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Mg =

{
closed orientable hyperbolic

surfaces of genus g

}/
isometry, g ≥ 2.

For X ∈ Mg,

• systole(X) is the length of the shortest closed geodesic on X,

• Kiss(X) is the number of oriented closed geodesics realizing systole(X),

• λ1(X) is the smallest non-zero eigenvalue of the Laplacian ∆ : C∞(X) → C∞(X) and

• m1(X) is the multiplicity of λ1(X).

Question: Let g ≥ 2: what are the maxima of systole(X), kiss(X), λ1(X), m1(X), for X ∈ Mg ?
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New bounds [Fortier Bourque – P. ‘23, Fortier Bourque–Gruda-Mediavilla–P.–Pineault ’23]
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Theorem (Fortier Bourque–P. ’23) There exists a g0 ≥ 2 such that for every hyperbolic surface X of genus g ≥ g0 :

systole(X) < 2 log(g) + 2.409,

kiss(X) <
4.873 · g2

log(g) + 1.2045
,

λ1(X) <
1

4
+

(
π

log(g) + 0.7436

)2

,

and
m1(X) ≤ 2g − 1

Best bounds known before: Bavard ’96, Fortier Bourque–P. ’22 (previously Parlier ’13), Cheng ’75, Sévennec ’02
and Huber ’76 respectively.

Sublinear bound on m1 under the assumption that the systole does not tend to 0 [Letrouit–Machado ’23]
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Bounds based on trace formulas:

The Selberg trace formula: f : R → R admissible, f̂(ξ) =
∫
R f(x) exp(−ix · ξ) dx, X ∈ Mg, then

∑
n≥0

f̂

(√
λn −

1

4

)
= 2(g − 1)

∫ ∞

0

f̂(y) tanh(πy)y dy +
∑

γ prim. closed
geod. on X

ℓ(γ)
∑
k≥1

f(k · ℓ(γ))
2 sinh(k · ℓ(γ)/2)
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Linear programming bound:

Let g ≥ 2. Suppose that f is a non-constant admissible function and L > 0 such that:

• f(x) ≥ 0 for all x ∈ R

• f̂
(√

λ− 1
4

)
≤ 0 whenever λ ≥ L

• f̂(i/2) ≤ 2(g − 1)
∫∞
0

f̂(y) tanh(πy)y dy

Then λ1(X) ≤ L for all X ∈ Mg.
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Symmetry:

(a) The Bolza surface
(b) The Klein quartic
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Example 1: High multiplicity for small eigenvalues [Sarnak–Xue ’91]
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Example 2: Twisted Laplacians and a decomposition of the spectrum

Proposition: If Λ < Γ are co-compact Fuchsian groups and G = Γ/Λ is finite, then

spec(Λ\H2) =
⋃

ϕ∈Irr(G)

dim(ϕ) · spec(Γ\H2, ϕ)

as multisets.



Extremal problems on hyperbolic surfaces

Example 2: Twisted Laplacians and a decomposition of the spectrum

Proposition: If Λ < Γ are co-compact Fuchsian groups and G = Γ/Λ is finite, then

spec(Λ\H2) =
⋃

ϕ∈Irr(G)

dim(ϕ) · spec(Γ\H2, ϕ)

as multisets.

The twisted Selberg trace formula:

∑
λ∈spec(Γ\H2,φ)

f̂

(√
λ− 1

4

)
= dim(φ)

area(Γ\H2)

4π

∫ ∞

−∞
yf̂(y) tanh(πy) dy

+
∑

[γ]∈E(Γ)

tr(φ(γ))

2m(γ) sin(θ(γ))

∫ ∞

−∞

e−2θ(γ)y

1 + e−2πy
f̂(y) dy

+
∑

[γ]∈P(Γ)

ℓ(γ)
∑
n≥1

tr(φ(γn))

2 sinh(nℓ(γ)/2)
f(nℓ(γ))
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Twisted Laplacians:
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The group algebra:
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Proposition: If Λ < Γ are co-compact Fuchsian groups and G = Γ/Λ is finite, then

spec(Λ\H2) =
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Two plots for the spectrum of the Bolza surface:
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Theorem [Fortier Bourque – P. ’21]: We have

max
X∈M3

{m1(X)} = 8

and this is realized by the Klein quartic

Open question: Is the Klein quartic the unique surface in M3 with m1 = 8 ?
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