Generalizations of Pleijel’s nodal domain theorem

Corentin Léna

Università degli Studi di Torino

Workshop on Geometric Spectral Theory
Université de Neuchâtel, 2017
Plan

Pleijel’s result and some generalizations

Robin boundary condition

Improvements and conjectures
Plan

Pleijel’s result and some generalizations

Robin boundary condition

Improvements and conjectures
We study eigenvalue problems in a domain Ω, that is to say an open, bounded and connected subset of \mathbb{R}^n, or more generally of an n-dimensional Riemannian manifold. The eigenvalue equation is

$$-\Delta u = \lambda u \text{ in } \Omega$$

with a boundary condition on $\partial \Omega$: $u = 0$ (Dirichlet), $\frac{\partial u}{\partial n} = 0$ (Neumann) or $\frac{\partial u}{\partial n} + hu = 0$ (Robin).

For an eigenfunction u, we define the nodal set as

$$\mathcal{N}(u) := \overline{u^{-1}(\{0\})}$$

and the nodal domains as the connected components of $\Omega \setminus \mathcal{N}(u)$.
Some classical results

Theorem (J. C. F. Sturm [1836])
For a regular Sturm-Liouville problem on a segment \((a, b)\), with eigenvalues \((\lambda_k)_{k \geq 1}\), an eigenfunction associated with \(\lambda_k\) has \(k - 1\) zeros in \((a, b)\).

Remark
The theorem of Sturm and Liouville states that a \(k\)-th eigenfunction divides the segment into \(k\) nodal domains.

Theorem (R. Courant [1923])
Let \(\Omega\) be an open, bounded and connected set in \(\mathbb{R}^n\), with a sufficiently regular boundary. Let \((\lambda_k)_{k \geq 1}\) be the eigenvalues of the Laplacian, with Dirichlet, Neumann or Robin boundary condition. Then, an eigenfunction associated with \(\lambda_k\) has at most \(k\) nodal domains.
Pleijel’s result

Let Ω be an open, bounded and connected set in \mathbb{R}^2, and let $(\lambda_k)_{k \geq 1}$ denote the eigenvalue of the Laplacian with a Dirichlet boundary condition.

Theorem (Å. Pleijel [1956])
There is only a finite number of indices k for which λ_k has an eigenfunction with k nodal domains.

Let ν_k denote the maximal number of nodal domains for an eigenfunction associated with λ_k.

Proposition (Å. Pleijel [1956])
We have the asymptotic upper bound

$$\limsup_{k \to +\infty} \frac{\nu_k}{k} \leq \frac{(2\pi)^2}{\lambda_1(\Omega) |\Omega|^2} = \frac{4}{j^2} < 1.$$
The n-dimensional case

The result can be generalized to \mathbb{R}^n. We keep the same notation.

Theorem

If $\Omega \subset \mathbb{R}^n$,

$$\limsup_{k \to +\infty} \frac{\nu_k}{k} \leq \frac{(2\pi)^n}{\lambda_1(\mathbb{B}^n)^\frac{n}{2} |\mathbb{B}^n|^2} < 1.$$

We write

$$\gamma(n) := \frac{(2\pi)^n}{\lambda_1(\mathbb{B}^n)^\frac{n}{2} \omega_n^2}.$$

We have the explicit expression

$$\gamma(n) = \frac{2^{n-2} n^2 \Gamma \left(\frac{n}{2} \right)^2}{j_{\frac{n}{2}-1,1}^n},$$

where $j_{\frac{n}{2}-1,1}$ is the smallest positive zero of the Bessel function of the first kind $J_{\frac{n}{2}-1}$.

Theorem (B. Helffer, M. Persson Sundqvist [2016])

The sequence $n \mapsto \gamma(n)$ is decreasing and goes to 0 exponentially fast ($\gamma(n + 1)/\gamma(n) \to 2/e$).
Outline of the proof

Let u be an eigenfunction associated with λ_k with ν_k nodal domains. Let us denote by D_1, \ldots, D_{ν_k} the nodal domains of u. We apply the Faber-Krahn inequality to a domain D_i:

$$\lambda_k^\frac{n}{2} |D_i| = \lambda_1(D_i)^\frac{n}{2} |D_i| \geq \lambda_1(\mathbb{B}^n)^\frac{n}{2} \omega_n.$$

Summing over $i \in \{1, \ldots, \nu_k\}$, we obtain

$$\lambda_k^\frac{n}{2} |\Omega| \geq \nu_k \lambda_1(\mathbb{B}^n)^\frac{n}{2} \omega_n$$

and therefore

$$\nu_k \leq \frac{\lambda_k^\frac{n}{2} |\Omega|}{\lambda_1(\mathbb{B}^n)^\frac{n}{2} \omega_n}.$$

According to Weyl’s law

$$\lambda_k^\frac{n}{2} |\Omega| \sim \frac{(2\pi)^n k}{\omega_n}.$$

We obtain

$$\limsup_{k \to +\infty} \frac{\nu_k}{k} \leq \frac{(2\pi)^n}{\lambda_1(\mathbb{B}^n)^\frac{n}{2} \omega_n^2}.$$
Some extensions

The asymptotic upper bound

$$\limsup_{k \to +\infty} \frac{\nu_k}{k} \leq \gamma(n)$$

holds for the eigenfunctions of the following operators.

- The Laplace-Beltrami operator in Ω, with a Dirichlet boundary condition on $\partial \Omega$, where Ω is an open and connected set compactly included in a 2-dimensional Riemannian manifold M ($n = 2$), with M homeomorphic to a disk (J. Petree [1957]).

- The Laplace-Beltrami operator in M, a compact n-dimensional Riemannian manifold with or without boundary, with a Dirichlet boundary condition on ∂M if it is not empty (P. Bérard and D. Meyer [1982]).

- The Schrödinger operator $-\Delta + V(x)$ in \mathbb{R}^n, for several choices of V, including the (possibly anisotropic) harmonic potential and the Coulomb potential (P. Charron [2015] and P. Charron, B. Helffer and T. Hoffmann-Ostenhof [2016]).
Neumann boundary condition: an example

Given $\Omega \subset \mathbb{R}^2$ an open, bounded and connected set with a sufficiently regular boundary, we consider the Laplacian in Ω with Neumann boundary condition, and denote by $(\mu_k(\Omega))_{k \geq 1}$ its eigenvalues.

Proposition (Å. Pleijel [1956])
If $\Omega = Q := (0, \pi)^2$,
\[
\limsup_{k \to +\infty} \frac{\nu_k}{k} \leq \frac{4}{j^2}.
\]

Proof.
Given an eigenfunction u, divide its nodal domains into
- the interior domains $D^0_{1}, \ldots, D^0_{\nu_k}$ not touching ∂Q;
- the boundary domains $D^1_{1}, \ldots, D^1_{\nu_k}$ adjacent to ∂Q.

Using the fact that the eigenfunctions, restricted to one of the four sides of Q, are trigonometric polynomials of degree at most $\sqrt{\mu_k(Q)}$, we get $\nu^1_k \leq C \sqrt{\mu_k(Q)}$ for some constant C, so that $\lim_{k \to +\infty} \frac{\nu^1_k}{k} = 0$.

On the other hand, we can bound the number of interior domains as in the Dirichlet case. \qed
Neumann boundary condition: generalization

Let $\Omega \subset \mathbb{R}^2$ be an open, bounded and connected set with a piecewise analytic boundary. We again consider the Laplacian in Ω with Neumann boundary condition, whose eigenvalues we denote by $(\mu_k)_{k \geq 1}$.

Theorem (J.A. Toth, S. Zelditch [2009])

For $k \geq 1$, we denote by r_k the greatest possible number of zeros of u on $\partial \Omega$, where u is an eigenfunction associated with μ_k. There exists a constant C_Ω such that

$$r_k \leq C_\Omega \sqrt{\mu_k}.$$

Theorem (I. Polterovich [2009])

Under the above hypotheses for Ω, for the Neumann-Laplacian eigenfunctions,

$$\limsup_{k \to +\infty} \frac{\nu_k}{k} \leq \frac{4}{j^2}.$$
Plan

Pleijel’s result and some generalizations

Robin boundary condition

Improvements and conjectures
Statement of the result

Let Ω be an open, bounded and connected open set in \mathbb{R}^n with a boundary $\partial \Omega$ of class $C^{1,1}$. For $h \in \text{Lip}(\overline{\Omega})$ such that $h \geq 0$ on $\partial \Omega$, we consider the eigenvalue problem with Robin boundary condition

$$\begin{cases} -\Delta u = \mu u & \text{in } \Omega; \\ \frac{\partial u}{\partial n} + hu = 0 & \text{on } \partial \Omega. \end{cases}$$

We denote by $(\mu_k)_{k \geq 1}$ the associated sequence of eigenvalues, arranged in non-decreasing order and counted with multiplicities. Using standard regularity result for elliptic boundary value problems, we can show that any eigenfunction of the above problem is of class $C^1(\Omega)$.

As before, we denote by ν_k the maximal number of nodal domain for an eigenfunction associated with μ_k.

Theorem

We have the asymptotic upper bound

$$\limsup_{k \to +\infty} \frac{\nu_k}{k} \leq \gamma(n).$$
Preliminaries: inequalities in a nodal domain

Let \((\mu, u)\) is an eigenpair and \(D\) a nodal domain of \(u\). We have

\[
\int_D |\nabla u|^2 \leq \mu \int_D u^2.
\]

Indeed,

\[
\int_D |\nabla u|^2 = \int_D (-\Delta u) u + \int_{\partial D} \frac{\partial u}{\partial n} u = \mu \int_D u^2 - \int_{\partial D} h u^2 = \\
\mu \int_D u^2 - \int_{\partial D \cap \Omega} h u^2 - \int_{\partial D \cap \partial \Omega} h u^2 \leq \mu \int_D u^2.
\]

Furthermore, the Faber-Krahn inequality gives a lower bound for the Rayleigh quotients. More precisely, for each \(v \in H^1_0(D)\), we define

\[
R(v, D) = \frac{\int_D |\nabla v|^2}{\int_D v^2},
\]

and we have

\[
\lambda_1 (B^n)^{\frac{n}{2}} \omega_n \leq R(v, D)^{\frac{n}{2}} |D|.
\]

The function \(v\) does not need to be a groundstate of \(-\Delta\) in \(D\).
Given a nodal domain \(D \), the main idea is to distinguish between two cases:

- most of the mass of the eigenfunction is inside \(\Omega \);
- there is a non-negligible amount of mass near \(\partial \Omega \).

This is a natural distinction when we try to apply the previous form of the Faber-Krahn inequality.

Given \(r > 0 \), we consider

\[
\begin{align*}
\partial \Omega_r & := \{ x \in \mathbb{R}^n ; \text{dist}(x, \partial \Omega) < r \} ; \\
\partial \Omega_r^+ & := \partial \Omega_r \cap \Omega .
\end{align*}
\]

For \(\delta > 0 \) small enough, we construct non-negative smooth functions \(\varphi_0 \) and \(\varphi_1 \) such that

- \(\varphi_0^2 + \varphi_1^2 = 1 \) in \(\Omega \),
- \(\text{supp}(\varphi_0) \subset \Omega \setminus \overline{\partial \Omega_a^+} \) and \(\text{supp}(\varphi_1) \subset \partial \Omega_{A \delta}^+ \),
- \(\| \nabla \varphi_i \|_{L^\infty} \leq C \delta^{-1} \) for \(i \in \{ 0, 1 \} \),

with \(0 < a < A \) and \(C \) independent of \(\delta \).
Let us consider an eigenpair \((\mu, u)\). We define \(u_0 := \varphi_0 u\) and \(u_1 := \varphi_1 u\).

By construction of \((\varphi_0, \varphi_1)\), we have, for each nodal domain \(D\) of \(u\),

\[
\int_D u^2 = \int_D u_0^2 + \int_D u_1^2.
\]

We fix \(\varepsilon \in (0, 1)\). With respect to this choice, we say that \(D\) is

\begin{itemize}
 \item a bulk domain if \(\int_D u_0^2 \geq (1 - \varepsilon) \int_D u^2\);
 \item a boundary domain if \(\int_D u_1^2 > \varepsilon \int_D u^2\).
\end{itemize}

We write

\begin{itemize}
 \item \(\nu^0(u, \varepsilon)\) for the number of bulk domains;
 \item \(\nu^1(u, \varepsilon)\) for the number of boundary domains.
\end{itemize}

Ultimately, we want to show that \(\nu^1(u, \varepsilon) \ll \nu^0(u, \varepsilon)\) for \(\mu\) large. We therefore take \(\delta\) depending on \(\mu\), namely

\[\delta := \mu^{-\theta}\]

with \(\theta > 0\) to be determined.

Following the steps of Pleijel's proof, we obtain, for the number of bulk domains,

\[
\nu^0(u, \varepsilon) \leq \frac{|\Omega|}{\lambda_1(B^n)^{\frac{n}{2}} \omega_n} \left(\frac{1 + \varepsilon}{1 - \varepsilon} \mu + \frac{1 + \frac{1}{\varepsilon}}{1 - \varepsilon} C^2 \mu^{2\theta} \right)^{\frac{n}{2}}.
\]
Given a boundary domain D, we define
$$
\tilde{D} := D \cap \{ u_1 \neq 0 \} \subset \partial \Omega^+_A,
$$
where u_1^R and \tilde{D}^R are the reflection of u_1 and \tilde{D} through $\partial \Omega$. We have in particular
$$
\tilde{D}^R \subset \partial \Omega_A.
$$

We have
$$
R \left(u_1^R, \tilde{D}^R \right) = R \left(u_1, \tilde{D} \right) = \frac{\int_D |\nabla u_1|^2}{\int_D u_1^2} \leq \frac{2}{\varepsilon} \left(\mu + C^2 \mu^2 \theta \right),
$$
and, Faber-Krahn inequality applied to \tilde{D}^R gives us
$$
\lambda_1 \left(\mathbb{B}^n \right) \frac{n}{2} \omega_n \leq \left| R \left(u_1^R, \tilde{D}^R \right) \right| \frac{n}{2} \left| \tilde{D}^R \right| = 2 \left| R \left(u_1, \tilde{D} \right) \right| \frac{n}{2} \left| \tilde{D} \right|
$$

Summing over all boundary domains, we get
$$
\nu^1(u, \varepsilon) \leq C' \frac{|\partial \Omega_A|}{\lambda_1 \left(\mathbb{B}^n \right) \frac{n}{2} \omega_n} \left(\mu + C^2 \mu^2 \theta \right) \frac{n}{2},
$$
and therefore
$$
\nu^1(u, \varepsilon) \leq C'' \mu^{-\theta} \left(\mu + C^2 \mu^2 \theta \right) \frac{n}{2}.
$$
Let \((u_k)_{k \geq 1}\) be a sequence of eigenfunction associated with \((\mu_k)\) and having each the maximal number of nodal domain, \(\nu_k\).

Let us recall that we have

\[
\nu^0(u_k, \varepsilon) \leq \frac{|\Omega|}{\lambda_1(B^n)^{\frac{n}{2}} \omega_n} \left(\frac{1 + \varepsilon}{1 - \varepsilon} \mu_k + \frac{1 + \frac{1}{\varepsilon}}{1 - \varepsilon} C^2 \mu_k^2 \theta \right)^{\frac{n}{2}}.
\]

and

\[
\nu^1(u_k, \varepsilon) \leq C'' \mu^{-\theta} \left(\mu_k + C^2 \mu_k^2 \theta \right)^{\frac{n}{2}}.
\]

We choose \(\theta \in (0, \frac{1}{2})\), for instance \(\theta = \frac{1}{4}\). Using Weyl’s law, we have

\[
\mu_k \leq \lambda_k \sim \frac{4\pi^2}{(\omega_n |\Omega|)^{\frac{2}{n}}} k^{\frac{2}{n}}.
\]

Therefore

\[
\lim_{k \to +\infty} \frac{\nu^1(u_k, \varepsilon)}{k} = 0 \quad \text{and} \quad \limsup_{k \to +\infty} \frac{\nu^0(u_k, \varepsilon)}{k} \leq \frac{(2\pi)^n}{\lambda(B^n)^{\frac{n}{2}} \omega_n^2} \left(\frac{1 + \varepsilon}{1 - \varepsilon} \right)^{\frac{n}{2}}.
\]

Since \(\nu_k = \nu^0(u_k, \varepsilon) + \nu^1(u_k, \varepsilon)\), we get

\[
\limsup_{k \to +\infty} \frac{\nu_k}{k} \leq \frac{(2\pi)^n}{\lambda(B^n)^{\frac{n}{2}} \omega_n^2} \left(\frac{1 + \varepsilon}{1 - \varepsilon} \right)^{\frac{n}{2}},
\]

and the conclusion when \(\varepsilon \to 0\).
Plan

Pleijel's result and some generalizations

Robin boundary condition

Improvements and conjectures
Recent improvements: sharper upper bound

We now go back to eigenvalues of the Laplacian with a Dirichlet boundary condition.

\[
\Omega \subset \mathbb{R}^2 \quad \limsup_{k \to +\infty} \frac{\nu_k}{k} \leq \gamma(2) - 3 \cdot 10^{-9} \quad \text{(J. Bourgain [2013])}
\]

\[
\Omega \subset \mathbb{R}^2 \quad \limsup_{k \to +\infty} \frac{\nu_k}{k} \leq \gamma(2) - \varepsilon(2) \quad \text{(S. Steinerberger [2013])}
\]

\[
\Omega \subset M^n \quad \limsup_{k \to +\infty} \frac{\nu_k}{k} \leq \gamma(n) - \varepsilon(n) \quad \text{(H. Donnelly [2014])}
\]

Conjecture (I. Polterovich [2009])

For any domain \(\Omega \subset \mathbb{R}^2 \),

\[
\limsup_{k \to +\infty} \frac{\nu_k}{k} \leq \frac{2}{\pi}.
\]

The analysis of rectangles show that the conjecture upper bound is optimal.
Recent improvements: geometric control

General form of the results
(P. Bérard and B. Helffer [2016], M. van den Berg and K. Gittins [2016])

Given a "regular enough" domain Ω, there are no more than $N(\Omega)$ eigenvalues satisfying equality in Courant Theorem, where $N(\Omega)$ depends on known geometric quantities associated with Ω.

The proofs rely on explicit geometric estimates for the remainder in Weyl’s law.

Theorem (M. van den Berg and K. Gittins [2016])

Let Ω be a convex domain in \mathbb{R}^n, then there is an (explicit) constant $C(n)$ such that

$$N(\Omega) \leq C(n) \frac{\mathcal{H}^{n-1}(\partial \Omega)^n}{|\Omega|^{n-1}}$$

Can we prove similar results for Neumann/Robin eigenfunctions?