Lecture 2
Trace formula methods

Plan
(1) Poisson Summation Formula
(2) Selberg Trace Formula
(3) Upper bounds after Gorbachev-Cohn-Elkies
(4) Lower bounds after Booker-Strömbergsson

Def n A trace formula is an equation that expresses the trace of an operator in two different ways.

$$
\text { Ex } \sum \text { diagonal entries }=\operatorname{tr} A=\sum \text { eigenvalues }
$$

More loosely, it is an equation that relates the eigenvalues of an operator to other data.

Poisson Summation Formula
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a Schwartz function, $\Lambda \subseteq \mathbb{R}^{n}$ is a lattice, and $\Lambda^{*}=\left\{w \in \mathbb{R}^{n}:\langle v, w\rangle \in \mathbb{Z} \forall v \in \Lambda\right\}$, then

$$
\sum_{v \in \Lambda} f(v)=\frac{1}{v o \mid\left(\mathbb{R}^{n} / \Lambda\right)} \sum_{w \in \Lambda^{*}} \hat{f}(2 \pi w)
$$

This is a trace formula for Δ on \mathbb{R}^{n} / Λ !

Def $f \in P\left(\mathbb{R}^{n}\right)$ if all partial derivatives of f (of all orders) decay faster than $\frac{1}{\|x\|^{k}}$ as $\|x\| \rightarrow \infty, \forall k \in \mathbb{N}$.

Pf of PSF Define $F(x):=\sum_{v \in \lambda} f(x+v) . \quad f \in X\left(\mathbb{R}^{n}\right) \Rightarrow F \in C^{\infty}$ and by construction, F is Λ-periodic.

$$
\Rightarrow \quad F=\sum_{w \in \Lambda^{*}} c_{w} e_{w} \text { in } L^{2} \text { for some } c_{w} \in \mathbb{C}
$$

where $e_{w}(x)=e^{2 \pi i\langle x, w\rangle}$. These are eigenfunctions of $\Delta=-\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}}$ on $X=\mathbb{R}^{n} / \Lambda$ with eigenvalue $(2 \pi\|w\|)^{2}$.

We compute

$$
\begin{aligned}
c_{w} \operatorname{vol}(X)=c_{w}\left\|e_{w}\right\|^{2} & =\left\langle F, e_{w}\right\rangle \\
& =\int_{X} \sum_{v \in \Lambda} f(x+v) e^{-2 \pi i\langle x, w\rangle} d x \\
& =\sum_{v \in \Lambda} \int_{p} f(x+v) e^{-2 \pi i(x+v, w\rangle} d(x+v) \\
& =\sum_{v \in \Lambda} \int_{P+v} f(u) e^{-2 \pi i\langle u, w\rangle} d u \\
& =\int_{\mathbb{R}^{n}} f(u) e^{-i\langle u, 2 \pi w\rangle} d u=\hat{f}(2 \pi w)
\end{aligned}
$$

$$
P \text { fund. domain }
$$

$$
\text { for } \Lambda
$$

$$
\Rightarrow \quad \sum_{v \in \Lambda} f(x+v)=F(x)=\frac{1}{\operatorname{Vol}(x)} \sum_{w \in \Lambda^{*}} \hat{f}(2 \pi w) e^{2 \pi i\langle x, w\rangle} \text { in } L^{2}
$$

and hence pointwise since both sides are continuous. Evaluating at $x=0$ giver the PSF.
$\frac{\text { Why is it a trace formula? }}{\text { suppose }}$
Suppose $f(x)=\phi(\|x\|)$. Then $\hat{f}(y)=\psi(\|y\|)$.

$$
\phi(0)+\sum_{\substack{\text { homotopy classes }}} \phi(l(\gamma))=\sum_{v \in \Lambda} \phi(\|v\|)=\frac{1}{\operatorname{vol}(x)} \sum_{\lambda \in \operatorname{spec}\left(\Delta_{x}\right)} \psi(\sqrt{\lambda})
$$

of oriented closed geodesics in X
(2) Towards the Selberg Trace Formula

We want to do the same thing if $X=H^{2} / \Gamma$ is a closed hyperbolic
surface surface.
Start with a radial function $k(z, w)=k(d(z, w))$
Define $K_{\perp}(z):=\sum_{\gamma \in \Gamma} k(z, \gamma z)$.

$\forall \alpha \in \Gamma$, we have

$$
K(\alpha z)=\sum_{\gamma \in \Gamma} k(\alpha z, \gamma \alpha z)=\sum_{\gamma \in \Gamma} k\left(z, \alpha^{-1} \gamma \alpha z\right)=\sum_{\theta \in \Gamma=K(z, \sigma z)} k(z)
$$

$\Longrightarrow K=\sum_{\lambda \in \operatorname{spec}\left(\Delta_{x}\right)} c_{\lambda} \phi_{\lambda}$ where ϕ_{λ} form a basis of eigenfunction of Δ_{x}.

Instead of evaluating at a particular point, we integrate over X.
Length -trace formula

$$
\int_{x} K(z) d z=\kappa(0) \operatorname{area}(x)+\sum_{[\gamma] \in \rho(x)} \sum_{n=1}^{\infty} \frac{l(\gamma)}{\sqrt{\cosh \left(l\left(\gamma^{n}\right)\right)-1}} \int_{l\left(\gamma^{n}\right)}^{\infty} \frac{\kappa(\rho) \sinh \rho d \rho}{\sqrt{\cosh \rho-\cosh (l(\gamma n))}}
$$

where $P(X)=$ conjugacy classes of primitive elements in Γ.

Sketch Let D be a fundamental domain for Γ. We have

$$
\int_{X} K(z) d z=\int_{D} \sum_{\gamma \in \Gamma} k(z, \gamma z) d z=\sum_{\gamma \in \Gamma} \int_{D} k(z, \gamma z) d z
$$

(1) If $\gamma=$ id get $\int_{D} k(z, z) d z=\int_{D} K(0) d z=K(0) \operatorname{area}(X)$.
(2) If $\alpha \in \Gamma$, then

$$
\int_{D} k\left(z, \alpha^{-1} \gamma \alpha z\right) d z=\int_{D} k(\alpha z, \gamma \alpha z) d(\alpha z)=\int_{\alpha D} k(z, \gamma z) d z
$$

(3) $\alpha^{-1} \gamma \alpha=\beta^{-1} \gamma \beta \Leftrightarrow \beta \alpha^{-1}$ commutes with γ
$\Leftrightarrow \beta \alpha^{-1}$ and γ are both powers of a common primitive γ_{0}

$$
\Leftrightarrow \gamma=\gamma_{0}^{n} \text { and } \alpha\left\langle\gamma_{0}\right\rangle=\beta\left\langle\gamma_{0}\right\rangle
$$

$$
\Rightarrow \sum_{\gamma \in \Gamma \backslash\{i d\}} \text { becomes } \sum_{\left[\gamma_{0}\right] \in P(x)} \sum_{n=1}^{\infty} \sum_{\alpha\left\langle\gamma_{0}\right\rangle \in \Gamma /\left\langle\gamma_{0}\right\rangle} \int_{\alpha D} k\left(z, \gamma_{0}^{n} z\right) d z
$$

Moreover,

$$
\sum_{\alpha\left\langle\gamma_{0}\right\rangle \in \Gamma /\left\langle\gamma_{0}\right\rangle} \int_{\alpha D} k\left(z, \gamma_{0}^{n} z\right) d z=\int_{H^{2} /\left\langle\gamma_{0}\right\rangle} k\left(z, \gamma_{0}^{n} z\right) d z .
$$

C) can compute explicitly

$$
\left(H^{2} /\left\langle\gamma_{0}\right\rangle\right) /\left(\Gamma /\left\langle\gamma_{0}\right\rangle\right)<H^{2} / \Gamma
$$ by conjugating γ_{0} to

$$
\left(\begin{array}{cc}
e^{l\left(\gamma_{0}\right) / 2} & 0 \\
0 & e^{-l\left(\gamma_{0}\right) / 2}
\end{array}\right)
$$

The Selbery Trace Formula
Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is admissible and $X=H^{2} / \Gamma$ is closed, then

$$
\sum_{\lambda \in \operatorname{spec}\left(\Delta_{x}\right)} \hat{f}\left(\sqrt{\lambda-\frac{1}{4}}\right)=\frac{\operatorname{area}(X)}{2 \pi} \int_{0}^{\infty} \hat{f}(r) r \tanh (\pi r) d r
$$

$\begin{aligned} & \text { Ideas: Define ti in terms } \\ & \text { of } f \text { via the Abel } \\ & \text { transform. }\end{aligned}+\sum_{\gamma \in P(x)} \sum_{n=1}^{\infty} \frac{l(\gamma) f(n l(\gamma))}{2 \sinh (n l(\gamma) / 2) .}$
Def ${ }^{n} f: \mathbb{R} \rightarrow \mathbb{R}$ is admissible if it is even, \hat{f} is well-defined on $\left\{|\operatorname{Im} \rho|<\frac{1}{2}+\varepsilon\right\}$ for some $\varepsilon>0$, and $|\hat{f}(\rho)|=O\left(\frac{1}{\left.1 \rho\right|^{2+\varepsilon}}\right)$ in that strip.
(3) Upper bounds from trace formulas

Thu (Gorbachev 2000, Cohn-Elkies 2003)
If $f \in \notin\left(\mathbb{R}^{n}\right)$ and $r>0$ is such that
(1) $f(x) \leqslant 0$ if $\|x\| \geqslant r$
(2) $\hat{f}(y) \geqslant 0 \quad \forall y \in \mathbb{R}^{n}$

Then syst $(x) \leq r$ for every flat torus X
(3) $f(0)=\hat{f}(0)=1$. of dimension n and volume 1 .

If Let $X=\mathbb{R}^{n} / \Lambda$. We prove that $\frac{\operatorname{sys}(X)^{n}}{v_{\text {vol }}(x)} \leq r^{n}$, which is equivalent. Scale X so that sys $(X)=r$, which does not change the systolic ratio. Then

$$
\begin{array}{r}
\text { i. Then } \\
1=f(0) \geqslant \sum_{v \in \Lambda} f(v)=\frac{1}{\operatorname{vol}(x)} \sum_{w \in \Lambda^{*}} \hat{f}(2 \pi w) \geqslant \frac{\hat{f}(0)}{v_{00} l(x)}=\frac{1}{v o l(x)} \\
\quad \text { frounwhich the ineq. follows. }
\end{array}
$$

How to optimize the bound?
Take $f(x)=p\left(\|x\|^{2}\right) e^{-\|x\|^{2} / 2}$ where p is a polynomial, so that $\hat{f}(y)=q\left(\|y\|^{2}\right) e^{-\|y\|^{2} / 2}$ for a polynomial q as well.

Impose some double zeros $r_{1}, r_{2}, \ldots, r_{m}$ to $p \& q$ simultaneously, which gives a linear system of equations.

Then vary $\left(r_{1}, \ldots, r_{m}\right)$ and optimize numerically.

An analogous method works for hyperbolic surfaces!
Observation $S y s(X) \leqslant r \Leftrightarrow$ the number of closed geodesics with length in $(0, r]$ is at least 1.
Generalization (FB-Petri)
Let E be a multiset of elements in \mathbb{R} and let $I \subseteq \mathbb{R}$.
Suppose that
(1) $\psi(\lambda) \leqslant 0 \quad \forall \lambda \in E \backslash I$
(2) $\sum_{\lambda \in E} \Psi(\lambda)>0$
(3) $m \Psi(\mu)<\sum_{\lambda \in E} \Psi(\lambda)$ for all $\mu \in I$.

Then \#E®I $\geqslant m+1$ counting multiplicity.
We can use the trace formula to check (2) and (3)!
(4) Lower bounds on spectral gaps (for specific X's)

Lemma (Booker-Strömbergsson' 07) Let X be a hyperbolic surface.
Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is admissible, $\hat{f}(\sqrt{\lambda-1 / 4}) \geqslant 0 \quad \forall \lambda \geqslant 0$ and

$$
\hat{f}(\sqrt{\mu-1 / 4})>\sum_{\lambda \in \operatorname{spec}\left(\Delta_{x}\right)} \hat{f}(\sqrt{\lambda-1 / 4}) \text {. Then } \mu \notin \operatorname{spec}\left(\Delta_{x}\right) \text {. }
$$

If If $\mu \in \operatorname{spec}\left(\Delta_{x}\right)$, then $\hat{f}(\sqrt{\mu-1 / 4}) \leqslant \sum_{\lambda \in \operatorname{spec}\left(\Delta_{x}\right)} \hat{f}(\sqrt{\lambda-1 / 4})$ since the other terms are $\geqslant 0$.

Goal: Maximize $\frac{\hat{f}(\sqrt{\mu-1 / 4})}{\sum_{\lambda \in \operatorname{secc}(\Delta x)} \hat{f}(\sqrt{\lambda-1 / 4})}$ over all f.

How to optimize over f? Suppose we know the primitive length spectrum (to rule out a particular μ) of X up to length L.

Let $h_{1}, \ldots, h_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be such that $h_{j} * h_{k}$ is admissible and supported in $[-L, L]$ for every j, k.
For $x \in \mathbb{R}^{n}$, let $h=\sum_{j=1}^{n} x_{j} h_{j}$ and $f=h * h=\sum_{j, k} x_{j} x_{k} h_{j} * h_{k}$
so that $\hat{f}=(\hat{h})^{2} \geqslant 0$ on $\mathbb{R} \cup i \mathbb{R}$.
Write $b(t):=\left(\hat{h_{1}}(t), \ldots, \hat{h_{n}}(t)\right)$ so that $\hat{h}(t)=\langle x, b(t)\rangle$ and

$$
\hat{f}(t)=\langle x, b(t)\rangle^{2}
$$

Define $\quad A_{j, k}:=\sum_{\lambda \in \operatorname{spec}\left(\Delta_{x}\right)} h_{j} * h_{k}(\sqrt{\lambda-1 / 4}) \quad$ so that

$$
\begin{aligned}
\sum_{\lambda \in \operatorname{spec}\left(\Delta_{x}\right)} \hat{f}(\sqrt{\lambda-1 / 4}) & =\sum_{\lambda \in \operatorname{spec}\left(\Delta_{x}\right)} \sum_{j, k=1}^{n} x_{j} x_{k} \widehat{h_{j} * h_{k}}(\sqrt{\lambda-1 / 4}) \\
& =\sum_{j, k=1}^{n} x_{j} A_{j, k} x_{k}=\langle x, A x\rangle
\end{aligned}
$$

We now want to find

$$
\max _{x \in \mathbb{R}^{n}(10\}} \frac{\langle x, b\rangle^{2}}{\langle x, A x\rangle} \quad \text { where } b=b(\sqrt{\mu-1 / 4}) \quad\left(\text { if }>1 \text {, then } \mu \notin \operatorname{spec}\left(\Delta_{x}\right)\right)
$$

A is symmetric and positive definite, so it admits a symmetric positive definite square root \sqrt{A}.

$$
\begin{aligned}
& \Rightarrow\langle x, A x\rangle=\langle\sqrt{A} x, \sqrt{A} x\rangle \text { so set } y=\sqrt{A} x \\
& \Rightarrow x=(\sqrt{A})^{-1} y \\
& \text { and }\langle x, b\rangle=\left\langle y,(\sqrt{A})^{-1} b\right\rangle
\end{aligned}
$$

By Cauchy-Schwarz,

$$
\frac{\left\langle y,(\sqrt{A})^{-1} b\right\rangle^{2}}{\|y\|^{2}} \leqslant\left\|(\sqrt{A})^{-1} b\right\|^{2} \text { with equality }
$$

only if $y \propto(\sqrt{A})^{-1} b \Leftrightarrow x \propto A^{-1} b$.

The Booker-Strombergsson function for the Bolza surface with $L=9.1$

$$
B S(\mu):=\min _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\langle x, A x\rangle}{\langle x, b(\sqrt{\mu-1 / 4})\rangle^{2}}
$$

$$
n=26
$$

