Lecture 4
Triangle surfaces
(1) Triangle groups and surfaces
(2) Spectral data
(3) Representation theory \& multiplicity

Triangle groups
Fact $\forall \alpha, \beta, \gamma>0$ sit. $\alpha+\beta+\gamma<\pi$, there exists a $\binom{$ unique }{ up to ism } hyperbolic triangle with interior angler α, β, γ.

Def ${ }^{n} \cdot(p, q, r) \in \mathbb{N}^{3}$ is hyperbolic if $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$.

- A (p, q, r)-triangle is a triangle with interior angler $\pi / p, \pi / q, \pi / r$. (exists by the fact)
- The (p, q, r)-triangle group $T(p, q, r)$ is the group generated by the counterclockwise rotations of angle $2 \pi / p, 2 \pi / q, 2 \pi / r$ about the vertices of a (p, q, r)-triangle. (unique up to conj)

Relations
We have $x^{p}=y^{9}=z^{r}=$ id

Relations
We have $x^{p}=y^{q}=z^{r}=$ id
We can write $x=R_{b} R_{c}$

$$
y=R_{c} R_{a}
$$

$z=R_{a} R_{b}$

$$
\begin{aligned}
\Rightarrow x y z & =R_{b} R_{c} R_{c} R_{a} R_{a} R_{b} \\
& =R_{b} R_{b}=i d .
\end{aligned}
$$

Cor T is generated by any two of x, y, z.

Fundamental domain
By the Poincare polygon theorem, Q is a fundamental domain for the action of $T=T(p, q, r)$ on H^{2}.
In other words,

$$
\{\gamma(Q): \gamma \in T\} \text { tile } H^{2}
$$

Furthermore,

$$
\left\langle x, y, z \mid x^{p}=y^{q}=z^{r}=x y z=i d\right\rangle
$$

is a presentation for $T(p, q, r)$.

Fundamental domain

Quotient space

$$
\begin{aligned}
O(p, q, r): & =H^{2} / T(p, q, r) \\
& \cong Q / \text { side identifications }
\end{aligned}
$$

Triangle surfaces
Def $A(p, q, r)$-triangle surface is a surface of the form $X=H^{2} / \Gamma$ where $\Gamma \Delta T(p, q, r)$ with Γ torsion-free and $[T: \Gamma]<\infty$.

Then $G:=T / \Gamma$ is a finite group which acts by orientation-preserving isometries on $X=H 1^{2} / \Gamma$ and

$$
X_{G}=\left(H H_{(T(p, q, r) / \Gamma)} \cong H_{T(p, q, r)}^{2}=O(p, q, r)\right.
$$

Hurwitz surfaces

Thu (Hurwitz, 1893) If X is a closed hyperbolic surface of genus $g(\geqslant 2)$, then $\left|I \operatorname{som}^{+}(X)\right| \leqslant 84(g-1)$ with equality if X is a $(2,3,7)$-triangle surface. (Hurwitz surface)

They exist in genus $3,7,14,17,118, \ldots$
3 distinct ones

Properties of triangle surfaces

- X is a triangle surface of genus g

$$
\Leftrightarrow X \text { is a strict local maximizer of }\left|I_{\text {som }}+\right| \text { in } M_{g} \text {. }
$$

- Every triangle surface is a critical point of sys (on τ_{g}).
(2) Spectral data

The Bolza surface

$$
\begin{aligned}
g & =2 \\
(p, q, r) & =(2,3,8)
\end{aligned}
$$

Thm (Jenni, '81) The Bolza surface satisfies
(Strohmaier - Uski, 2013)

$$
\begin{aligned}
& \lambda_{1}(B) \in[3.83,3.85] \text { and } m_{1}(B)=3 . \\
& \lambda_{1}(B) \approx 3.838887258842 \ldots
\end{aligned}
$$

Cook (2018) discovered error in Jenni. Proved $3 \leqslant m_{1}(B) \leqslant 4$.
Thm $\left(F B\right.$-Petri, '21) $\quad m_{1}(B)=3$. (Using the Cohn-Elkies method to prove $m_{1}(B)<4$.

Cook's numerical data (Free Fem ++)
Bolza, $g=2,(2,3,8)$

Eigenvalue	Numerical multiplicity
3.83618	3
5.35083	4
8.24401	2
14.7149	4
15.0386	3
18.645	3
20.5069	4
23.0545	1
28.0591	3
30.8081	4

Klein, $g=3,(2,3,7)$

Eigenvalue	Numerical multiplicity
2.6767	8
6.61848	7
10.8637	6
12.1775	8
17.2397	7
21.9563	7
24.0649	8
25.9085	6
30.7817	6
36.4369	8

Bring, $g=4,(2,4,5)$

Eigenvalue	Numerical multiplicity
1.91556	6
2.78954	5
5.89883	5
7.3379	5
8.26099	4
8.55338	6
13.2289	6
13.5082	4
15.1462	4
17.0459	6

Fricke-Macbeath (Hurwitz surface of genus 7)

All triangle surfaces at once
If $X / G=O(p, q, r)$, then $X=|G|$ copies of the quadrilateral Q glued along the Cayley graph of G writ $\pi(x) \& \pi(z)$
In summer 2023, Gruda-Mediavilla computed the bottom of $\operatorname{spec}\left(\Delta_{x}\right)$ for all triangle surfaces of genus $2 \leqslant 9 \leqslant 20$. (tabulated by Conder)

The counterexamples

$$
G_{10} \subset X_{10}
$$

$$
G_{17} \curvearrowright X_{17}
$$

Thy (FB-Gruda-Mediavilla-Petri-Pineault) $m_{1}\left(X_{10}\right)=16$ and $m_{1}\left(X_{17}\right)=21$.
(3) Representation theory $\underset{\text { multiplicity }}{\&}$

If $G \leqslant I \operatorname{som}(X)$ and E_{λ} is an eigenspace of the Laplacian, then

$$
\rho: G \rightarrow G L\left(E_{\lambda}\right)
$$

$g \mapsto\left(f \mapsto f \circ g^{-1}\right) \quad$ is a representation.

Maschke's th $\Rightarrow E_{\lambda}=\bigoplus_{j=1}^{K} V_{j}$ where $\rho\left(V_{j}\right)=V_{j}$ and $\left.\rho\right|_{V_{j}}$ is irreducible.

$$
\Rightarrow \operatorname{dim}\left(E_{\lambda}\right)=\sum_{j=1}^{k} \operatorname{dim}\left(V_{k}\right)
$$

A finite group G has finitely many irreps (up to isomorphism) and they can be computed.

Strategy To prove a lower bound on $\operatorname{dim}\left(E_{\lambda}\right)=m(\lambda)$, it suffices to prove that irreps of small dimension cannot appear in E_{λ}.
How to rule out irreps?
trivial rep $\Leftrightarrow G$-invariant eigenfunction on X
Can be ruled out if
(1) $\lambda \notin \operatorname{spec}(\Delta x / 6)$ Jenni ' 81

Burger-Colbois ' 85
Sarnak-Xue'g1
(2) it would contradict Courant's nodal domain theorem Cook 18
FB-Petri 'al

How about other irreps? $\quad X=H^{2} / \Gamma, G C X$ by isometries,
so $X / G \cong H^{2} / T$ for some $T \leq \operatorname{PSL}(2, R)$ discreete.

Proposition (Cornelissen-Peyerimhoff, sunada)

$$
\begin{aligned}
& \text { An irrep }(\phi, V) \text { of } G \text { appears } \Leftrightarrow \exists \text { nonzero } \phi \text {-equivariant } F: X \rightarrow V \\
& \text { in the eigenspace } E_{\lambda} \text { of } \Delta_{x} \Leftrightarrow \Delta F=\lambda F . \\
& \Leftrightarrow \exists \text { nonzero }(\phi \cdot \pi) \text {-equivariant } \tilde{F}:\left.H\right|^{2} \rightarrow V \\
& \text { s.t. } \Delta \widetilde{F}=\lambda \tilde{F} \quad \text { twisted eigs }
\end{aligned}
$$

The twisted Selberg Trace Formula relates these ϕ-twisted eigenvalues to . the conjugacy classes of primitive elements $\gamma \in T$

- The traces of $\phi \circ \pi\left(\gamma^{n}\right)$
via any admissible test function f \& its Fourier Transform.
\Rightarrow Can use the Booker-Strömbergsson method to prove $\lambda_{1}(\phi)>U(g) \geqslant \lambda_{1}\left(X_{g}\right)$ for all but one irrep $\phi_{g} . \quad(g=10,17)$
\Rightarrow Only ϕ_{g} can appear in $E_{\lambda_{1}\left(X_{g}\right)} \Rightarrow m_{1}\left(X_{g}\right) \geqslant \operatorname{dim}\left(\phi_{g}\right)=\left\{\begin{array}{l}16 \\ 21\end{array}\right.$

BS plot for the irreps of $G_{10} \quad(L=7, n=16)$

