈ Zn
+} = {t1 ≤ t2 ≤ · · · ≤ tT}.

Admissibility conditions guarantee that (i) all tk are positive and distinct; (ii) all
coefficients rk are non-zero; (iii) T = 2n−1.

We will first find ℓ′ — the permutation of the vector of length in order of
magnitude, ℓ′1 < ℓ′2 < · · · < ℓ′n.

Easier to show on a concrete example. We will not need rk’s at this stage.
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the number of vertices n

.
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Ideas of Proof
Inverse Problem III: recover ℓ′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(τ) =
8∑

j=1
? cos(tjτ)− ? = tj ∈ T = {|ℓ · ζ| : ζ ∈ Zn

+}

? cos(1τ) + ? cos(3τ) + ? cos(5τ) + ? cos(9τ)
? cos(13τ) + ? cos(17τ) + ? cos(19τ) + cos(23τ).

Eight terms, so n = 4.

L = 23 ℓ′ = (2, 3, 7, 11)
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MLevitin (michaellevitin.net) Inverse Steklov problem 2 September 2022 12 / 17



Ideas of Proof
Inverse Problem III: recover ℓ′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(τ) =
8∑
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? cos(1τ) + ? cos(3τ) + ? cos(5τ) + ? cos(9τ)
? cos(13τ) + ? cos(17τ) + ? cos(19τ) + cos(23τ).

Eight terms, so n = 4.

L = 23 ℓ′ = (2,

3, 7, 11)

• Look for the next biggest frequency t7= 19 = L− 2ℓ′1 = 23− 2× 2
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Example (we don’t care about amplitudes for now; terms ordered by frequencies):
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? cos(13τ) + ? cos(17τ) + ? cos(19τ) + cos(23τ).

Eight terms, so n = 4.

L = 23 ℓ′ = (2,

3, 7, 11)

• The next biggest frequency is t6
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Inverse Problem III: recover ℓ′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(τ) =
8∑
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? cos(tjτ)− ? = tj ∈ T = {|ℓ · ζ| : ζ ∈ Zn

+}

? cos(1τ) + ? cos(3τ) + ? cos(5τ) + ? cos(9τ)
? cos(13τ) + ? cos(17τ) + ? cos(19τ) + cos(23τ).

Eight terms, so n = 4.

L = 23 ℓ′ = (2, 3,

7, 11)

• The next biggest frequency is t6= 17 = L− 2ℓ′2 = 23− 2× 3
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Ideas of Proof
Inverse Problem III: recover ℓ′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(τ) =
8∑

j=1
? cos(tjτ)− ? = tj ∈ T = {|ℓ · ζ| : ζ ∈ Zn

+}

? cos(1τ) + ? cos(3τ) + ? cos(5τ) + ? cos(9τ)
? cos(13τ) + ? cos(17τ) + ? cos(19τ) + cos(23τ).

Eight terms, so n = 4.

L = 23 ℓ′ = (2, 3,

7, 11)

• Remove all remaining frequencies in which either ℓ′1 or ℓ′2 or both come with a
minus: 13 = 23− 2× 2− 2× 3
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Ideas of Proof
Inverse Problem III: recover ℓ′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):
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Eight terms, so n = 4.

L = 23 ℓ′ = (2, 3,

7, 11)

• The biggest remaining frequency is t4
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Inverse Problem III: recover ℓ′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):
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? cos(1τ) + ? cos(3τ) + ? cos(5τ) + ? cos(9τ)
?�����XXXXXcos(13τ) + ? cos(17τ) + ? cos(19τ) + cos(23τ).

Eight terms, so n = 4.

L = 23 ℓ′ = (2, 3, 7,

11)

• The biggest remaining frequency is t4= 9 = L− 2ℓ′3 = 23− 2× 7
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Ideas of Proof
Inverse Problem III: recover ℓ′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(τ) =
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Eight terms, so n = 4.

L = 23 ℓ′ = (2, 3, 7,

11)

remaining frequency is t1
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Ideas of Proof
Inverse Problem III: recover ℓ′

Example (we don’t care about amplitudes for now; terms ordered by frequencies):

F(τ) =
8∑

j=1
? cos(tjτ)− ? = tj ∈ T = {|ℓ · ζ| : ζ ∈ Zn

+}

? cos(1τ) + ?����XXXXcos(3τ) + ?����XXXXcos(5τ) + ? cos(9τ)
?�����XXXXXcos(13τ) + ? cos(17τ) + ? cos(19τ) + cos(23τ).

Eight terms, so n = 4.

L = 23 ℓ′ = (2, 3, 7, 11)

remaining frequency is t1= 1 = L− 2ℓ′4 = 23− 2× 11
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Ideas of Proof
Inverse Problem III: recover ℓ in proper order and cα

Nowwe can look at the full polynomial

F(τ) =
∑8

j=1 rj cos(tjτ)−r0

= 1
3 cos(τ)−

1
60 cos(3τ)+

1
8 cos(5τ)+

1
10 cos(9τ)

− 2
15 cos(13τ)−

1
6 cos(17τ)+

1
20 cos(19τ)+cos(23τ)+

√
3

2
√
2

R′=(R′
p,q)

n
p,q,=1

=


1
20 − 2

15
1
8 − 1

60

− 2
15 − 1

6 − 1
60

1
8

1
8 − 1

60
1
10 − 2

15

− 1
60

1
8 − 2

15 − 1
3



Wewill now use this matrix to recover the correct order of sides and the cosine
vector. We need to find the permutation (mk) such that ℓ′k = ℓmk . Trick: create
another symmetric matrix

D′=

(
R′j,jR

′
k,k

R′j,k

)n

j,k=1

=


1
20

1
16

1
25 1

1
16 − 1

6 1 4
9

1
25 1 1

10
1
4

1 4
9

1
4 − 1

3
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D′=


1
20

1
16

1
25 1

1
16 − 1

6 1 4
9

1
25 1 1

10
1
4

1 4
9

1
4 − 1

3



Look at the off-diagonal elements ofD′. IfD′
k,j ̸= 1, then ℓ′k and ℓ

′
j are neighbours,

and ∣∣∣∣∣cos π2

2αℓ′k,ℓ
′
j

∣∣∣∣∣ =√D′
k,j !

Thus we get

ℓ =
(
ℓ′3, ℓ

′
1, ℓ

′
2, ℓ

′
4
)
= (7, 2, 3, 11) |cα| =

(
1
5
,
1
4
,
2
3
,
1
2

)

The signs of diagonal elements allow us to find cα = ±
( 1
5 ,

1
4 ,−

2
3 ,

1
2
)
.
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Modification of the Main Theorem in the presence of
exceptional angles

We can modify the algorithm slightly to allow for exceptional angles. In this case
we have
Theorem
LetP be an admissible curvilinear polygon. Then we can recover

The number n of vertices
The number K of exceptional components (= number of exceptional angles)
For each exceptional componentYκ, κ = 1, ...K:

its side length vector ℓ(κ) up to a change of orientation
its cosine vector cα(κ) up to multiplication by±1
whetherYκ is even or odd

Remark
We cannot recover the order in which the exceptional components are joined
together.
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D′ =


−1 1 1 1
1 1 1 1
1 1 − 1

2
1
4

1 1 1
4

1
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ThenY1 = (ℓ′1),Y2 = (ℓ′2),

Y3 = (ℓ′3, ℓ
′
4).
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Counterexamples

If either condition of lengths incommensurability over {0,±1} or absence of
special angles is not satisfiied, we can construct not loosely equivalent,
asymptotically isospectral (but not isospectral) curvilinear polygons:

Example 1— presence of special angles
All parallelograms of perimeter 2 with angle π

5 are asymptotically isospectral .

Example 2— presence of special angles
Two straight triangles with the same perimeter and anglesα =

(
π
7 ,

π
63 ,

53π
63
)
and

α̃ =
(
π
9 ,

π
21 ,

53π
63
)
are asymptotically isospectral .

Example 3— sides commensurable

A pair of curvilinear triangles with sides ℓ = (3, 1, 1) and ℓ̃ = (2, 2, 1) and cosine
vectors c =

(
1
2 ,

1
2 ,

−39+
√
241

40

)
, c̃ =

(
1
2 ,

7−
√
241

12 , −19+
√
241

40

)
are asymptotically

isospectral .
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