Trace formula methods

Plan

<u>Def</u>ⁿ A trace formula is an equation that expresses the trace of an operator in two different ways.

$$\underline{E_x}$$
 \sum diagonal entries = trA = \sum eigenvalues

More loosely, it is an equation that relates the eigenvalues of an operator to other data.

$$\frac{\text{Def}^n}{\text{decay}} \quad \text{fe } \mathcal{S}(\mathbb{R}^n) \quad \text{if all partial derivatives of } f\left(\text{of all orders}\right) \\ \text{decay} \quad \text{faster than } \frac{1}{\|X\|^K} \quad \text{as } \|X\| \to \infty, \quad \forall K \in \mathbb{N}.$$

$$\frac{Pf \ of \ PSF}{PsF} \quad Define \ F(x) := \sum_{v \in \Lambda} f(x+v). \qquad f \in \mathcal{S}(IR^{n}) \implies F \in \mathbb{C}^{\infty}$$
and by construction, $F \ is \ \Lambda \ -periodic.$

$$\implies F = \sum_{w \in \Lambda^{*}} \mathbb{C}_{w} \ e_{w} \quad in \ L^{2} \quad for \ some \ \mathbb{C}_{w} \in \mathbb{C}$$
where $e_{w}(x) = e^{2\pi i \langle x, w \rangle}.$ These are eigenfunctions
of $\Delta = -\sum_{j=1}^{n} \frac{2^{2}}{2x_{j}^{2}}$ on $X = IR^{n}/\Lambda$ with eigenvalue $(2\pi II w II)^{2}$

Ale compute

$$C_{W} vol(X) = C_{W} ||e_{W}||^{2} = \langle F, e_{W} \rangle$$

$$= \int_{X} \sum_{v \in \Lambda} f(x+v) e^{-2\pi i \langle X, W \rangle} dx \qquad P \text{ fund. domain}$$

$$= \int_{X} \sum_{v \in \Lambda} f(x+v) e^{-2\pi i \langle X+v, W \rangle} d(x+v)$$

$$= \sum_{v \in \Lambda} \int_{P+v} f(u) e^{-2\pi i \langle U, W \rangle} du$$

$$= \int_{R^{h}} f(u) e^{-i \langle U, 2\pi W \rangle} du = \widehat{f}(2\pi W)$$

$$= \int_{R^{h}} f(u) e^{-i \langle U, 2\pi W \rangle} du = \widehat{f}(2\pi W)$$

.

$$\sum_{v \in \Lambda} f(x+v) = F(x) = \frac{1}{Vol(X)} \sum_{w \in \Lambda^{*}} f(a\pi w) e^{2\pi i \langle x, w \rangle} in L^{2}$$
and hence pointwise since both sider are continuous.

Evaluating at $x=0$ given the PSF.

$$\frac{Why \text{ is it a trace formula?}}{Suppose f(x) = \phi(||x||)}.$$

$$\phi(0) + \sum_{v \in \Lambda} \phi(|l(x|)) = \sum_{v \in \Lambda} \phi(||v||) = \frac{1}{Vol(X)} \sum_{\lambda \in \text{Spec}(\Lambda_{X})} f(\sqrt{\Lambda})$$

homotopy closes

of oriented closed geodenics in X

Towards the Selberg Trace Formula
We want to do the same thing if
$$X = H^2/\Gamma$$
 is a closed hyperbolic
Start with a radial function $k(z, w) = K(d(z, w))$
Define $\overline{K}(z) := \sum_{\substack{X \in \Gamma}} k(z, Xz)$.
 $\forall \alpha \in \Gamma$, we have
 $K(\alpha z) = \sum_{\substack{X \in \Gamma}} k(\alpha z, x \alpha z) = \sum_{\substack{X \in \Gamma}} k((z, \alpha^{-1} \times \alpha z)) = \sum_{\substack{X \in \Gamma}} k(z, \sigma z)$
 $\forall \epsilon \Gamma = K(z, \sigma z)$

$$= \sum_{\lambda \in \text{Spec}(\Delta_{X})} C_{\lambda} \varphi_{\lambda} \text{ where } \varphi_{\lambda} \text{ form a basis of } \\ \text{eigenfunctions of } \Delta_{X}.$$

$$\Rightarrow K = \sum_{\lambda \in \text{Spec}(\Delta_X)} C_{\lambda} \varphi_{\lambda} \text{ where } \varphi_{\lambda} \text{ form a basis of} \\ \text{eigenfunctions of } \Delta_X. \\ \text{Instead of evaluating at a particular point, we integrate over } X. \\ \frac{\text{Length} - \text{trace formula}}{\int_X K(z) dz = K(0) \text{ area}(X) + \sum_{(X) \in P(X)} \sum_{n=1}^{\infty} \frac{l(x)}{\sqrt{\cosh(l(x^n)) - 1}} \int_{(x^n)}^{\infty} \frac{K(\rho) \sinh\rho \, d\rho}{\sqrt{\cosh\rho} - \cosh(l(x^n))}$$

where $P(X) = conjugacy classes of primitive elements in <math>\Gamma$.

Let D be a fundamental domain for P. We have Sketch $\int_{X} K(z) dz = \int_{Y \in \Gamma} \sum_{k \in \Gamma} k(z, yz) dz = \sum_{Y \in \Gamma} \int_{D} k(z, yz) dz.$ (1) If Y = id get $\int_{D} K(z, z) dz = \int_{D} K(0) dz = K(0) area(X)$. ∂ If d∈ P, then $\int_{D} k(z, q^{-1} \leqslant q z) dz = \int_{D} k(qz, \xi q z) d(qz) = \int_{AD} k(z, \xi z) dz$ (3) q⁻¹ × x = B⁻¹ × B ∈> B x⁻¹ commutes with X
(⇒) p x⁻¹ and X are both powers of a common primitive X, $\Leftrightarrow \chi = \chi_0^n$ and $d\langle \chi_0 \rangle = \beta \langle \chi_0 \rangle$

 $\implies \sum_{\substack{X \in \Gamma \setminus \{id\}}} becomes \sum_{\substack{X \in P(X) \\ [X_o] \in P(X)}} \sum_{\substack{n=1 \\ n=1 \\ d \langle X_o \rangle \in P(X_o, \forall D)}} \int k(z, Y_o^n z) dz$ Moreover, $\sum_{\alpha \in Y_0} \int k(z, \chi_0^n z) dz = \int k(z, \chi_0^n z) dz$ $H^2(\chi_0)$ () can compute explicitly by conjugating 8, to $\begin{pmatrix} \mathbb{H}^{2} \\ \langle \mathbb{Y}_{0} \rangle \end{pmatrix} = \mathbb{H}^{2} \\ \begin{pmatrix} \Gamma \\ \langle \mathbb{Y}_{0} \rangle \end{pmatrix}$ $\begin{pmatrix} e^{\ell(\delta_0)/2} & 0 \\ 0 & e^{-\ell(\delta_0)/2} \end{pmatrix}$

The Selberg Trace Formula
Suppose that
$$f: \mathbb{R} \to \mathbb{R}$$
 is admissible and $X = \mathbb{H}^2/\Gamma$
is closed, then
 $\sum_{\lambda \in \text{spec}} \widehat{f}(\sqrt{\lambda} - \frac{1}{4}) = \frac{\alpha \operatorname{rea}(X)}{2\pi} \int_{0}^{\infty} \widehat{f}(r) r \tanh(\pi r) dr$
 $\lambda \in \operatorname{spec}(\Delta_X)$
Idea: Define K in terms $+ \sum_{X \in \mathcal{P}(X)} \sum_{n=1}^{\infty} \frac{l(8) \widehat{f}(nl(8))}{2\sinh(nl(8)/2)}$.
Deff'' $\widehat{f}: \mathbb{R} \to \mathbb{R}$ is admissible if it is even, \widehat{f} is well-defined
on $2|\operatorname{Im} S| < \frac{1}{2} + \varepsilon^2$ for some $\varepsilon > 0$ and
 $|\widehat{f}(S)| = O(\frac{1}{15}|^{2+\varepsilon})$ in that strip.

(3) Upper bounds from trace formulas

$$\frac{Thm}{Gorbachev} 2000, Cohn - Elkies 2003)$$
If $f \in \mathcal{L}(\mathbb{R}^n)$ and $r > 0$ is such that

(1)
$$f(x) \leq 0$$
 if $\|x\| \geq r$
(2) $\hat{f}(y) \geq 0$ $\forall y \in \mathbb{R}^n$
(3) $f(0) = \hat{f}(0) = 1$.
Then $Sys(X) \leq r$ for every flat torus X
of dimension h and volume 1.

$$\frac{How to optimize the bound?}{Take f(x) = p(1|x|1^2) e^{-1|x|1^2/2}} where p is a polynomial, so that
$$\hat{f}(y) = q(1|y|1^2) e^{-1|y|1^2/2} \quad \text{for a polynomial } q \text{ as well.}$$
Impose some double zeros $r_1, r_2, ..., r_m$ to $p \& q$ simultaneously,
which gives a linear system of equations.

$$\int \frac{f}{r} \frac{r_1}{r_1} \frac{r_2}{r_1} \frac{r_2}{r_1} \frac{r_1}{r_1} \frac{r_1}{r_$$$$

An analogous method works for hyperbolic surfaces! $Sys(X) \leq r \iff$ the number of closed geodesics with length in (0, r] is at least 1. Observation Generalization (FB-Petri) Let E be a multiset of elements in IR and let ISIR. Suppose that $(1) \Psi(\lambda) \leq 0 \quad \forall \lambda \in E \setminus I$ $\textcircled{(1)}{(1)} \sum \Psi(\lambda) > 0$ (3) $m \Psi(\mu) < \sum_{\lambda \in E} \Psi(\lambda)$ for all $\mu \in \mathbb{I}$. Then $\# E \cap I \ge m + 1$ counting multiplicity. We can use the trace formula to check (2) and (3)!

How to optimize over
$$f$$
? Suppose we know the primitive length spectrum (to rule out a particular μ) of X up to length L.

Let
$$h_1, ..., h_n : \mathbb{R} \to \mathbb{R}$$
 be such that $h_j * h_k$ is admissible and
supported in $[-L, L]$ for every j.K.
For $x \in \mathbb{R}^n$, let $h = \sum_{j=1}^n x_j h_j$ and $f = h * h = \sum_{j, K} x_j x_k h_j * h_k$
So that $\widehat{f} = (\widehat{h}_i)^2 \ge 0$ on $\mathbb{R} \cup \mathbb{R}$.
Write $b(t) := (\widehat{h}_i(t), ..., \widehat{h}_n(t))$ so that $\widehat{h}(t) = \langle x, b(t) \rangle$ and
 $\widehat{f}(t) = \langle x, b(t) \rangle^2$.

 $A_{j,K} := \sum_{\lambda \in \text{spec}(\Delta_{X})} \widehat{h_{j}} * \widehat{h_{K}} \left(\sqrt{\lambda - \frac{1}{4}} \right) \quad \text{so that}$ Define $\sum_{\lambda \in \text{spec}(\Delta_{x})} \widehat{f}(\sqrt{\lambda} - \frac{1}{4}) = \sum_{\lambda \in \text{spec}(\Delta_{x})} \sum_{j, k=1}^{n} x_{j} x_{k} \widehat{h}_{j} * h_{k}(\sqrt{\lambda} - \frac{1}{4})$ $= \sum_{j,k=1}^{n} x_{j} A_{j,k} x_{k} = \langle x_{j} A_{k} \rangle$ We now want to find where $b = b(\sqrt{\mu - 1/4})$ $\max_{x \in \mathbb{R}^n \setminus ioj} \frac{\langle x, b \rangle^2}{\langle x, Ax \rangle}$ $(if > 1, then \mu \notin Spec(\Delta_x))$

A is symmetric and positive definite, so it admits a symmetric
positive definite square root
$$\sqrt{A}$$
.

$$= \langle x, A_X \rangle = \langle \sqrt{A}x, \sqrt{A}x \rangle \quad \text{so set } y = \sqrt{A}x \\ \implies x = (\sqrt{A})^{-1}y \\ \text{and } \langle x, b \rangle = \langle y, (\sqrt{A})^{-1}b \rangle$$
By Cauchy-Schwarz, $\langle \frac{y}{4}, (\sqrt{A})^{-1}b \rangle^{2} \leq ||(\sqrt{A})^{-1}b||^{2}$ with equality
 $||y||^{2}$
only if $y \propto (\sqrt{A})^{-1}b \iff x \ll A^{-1}b$.

