Extremal problems on hyperbolic surfaces

GEMSTONE mini-course
Part III
March 25, 2024

Extremal problems on hyperbolic surfaces

Recap:

$$
\mathcal{M}_{g}=\left\{\begin{array}{c}
\text { closed orientable hyperbolic } \\
\text { surfaces of genus } g
\end{array}\right\} / \text { isometry, } \quad g \geq 2 .
$$

Extremal problems on hyperbolic surfaces

Recap:

$$
\mathcal{M}_{g}=\left\{\begin{array}{c}
\text { closed orientable hyperbolic } \\
\text { surfaces of genus } g
\end{array}\right\} / \text { isometry, } \quad g \geq 2
$$

For $X \in \mathcal{M}_{g}$,

- systole (X) is the length of the shortest closed geodesic on X,
- $\operatorname{Kiss}(X)$ is the number of oriented closed geodesics realizing systole (X),
- $\lambda_{1}(X)$ is the smallest non-zero eigenvalue of the Laplacian $\Delta: C^{\infty}(X) \rightarrow C^{\infty}(X)$ and
- $m_{1}(X)$ is the multiplicity of $\lambda_{1}(X)$.

Extremal problems on hyperbolic surfaces

Recap:

$$
\mathcal{M}_{g}=\left\{\begin{array}{c}
\text { closed orientable hyperbolic } \\
\text { surfaces of genus } g
\end{array}\right\} / \text { isometry, } \quad g \geq 2 .
$$

For $X \in \mathcal{M}_{g}$,

- systole (X) is the length of the shortest closed geodesic on X,
- $\operatorname{Kiss}(X)$ is the number of oriented closed geodesics realizing systole (X),
- $\lambda_{1}(X)$ is the smallest non-zero eigenvalue of the Laplacian $\Delta: C^{\infty}(X) \rightarrow C^{\infty}(X)$ and
- $m_{1}(X)$ is the multiplicity of $\lambda_{1}(X)$.

Question: Let $g \geq 2$: what are the maxima of systole $(X), \operatorname{kiss}(X), \lambda_{1}(X), m_{1}(X)$, for $X \in \mathcal{M}_{g}$?

Extremal problems on hyperbolic surfaces

New bounds [Fortier Bourque - P. '23, Fortier Bourque-Gruda-Mediavilla-P.-Pineault '23]

$$
g=2:[\text { Jenni '84] }
$$

$g=2,3$: [Bonifacio '21], [Kravchuk-Mazac-Pal '21], 4, 6: [Yang-Yau '80]

$g=2$: [Schmutz '94]

Extremal problems on hyperbolic surfaces

Theorem (Fortier Bourque-P. '23) There exists a $g_{0} \geq 2$ such that for every hyperbolic surface X of genus $g \geq g_{0}$:

$$
\begin{gathered}
\text { systole }(X)<2 \log (g)+2.409, \\
\operatorname{kiss}(X)<\frac{4.873 \cdot g^{2}}{\log (g)+1.2045}, \\
\lambda_{1}(X)<\frac{1}{4}+\left(\frac{\pi}{\log (g)+0.7436}\right)^{2},
\end{gathered}
$$

and

$$
m_{1}(X) \leq 2 g-1
$$

Best bounds known before: Bavard '96, Fortier Bourque-P. ' 22 (previously Pearlier '13), Chang '75, Sévennec '02 and Huber ' 76 respectively.

Sublinear bound on m_{1} under the assumption that the systole does not tend to 0 [Letrouit-Machado '23]

Extremal problems on hyperbolic surfaces

Bounds based on trace formulas:

The Selberg trace formula: $f: \mathbb{R} \rightarrow \mathbb{R}$ admissible, $\widehat{f}(\xi)=\int_{\mathbb{R}} f(x) \exp (-i x \cdot \xi) d x, X \in \mathcal{M}_{g}$, then

$$
\sum_{n \geq 0} \widehat{f}\left(\sqrt{\lambda_{n}-\frac{1}{4}}\right)=2(g-1) \int_{0}^{\infty} \widehat{f}(y) \tanh (\pi y) y d y+\sum_{\substack{\gamma \text { prim. closed } \\ \text { geod. on } X}} \ell(\gamma) \sum_{k \geq 1} \frac{f(k \cdot \ell(\gamma))}{2 \sinh (k \cdot \ell(\gamma) / 2)}
$$

Extremal problems on hyperbolic surfaces

Bounds based on trace formulas:

The Selberg trace formula: $f: \mathbb{R} \rightarrow \mathbb{R}$ admissible, $\widehat{f}(\xi)=\int_{\mathbb{R}} f(x) \exp (-i x \cdot \xi) d x, X \in \mathcal{M}_{g}$, then

$$
>\sum_{n \geq 0} \widehat{f}\left(\sqrt{\lambda_{n}-\frac{1}{4}}\right)=2(g-1) \int_{0}^{\infty} \widehat{f}(y) \tanh (\pi y) y d y+\sum_{\substack{\gamma \text { prim. closed } \\ \text { geod. on } X}} \ell(\gamma) \sum_{k \geq 1} \frac{f(k \cdot \ell(\gamma))}{2 \sinh (k \cdot \ell(\gamma) / 2)}
$$

Linear programming bound:
Let $g \geq 2$. Suppose that f is a non-constant admissible function and $L>0$ such that:

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\widehat{f}\left(\sqrt{\lambda-\frac{1}{4}}\right) \leq 0$ whenever $\lambda \geq L$
- $\widehat{f}(i / 2)<2(g-1) \int_{0}^{\infty} \widehat{f}(y) \tanh (\pi y) y d y$

$$
\hat{f}(\xi)=(-1)^{k} f(\xi)
$$

Extremal problems on hyperbolic surfaces
Symmetry:

Set-up: $X=H^{H H^{2}} \in M g$

$G 2 X$ by Bometris
Thum (Humvitz) \#G*168(g-1) and if all or pres $\# G \leq 84(g-1)$.

Ten $G \cap c^{\infty}(X)$ by

$$
\begin{array}{ll}
\text { Ten } G Q C^{\infty}(x) \text { by } & f \in G \\
\text { and } \frac{(g f)(x)=f\left(g^{-1} x\right)}{\Delta g f=g} \Delta_{f} & f \in C^{\infty} \\
x \in X
\end{array}
$$

In port. Ex $=\left\{f \in C^{\infty}(x) ; \Delta_{f}=\lambda_{f}\right\}$ admits a a-action $f \in E \lambda$ then

$$
\begin{aligned}
\Delta g_{f} & =g \Delta_{f}=g \cdot \lambda_{f} \\
& =\lambda(\delta f) .
\end{aligned}
$$

Extremal problems on hyperbolic surfaces

$$
\begin{aligned}
& X(N)=\underset{\Gamma(N)}{H^{2}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \xrightarrow{N+y}+H^{2} \\
& \operatorname{PS}\left((2, \mathbb{Z} / N \mathbb{Z}) \Omega X(N)=\frac{1}{-1}-\frac{1}{2} \frac{1}{2} 1 / 3\right. \\
& \sigma\left(\Delta_{X(N)}\right)=\{0\} \cup\left[\frac{1}{4}, \infty\right) \cup\left\{X_{n}\right\}_{\sigma}
\end{aligned}
$$

Extremal problems on hyperbolic surfaces
Fact: PSL(2, T $(p \pi)$ has no non-hiv ineps of $\operatorname{dim}<p-1$
Suppose λ e.v. of $A X(p)$
$\Rightarrow g f=f \quad \forall g \in P \delta \Delta(2, p)$
$\Rightarrow f$ descends to $X(p) / P G L(2, p)=$ PSH H^{2}
$\lambda_{1}(X(1))=$ Booher-Ströbsergsson-Vuluateoh PSL(11,4$)$
${ }^{11} \times(1)$

Extremal problems on hyperbolic surfaces
Example 2: Twisted Laplacians and a decomposition of the spectrum
Proposition: If $\Lambda<\Gamma$ are co-compact Fuchsian groups and $G=\Gamma / \Lambda$ is finite, then

$$
X=\lambda^{H^{2}} G<I \operatorname{son}(X)
$$

X / G hyperbolic orbupd H^{2} $\Gamma<P S L(2, \mathbb{R})$ dissercte

Example 2: Twisted Laplacians and a decomposition of the spectrum

Proposition: If $\Lambda<\Gamma$ are co-compact Fuchsian groups and $G=\Gamma / \Lambda$ is finite, then

as multisets.
The twisted Selberg trace formula:

$$
\begin{aligned}
& \sum_{\lambda \in \operatorname{spec}\left(\Gamma \backslash \mathbb{H}^{2}, \varphi\right)} \widehat{f}\left(\sqrt{\lambda-\frac{1}{4}}\right)=\operatorname{dim}(\varphi) \frac{\operatorname{area}\left(\Gamma \backslash \mathbb{H}^{2}\right)}{4 \pi} \int_{-\infty}^{\infty} y \widehat{f}(y) \tanh (\pi y) d y \\
& \uparrow \\
& \begin{array}{l}
+\sum_{\sum_{[\gamma] \in \mathcal{E}(\Gamma)} \frac{\operatorname{tr}(\varphi(\gamma))}{2 m(\gamma) \sin (\theta(\gamma))} \int_{-\infty}^{\infty} \frac{e^{-2 \theta(\gamma) y}}{1+e^{-2 \pi y}} \widehat{f}(y) d y \quad \text { _ }}^{+\sum_{[\gamma] \in \mathcal{P}(\Gamma)} \ell(\gamma) \sum_{n \geq 1} \frac{\operatorname{tr}\left(\varphi\left(\gamma^{n}\right)\right)}{2 \sinh (n \ell(\gamma) / 2)} f(n \ell(\gamma))}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& C^{\infty}\left(A^{-H^{2}}\right) \simeq C^{\infty}\left(H^{2}\right)^{\Gamma} \quad \phi \in \operatorname{Ir}(G) \\
& C^{\infty}\left(\frac{H^{2}}{\Gamma}, \phi\right)=\left\{F: H^{2} \rightarrow V_{j} F(\gamma x)=\underset{\phi(\gamma) \neq(x)}{ }\right\} \\
& \Lambda_{\phi}: C^{\infty}\left(\frac{1+1^{2}}{}, \phi\right) 厅 \quad \phi: G \rightarrow G L(v) \\
& \text { coord wite } \quad \Lambda=\operatorname{ker}(\Gamma \rightarrow G) \\
& \operatorname{spec}\left(r^{H}, d\right)=\operatorname{spec}\left(\Lambda_{\phi}\right) \text { discrate }
\end{aligned}
$$

The group algebra:

Proposition: If $\Lambda<\Gamma$ are co-compact Fuchsian groups and $G=\Gamma / \Lambda$ is finite, then

$$
\operatorname{spec}\left(\Lambda \backslash \mathbb{H}^{2}\right)=\bigcup_{\phi \in \operatorname{Irr}(G)} \operatorname{dim}(\phi) \cdot \operatorname{spec}\left(\Gamma \backslash \mathbb{H}^{2}, \phi\right)
$$

as multisets.

Two plots for the spectrum of the Bolza surface:

Not using the representations $(L=9.1, n=26)$

Degrees: $3,4,2$

Isom ${ }^{+}(B) \simeq \mathrm{GL}(2, \mathbb{Z} / 3 \mathbb{Z})$. Character degrees over \mathbb{R} :

$$
1,1,2,4,3,3,4
$$

Theorem [Fortier Bourque - P. '21]: We have

$$
\max _{X \in \mathcal{M}_{3}}\left\{m_{1}(X)\right\}=8
$$

and this is realized by the Klein quartic

Open question: Is the Klein quartic the unique surface in \mathcal{M}_{3} with $m_{1}=8$?

If $\quad \lambda_{1}(X(p)) \leq g l$ then $m_{1}(X(p)) \geqslant p-1$ $\approx \operatorname{arca}(x p))^{1 / 3}$

