Lecture 4

Triangle surfaces

(1) Triangle groups and surfaces

2 Spectral data

^OTriangle groups . The (p,q,r)-triangle group T(p,q,r) is the group generated by the counterclockwise rotations of angle $2\pi/p$, $2\pi/q$, $2\pi/r$, 2

Relations

We have $x^{P} = y^{q} = z^{r} = id$

Fundamental domain

Furthermore,

$$\begin{cases} x, y, z \ is a presentation for T(P,q,r). \end{cases}$$

Fundamental domain

Triangle surfaces

$$\frac{\text{Def}^{h}}{\text{Def}^{h}} \stackrel{(p,q,r)-\text{triangle surface is a surface of the form X=H^{2}/_{\Gamma}}$$

where $\Gamma \triangleleft T(p,q,r)$ with Γ torsion-free and $[T:\Gamma] < \infty$.
Then $G := T/_{\Gamma}$ is a finite group which acts by
orientation-preserving isometries on $X = H^{2}/_{\Gamma}$ and

$$\frac{\text{Thm}\left(\text{Hurwitz}, 1893\right) \text{If X is a closed hyperbolic surface of genus g(22)}, \\ \text{then } \left|\text{Isom}^{\dagger}(X)\right| \leq 84 (g-1) \text{ with equality iff} \\ X \text{ is a } (2, 3, 7) - \text{triangle surface. } \left(\text{Hurwitz surface}\right)$$

$$\begin{array}{l} \underline{Properties \ of \ triangle \ surface \ surface \ of \ genus \ g} \\ & \longleftrightarrow \ X \ is \ a \ triangle \ surface \ of \ genus \ g \\ & \Longleftrightarrow \ X \ is \ a \ strict \ local \ maximizer \ of \ |Isom^+| \ in \ Mg \ . \end{array}$$

(2) Spectral data

$$\frac{\text{the Boliza Surface}}{g=2}$$

$$(p,q,r) = (2,3,8)$$

$$\frac{1}{2}$$

$$\frac{$$

Cook (2018) discovered error in Jenni. Proved $3 \le m_1(B) \le 4$. Thum (FB-Petri, '21) $M_1(B) = 3$. (Using the Cohn-Elkies method) to prove $M_1(B) < 4$. Cook's numerical data (Free Fem ++) Bolza, g=2, (2,3,8)

Eigenvalue	Numerical multiplicity
3.83618	3
5.35083	4
8.24401	2
14.7149	4
15.0386	3
18.645	3
20.5069	4
23.0545	1
28.0591	3
30.8081	4

Eigenvalue	Numerical multiplicity
2.6767	8
6.61848	7
10.8637	6
12.1775	8
17.2397	7
21.9563	7
24.0649	8
25.9085	6
30.7817	6
36.4369	8

Eigenvalue	Numerical multiplicity
1.91556	6
2.78954	5
5.89883	5
7.3379	5
8.26099	4
8.55338	6
13.2289	6
13.5082	4
15.1462	4
17.0459	6

Fricke - Macbeath

(Hurwitz surface of genus 7)

 $\lambda_{1}(FM) \approx 1.239$ Thm

<u>Thm</u> (Pineault, Lee, '23) $M_1(FM) = 7$.

All triangle surfaces at once
If
$$X/_G = O(p,q,r)$$
, then $X = |G|$ copies of the guadrilateral Q
glued along the Cayley graph
of G wrt $\pi(x) \& \pi(z)$

In summer 2023, Gruda-Mediavilla computed the bottom of spec (Δ_x) for all triangle surfaces of genus $2 \le g \le 20$. (tabulated by Conder)

 $\underline{\text{Thm}}(FB-Gruda-Mediavilla-Petri-Pineault) m_1(X_{10}) = 16 \text{ and } M_1(X_{17}) = 21.$

If
$$G \leq \operatorname{Isom}(X)$$
 and E_{λ} is an eigenspace of the Laplacian, then
 $\rho : G \rightarrow GL(E_{\lambda})$
 $g \mapsto (f \mapsto f \circ g^{-1})$ is a representation.

Maschke's thm
$$\Rightarrow E_{\lambda} = \bigoplus_{j=1}^{K} V_{j}$$
 where $p(V_{j}) = V_{j}$ and
 $p|_{V_{j}}$ is irreducible.
 $\Rightarrow \dim(E_{\lambda}) = \sum_{j=1}^{K} \dim(V_{K})$
A finite group G has finitely many irreps (up to isomorphism)
and they can be computed.

Strategy To prove a lower bound on
$$\dim(E_{\lambda}) = m(1)$$
,
it suffices to prove that irreps of small
dimension cannot appear in E_{λ} .
How to rule out irreps?.
trivial rep (> G-invariant eigenfunctions on X
Can be ruled out if
() $\lambda \not\in spec(\Delta x_{G})$ Jenni '81
Burger-Colbois '85
Sarnak-Xue '91
(2) it would contradict Courant's model domain theorem
Cock '18
~~FB-Petri '21~~

$$\frac{\text{H} \circ \text{W} \text{ about other irreps?}}{\text{So} \times /_{G} \cong \text{H}^{2}/_{\Gamma}}, \quad G \subset X \text{ by isometries},}$$

$$\frac{\text{So} \times /_{G} \cong \text{H}^{2}}{_{T}} \text{ for some } T \leq \text{PSL}(Q, \mathbb{R}) \text{ discrete}.}$$

$$T = \left\{ all \text{ lifts } H^{2} \xrightarrow{\tilde{g}} H^{2}, g \in G \right\} \implies \exists \text{ surjective homomorphism } \Pi : T \Rightarrow G$$

$$\frac{\text{W} \circ \mathcal{Y}}{_{X}} \stackrel{\circ}{\to} \chi : g \in G \right\} \implies \exists \text{ surjective homomorphism } \Pi : T \Rightarrow G$$

$$\frac{\text{W} \circ \mathcal{Y}}{_{X}} : g \in G \right\} \implies \forall \text{ with } \Gamma = \text{Ker}(\Pi) \text{ hence } G \cong T_{\Gamma}$$

$$\frac{P_{foposition}(\text{Cornelissen-Peyerimhoff, Sunada})}{\text{An irrep } (\Phi, V) \text{ of } G \text{ appears}} \implies \exists \text{ nonzero } \Phi - equivariant } F : X \Rightarrow V$$

$$\text{st. } \Delta F = \lambda F.$$

$$\iff \exists \text{ nonzero } (\Phi \circ \pi) - equivariant \\ \widetilde{F} : H^{2} \Rightarrow V$$

$$\text{st. } \Delta \widetilde{F} = \lambda \widetilde{F}$$

The twisted Selberg Trace Formula relates these \$\$\phi-twisted eigenvalues
to . the conjugacy classes of primitive elements
$$X \in T$$

. the traces of $\phi \circ \pi(x^n)$
Via any admissible test function f & its Fourier transform.
 \Rightarrow Can use the Booker-Strömbergsson method
to prove $\lambda_1(\phi) > \bigcup(g) \ge \lambda_1(Xg)$ for all but
one irrep ϕ_g . $(g=10, 17)$
 \Rightarrow Only ϕ_g can appear in $\mathbb{E}_{\lambda_1}(Xg) \Rightarrow M_1(Xg) \ge \dim(\phi_g) = \int_{21}^{16}$

