Extremal problems on hyperbolic surfaces

GEMSTONE mini-course

Part III

March 25, 2024

Recap:

$$\mathcal{M}_g = \left\{ \begin{array}{c} \text{closed orientable hyperbolic} \\ \text{surfaces of genus } g \end{array} \right\} / \text{ isometry}, \quad g \ge 2.$$

Recap:

$$\mathcal{M}_g = \left\{ \begin{array}{c} \text{closed orientable hyperbolic} \\ \text{surfaces of genus } g \end{array} \right\} / \text{ isometry, } g \ge 2.$$

For $X \in \mathcal{M}_g$,

- systole(X) is the length of the shortest closed geodesic on X,
- $\operatorname{Kiss}(X)$ is the number of oriented closed geodesics realizing $\operatorname{systole}(X)$,
- $\lambda_1(X)$ is the smallest non-zero eigenvalue of the Laplacian $\Delta: C^{\infty}(X) \to C^{\infty}(X)$ and
- $m_1(X)$ is the multiplicity of $\lambda_1(X)$.

Recap:

$$\mathcal{M}_g = \left\{ \begin{array}{c} \text{closed orientable hyperbolic} \\ \text{surfaces of genus } g \end{array} \right\} \middle/ \text{ isometry}, \quad g \ge 2.$$

For $X \in \mathcal{M}_g$,

- systole(X) is the length of the shortest closed geodesic on X,
- $\operatorname{Kiss}(X)$ is the number of oriented closed geodesics realizing $\operatorname{systole}(X)$,
- $\lambda_1(X)$ is the smallest non-zero eigenvalue of the Laplacian $\Delta: C^{\infty}(X) \to C^{\infty}(X)$ and
- $m_1(X)$ is the multiplicity of $\lambda_1(X)$.

Question: Let $g \ge 2$: what are the maxima of systole(X), kiss(X), $\lambda_1(X)$, $m_1(X)$, for $X \in \mathcal{M}_g$?

New bounds [Fortier Bourque – P. '23, Fortier Bourque–Gruda-Mediavilla–P.–Pineault '23]

4,6: **[Yang–Yau '80**]

Theorem (Fortier Bourque–P. '23) There exists a $g_0 \ge 2$ such that for every hyperbolic surface X of genus $g \ge g_0$:

 $systole(X) < 2\log(q) + 2.409,$ kiss $(X) < \frac{4.873 \cdot g^2}{\log(a) + 1.2045},$ $\lambda_1(X) < \frac{1}{4} + \left(\frac{\pi}{\log(a) + 0.7436}\right)^2,$ $m_1(X) \le 2q - 1$

and

Best bounds known before: Bavard '96, Fortier Bourque-P. '22 (previously Parlier '13), Cheng '75, Sévennec '02 and Huber '76 respectively.

Sublinear bound on m_1 under the assumption that the systole does not tend to 0 [Letrouit–Machado '23]

Bounds based on trace formulas:

The Selberg trace formula: $f : \mathbb{R} \to \mathbb{R}$ admissible, $\widehat{f}(\xi) = \int_{\mathbb{R}} f(x) \exp(-ix \cdot \xi) \, dx, \, X \in \mathcal{M}_g$, then

$$\sum_{n\geq 0} \widehat{f}\left(\sqrt{\lambda_n - \frac{1}{4}}\right) = 2(g-1) \int_0^\infty \widehat{f}(y) \tanh(\pi y) y \, dy + \sum_{\substack{\gamma \text{ prim. closed} \\ \text{geod. on } X}} \ell(\gamma) \sum_{k\geq 1} \frac{f(k \cdot \ell(\gamma))}{2\sinh(k \cdot \ell(\gamma)/2)}$$

Bounds based on trace formulas:

The Selberg trace formula: $f : \mathbb{R} \to \mathbb{R}$ admissible, $\widehat{f}(\xi) = \int_{\mathbb{R}} f(x) \exp(-ix \cdot \xi) \, dx, \, X \in \mathcal{M}_g$, then

Symmetry:

Ten GQC (X) by FECD $(q-1)(x) = f(q^{-1} X)$ and $\Delta gf = g \Delta f$ In part. $E_{\lambda} = \xi f \in C^{\infty}(\lambda)$; admits a G-action XEX $\nabla t = y t_{\chi}$ $f \in E \chi$ then $\Lambda q_f = g \Lambda f = g \cdot \lambda f$ $= \lambda (44).$

Example 2: Twisted Laplacians and a decomposition of the spectrum

Proposition: If $\Lambda < \Gamma$ are co-compact Fuchsian groups and $G = \Gamma / \Lambda$ is finite, then

Example 2: Twisted Laplacians and a decomposition of the spectrum

Proposition: If $\Lambda < \Gamma$ are co-compact Fuchsian groups and $G = \Gamma / \Lambda$ is finite, then

$$\operatorname{spec}(\Lambda \backslash \mathbb{H}^2) = \bigcup_{\phi \in \operatorname{Irr}(G)} \dim(\phi) \cdot \operatorname{spec}(\Gamma \backslash \mathbb{H}^2, \phi)$$

as multisets.

The twisted Selberg trace formula:

$$\sum_{\lambda \in \operatorname{spec}(\Gamma \setminus \mathbb{H}^{2}, \varphi)} \widehat{f}\left(\sqrt{\lambda - \frac{1}{4}}\right) = \dim(\varphi) \frac{\operatorname{area}(\Gamma \setminus \mathbb{H}^{2})}{4\pi} \int_{-\infty}^{\infty} y \widehat{f}(y) \tanh(\pi y) \, dy$$
$$+ \sum_{[\gamma] \in \mathcal{E}(\Gamma)} \frac{\operatorname{tr}(\varphi(\gamma))}{2m(\gamma) \sin(\theta(\gamma))} \int_{-\infty}^{\infty} \frac{e^{-2\theta(\gamma)y}}{1 + e^{-2\pi y}} \widehat{f}(y) \, dy$$
$$+ \sum_{[\gamma] \in \mathcal{P}(\Gamma)} \ell(\gamma) \sum_{n \ge 1} \frac{\operatorname{tr}(\varphi(\gamma^{n}))}{2\sinh(n\ell(\gamma)/2)} f(n\ell(\gamma))$$

 $\phi \in Irr(G)$ Twisted Laplacians: $C^{\infty}(H^{2}) \simeq C^{\infty}(H^{2})^{\prime}$ $C^{\infty}(AH^{2}\varphi) = \{F: H^{2} \Rightarrow V: F(FX) = \{F(FX)\} = \{F(F$ $\Lambda_{H}: \mathcal{O}(\mathcal{H}^{2}, p) \mathcal{F}$ \$: G -> G (V) coord wite spec($p^{+|2}, d$) = $pec(A\phi)$ discribe

The group algebra:

Proposition: If $\Lambda < \Gamma$ are co-compact Fuchsian groups and $G = \Gamma / \Lambda$ is finite, then

$$\operatorname{spec}(\Lambda \backslash \mathbb{H}^2) = \bigcup_{\phi \in \operatorname{Irr}(G)} \dim(\phi) \cdot \operatorname{spec}(\Gamma \backslash \mathbb{H}^2, \phi)$$

as multisets.

Two plots for the spectrum of the Bolza surface:

1, 1, 2, 4, 3, 3, 4

Theorem [Fortier Bourque – P. '21]: We have

 $\max_{X \in \mathcal{M}_3} \{m_1(X)\} = 8$

and this is realized by the Klein quartic

Open question: Is the Klein quartic the unique surface in \mathcal{M}_3 with $m_1 = 8$?

 $\lambda_{(\chi(p))} \leq g$ her $M_1(\chi p)$) ~ p ~ j ~ ovea (Xp