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Pompeiu problem

In what follows, Ω is a compact Riemannian manifold with smooth
boundary and ∆ is the Laplace-Beltrami operator associated to the
metric. The sign convention is that, in Euclidean space:

∆u = −
∑
j

∂2u

∂x2
j

By N we denote the inner unit normal vector to ∂Ω.

The following question was asked by Pompeiu in 1929. Fix Ω, a compact
domain in Rn, and assume that f ∈ C 0(Rn) is such that∫

g(Ω)

f = 0 for all rigid motions g .

Does this imply that f = 0 ?
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When Ω is a ball of radius R, the question is the following: suppose that
there exists a continuous function on the whole Rn such that∫

B(x0,R)

f = 0

for all x0 ∈ Rn.
Is it true that this can happen only when f ≡ 0 ?

Pompeiu thought that this was the case, and he actually provided a
(wrong) proof of this fact when Ω is a ball.

In fact, there are counterexamples !

The first was given by Chakalov few years later and is given by the
function

f (x1, . . . , xn) = sin(ax1)

where aR is a zero of the Bessel function J n
2
.

We will discuss the proof below.
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Pompeiu property

We say that the domain Ω ⊆ Rn has the Pompeiu property if any
function f ∈ C 0(Rn) such that

∫
g(Ω)

f = 0 for all rigid motions g is

identically zero.

We have just seen that a ball does not have the Pompeiu property.

Are there other domains not possessing Pompeiu property ?

Conjecture: Pompeiu problem. Let Ω ⊆ Rn be a domain
homeomorphic to a ball. Assume that it does not have the Pompeiu
property. Then Ω is a ball.

The Pompeiu problem is still open, at least in dimensions different from 2
and 3, and has generated a great deal of research.

Note: A.G. Ramm published a paper (Solution to the Pompeiu problem
and the related symmetry problem Applied Mathematics Letters 63
(2017) 28-33) in which he proves Pompeiu problem in dimension 3.
However, he does not assume explicitly that ∂Ω is connected (which is a
necessary assumption).
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He also posted a preprint on Arxiv A solution to Pompeiu problem arXiv
1304.2297v2 13 Apr. 2013 in which he proves Pompeiu problem in
dimension 2: however, the preprint has not been published yet.

We now prove that a ball does not have the Pompeiu property.

Proposition
Let Ω = Bn(R) and consider any eigenfunction of the Laplacian which is
defined on the whole Rn, for example

f (x1, . . . , xn) = sin(
√
λx1), λ > 0

Take any λ > 0 so that
√
λR is a positive zero of the Bessel function J n

2
.

Then ∫
B(x0,R)

f = 0

for all x0 ∈ Rn.
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It is known that Bessel function J n
2

admits an infinite sequence of zeroes
{z1, z2, . . . }.

It follows that if we take
√
λ ∈ {zk

R
: k ∈ N}

then any function f (x1, . . . , xn) = sin(
√
λx1) will give a counterexample.

In particular, on the ball of radius R, we have infinitely many such
functions.

In fact, consider z2 > z1 > 0 and let r < R be such that

z2

R
=

z1

r
, that is r =

z1

z2
R.

Set √
λ
.

=
z2

R
=

z1

r

Then f (x1, . . . , xn) = sin(
√
λx1) as above integrates to zero on all balls

of radius r , and also on all balls of radius R.

Then, it will integrate to zero also on any domain obtained removing a
ball of radius r from a ball of radius R. That is why in the above
conjecture we need to assume that Ω is homeomorphic to a ball.
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Proof of Proposition

Let then B(x0, r) be the ball of center x0 (an arbitrary point) and radius
R, and let f be any C 2-function globally defined on Rn. Let ρ be the
distance function to the center x0. Introduce the function
F = [0,∞)→ R:

F (r) =

∫
B(x0,r)

f .

F (r) is smooth; we see (co-area formula):

F ′(r) =

∫
∂B(x0,r)

f

and (Green formula and some easy work):

F ′′(r) =

∫
∂B(x0,r)

〈∇f ,∇ρ〉 − f ∆ρ.
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Now ∇ρ is the exterior normal so∫
∂B(x0,r)

〈∇f ,∇ρ〉 = −
∫
B(x0,r)

∆f .

On the other hand,

∆ρ = −n − 1

ρ
.

It follows that

F ′′(r) = −
∫
B(x0,r)

∆f +
n − 1

r
F ′(r).

Assume that f satisfies ∆f = λf . Then F satisfies the ODE

F ′′(r)− n − 1

r
F ′(r) + λF (r) = 0.

(the ODE is independent on x0).
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Suitable change of variables will get us to the Bessel equation. First set

F (r) = h(
√
λr).

If x =
√
λr one sees that h(x) satisfies

h′′ − n − 1

x
h′ + h = 0.

Now set
h(x) = xkg(x).

One verifies that g(x) satisfies

g ′′ +
2k − (n − 1)

x
g ′ +

(
1− k(n − k)

x2

)
g = 0.

Choose k = n
2 . The equation becomes:

g ′′ +
1

x
g ′ +

(
1− n2

4
· 1

x2

)
g = 0.

which is of Bessel type:

g ′′ +
1

x
g ′ +

(
1− ν2

x2

)
g = 0.

with ν = n/2.
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The space of bounded solutions to the previous ODE is one-dimensional,
and is spanned by the Bessel function Jν , defined by the power series:

Jν =
(x

2

)ν ∞∑
k=0

(−1)k

Γ(k + 1)Γ(ν + k + 1)

(x

2

)2k

.

In conclusion, we get that if ∆f = λf and F (r) =
∫
B(x0,r)

f , then F

satisfies

F ′′(r)− n − 1

r
F ′(r) + λF (r) = 0,

and there is a constant c such that

F (r) = cr
n
2 J n

2
(
√
λr).

Hence, if
√
λR = zj , we see indeed that F (R) =

∫
B(x0,R)

f = 0: note that

this is true for all choices of x0. The Proposition follows.
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A spectral theoretic formulation: Schiffer conjecture

There are several equivalent formulations of Pompeiu problem. Many of
them involve the Fourier transform of the characteristic function of the
domain:

Ω̃(ξ) =

∫
Ω

e i〈x,ξ〉 dx .

We choose a formulation due to Williams (1976): it is an equivalence
between the Pompeiu problem and a symmetry problem in PDE,
introduced by Schiffer.

Neumann eigenvalue problem. Given any bounded domain (in any
Riemannian manifold) the problem

∆f = λf on Ω

∂f

∂N
= 0 on ∂Ω

(1)

is known as the Neumann eigenvalue problem.
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It admits a discrete sequence of eigenvalues (each repeated according to
its multiplicity):

λN1 (Ω) ≤ λN2 (Ω) ≤ . . .

with associated eigenfunctions f1, f2, . . . , and λNk →∞ as k →∞. (Note
that λN1 = 0 because it is associated to the constant eigenfunction
f1 = 1).

Consider now the following problem, called Schiffer problem:
∆f = λf on Ω

∂f

∂N
= 0, f = c 6= 0 on ∂Ω.

(2)

It is the Neumann problem, with the additional request that the
eigenfunction is constant on the boundary.

(2) is an example of overdetermined problem, because a generic domain
will not support solutions: solutions exist (if they do) only in few
”fortunate” cases, that is, for domains with a good amount of
”symmetries”, and for ”special geometries”.
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Any Euclidean ball supports a solution to the Schiffer problem (actually
infinitely many)

This is because in any Euclidean ball we can isolate the class of radial
functions, that is, those functions depending only on the distance to the
origin:

f = f (r).

It is a remarkable fact that the Laplace operator preserves the class of
radial function on the ball: if f = f (r) is radial also ∆f will be. In fact a
calculation shows that

∆f = −f ′′(r)− n − 1

r
f ′(r).

Then, the eigenfunction equation ∆f = λf for the Neumann problem, for
radial functions, becomes the ODE on the interval [0,R]:

f ′′(r) +
n − 1

r
f ′(r) + λf (r) = 0

with boundary conditions

f ′(0) = f ′(R) = 0
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(the first condition is needed to guarantee smothness of f at the origin,
the second is the Neumann condition at the boundary, because
∂f

∂N
= f ′(R)).

If f (r) is a radial eigenfunction with Neumann boundary conditions then
automatically f solves (2).

Standard procedure shows that there are, in fact, infinitely many radial
solutions (classical Sturm-Liouville theory). More precisely, proceeding as
before we see that the above ODE has solutions

f (r) = cr−νJν(
√
λ), with ν =

n − 2

2
.

The condition f ′(0) = 0 is automatically satisfied. The condition
f ′(R) = 0 forces

√
λR to be a zero of the function

ψ(x) = xJ ′ν(x)− νJν(x).
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We conclude

Proposition
Let {z1, z2, . . . } be the set of zeroes of the function
ψ(x) = xJ ′ν(x)− νJν(x), with ν = n−2

2 . Then, for each k = 1, 2, . . . the
function

fk(r) = r−νJν(
zk r

R
)

is a solution to the Schiffer overdetermined problem (2) on the ball
B(0,R).

Having established that balls supports solutions, it is natural to ask
whether there are other domains with that property. At present, no new
such domains are known, and here is a conjecture. (In dimension 3 the
conjecture has recently been confirmed by A.G. Ramm.)

Schiffer conjecture. Assume that Ω ⊆ Rn supports a function f
solving the overdetermined problem (2). Then Ω is a ball.

The following is a remarkable connection between this conjecture and the
Pompeiu problem. It was discovered by Williams.

The Schiffer conjecture is equivalent to the Pompeiu conjecture.
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Overdetermined problems

An overdetermined problem gives rise to the following question :

can we identify the geometry of a domain Ω in a Riemannian manifold
assuming the existence of a solution u of a certain PDE such that both u
and its normal derivative are constant on the boundary of Ω ?

Here is a class of overdetermined problems:
∆u = F (u) on Ω

u = c1,
∂u

∂N
= c2 on ∂Ω

The Schiffer problem we have seen before falls in that category. The
Schiffer conjecture, if confirmed, would give a strong geometric rigidity :
the domain has to be a ball.

We now focus on the most famous case: F ≡ 1 and c1 = 0, for which we
do have a rigidity result.
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Serrin problem

Consider the mean-exit time function v = v(x), unique solution of the
boundary value problem: {

∆v = 1 on Ω,

v = 0 on ∂Ω.

For a generic domain,
∂v

∂N
will not be constant on the boundary.

If we make this extra assumption we then get an overdetermined
problem, often called Serrin problem:

∆v = 1 on Ω,

v = 0,
∂v

∂N
= c on ∂Ω.

(3)
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Domains for which a solution to (3) exists will be called harmonic,
because

A domain Ω supports a solution to (3) if and only if the mean-value of
any harmonic function h on Ω equals its mean-value on ∂Ω. That is:

1

|Ω|

∫
Ω

h =
1

|∂Ω|

∫
∂Ω

h

Let vΩ be the mean-exit time of the domain Ω. The functional:

Ω 7→
∫

Ω

vΩ

is called torsional rigidity of Ω.

It can be shown that harmonic domains are critical points of the torsional
rigidity
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Serrin rigidity result

First, we remark that any ball is a harmonic domain: mean exit time is a
radial function v = v(r) and in fact, for the ball of radius R centered at
the origin in Rn:

v(r) =
1

2n
(R2 − r 2).

Serrin proved in 1971 the following rigidity result.

Theorem
(Serrin) Assume that Ω ∈ Rn+1 admits a solution to (3). Then Ω is a
ball and v is radially symmetric. That is, harmonic Euclidean domains are
balls.

He proved more generally that if there is a positive solution u of the
problem 

∆u = F (u)

u = 0,
∂u

∂N
= c on ∂Ω,

(4)

then Ω is a ball.
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Maximum principle

We give two proofs of the theorem: one is the original Serrin’s proof by
the moving planes method, the other is due to Weinberger, and uses the
Bochner formula and an integral identity (Pohozaev identity). Both use
the maximum principle, some consequences of which are summarized
below.

Theorem
(Maximum principle) Let Ω be a bounded domain and let u ∈ C 2(Ω) be
a superharmonic function: ∆u ≥ 0 on Ω. Then:

a) u attains its minimum on the boundary of Ω.

b) Let x0 ∈ ∂Ω be a point where u attains its minimum value, and

assume that ∂Ω is C 1 at x0. Then either
∂u

∂N
(x0) > 0 or u is constant on

Ω.

c) If u takes its minimum value in the interior of Ω then u is constant.

In fact, a) is the weak maximum principle, b) is the Hopf boundary point
lemma and c) is the strong maximum principle.
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b) Let x0 ∈ ∂Ω be a point where u attains its minimum value, and

assume that ∂Ω is C 1 at x0. Then either
∂u

∂N
(x0) > 0 or u is constant on

Ω.

c) If u takes its minimum value in the interior of Ω then u is constant.

In fact, a) is the weak maximum principle, b) is the Hopf boundary point
lemma and c) is the strong maximum principle.



The proof by Serrin : moving planes method

We will show that, for any unit vector ν in Rn, there is a hyperplane Hν
orthogonal to ν with respect to which Ω is symmetric. This forces Ω to
be invariant under all reflections, hence invariant under the whole group
of rotations. So, Ω is a ball.

Fix a direction ν and let T be the family of hyperplanes orthogonal to ν.

Start from one such, say T0, not intersecting Ω, and parallel transport it
until it intersects Ω.

From that moment on, the resulting plane T will cut off from Ω a cup
Σ(T ). That is:

Σ(T ) = Ω ∩ T+,

where T+ is the half space containing the starting plane T0.

We let
Σ′(T ) = reflection of Σ(T ) with respect to T .
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Now it is clear that at the beginning of the process one has

Σ′(T ) ⊆ Ω. (5)

Keep moving inside, and (5) will hold until at least one of the following
two events will occur:

i) Σ′(T ) becomes internally tangent to ∂Ω at some point p /∈ T ;

ii) T reaches a position where it is orthogonal to ∂Ω at some point q.

We now focus on this ”critical” hyperplane T̄ and show that Ω must be
symmetric with respect to it. We denote D = Σ′(T̄ ), for simplicity, and
define a function

v : D → R

as being the reflection of u (w.r.t. T̄ ).

Clearly ∆v = 1. On D we can consider also the function

h = u − v .

Clearly h is harmonic; since D ⊆ Ω it is also clear that h ≥ 0 on ∂D.
Therefore

h ≥ 0 on D.



Now it is clear that at the beginning of the process one has

Σ′(T ) ⊆ Ω. (5)

Keep moving inside, and (5) will hold until at least one of the following
two events will occur:

i) Σ′(T ) becomes internally tangent to ∂Ω at some point p /∈ T ;

ii) T reaches a position where it is orthogonal to ∂Ω at some point q.

We now focus on this ”critical” hyperplane T̄ and show that Ω must be
symmetric with respect to it. We denote D = Σ′(T̄ ), for simplicity, and
define a function

v : D → R

as being the reflection of u (w.r.t. T̄ ).

Clearly ∆v = 1. On D we can consider also the function

h = u − v .

Clearly h is harmonic; since D ⊆ Ω it is also clear that h ≥ 0 on ∂D.
Therefore

h ≥ 0 on D.



Now it is clear that at the beginning of the process one has

Σ′(T ) ⊆ Ω. (5)

Keep moving inside, and (5) will hold until at least one of the following
two events will occur:

i) Σ′(T ) becomes internally tangent to ∂Ω at some point p /∈ T ;

ii) T reaches a position where it is orthogonal to ∂Ω at some point q.

We now focus on this ”critical” hyperplane T̄ and show that Ω must be
symmetric with respect to it. We denote D = Σ′(T̄ ), for simplicity, and
define a function

v : D → R

as being the reflection of u (w.r.t. T̄ ).

Clearly ∆v = 1. On D we can consider also the function

h = u − v .

Clearly h is harmonic; since D ⊆ Ω it is also clear that h ≥ 0 on ∂D.
Therefore

h ≥ 0 on D.



Now it is clear that at the beginning of the process one has

Σ′(T ) ⊆ Ω. (5)

Keep moving inside, and (5) will hold until at least one of the following
two events will occur:

i) Σ′(T ) becomes internally tangent to ∂Ω at some point p /∈ T ;

ii) T reaches a position where it is orthogonal to ∂Ω at some point q.

We now focus on this ”critical” hyperplane T̄ and show that Ω must be
symmetric with respect to it. We denote D = Σ′(T̄ ), for simplicity, and
define a function

v : D → R

as being the reflection of u (w.r.t. T̄ ).

Clearly ∆v = 1. On D we can consider also the function

h = u − v .

Clearly h is harmonic; since D ⊆ Ω it is also clear that h ≥ 0 on ∂D.
Therefore

h ≥ 0 on D.



Case 1. Assume that i) holds.

Note that at p one has v(p) = 0 hence h(p) = 0: thus p is an absolute
minimum of h on D; by the Hopf boundary point lemma, either h ≡ 0 on

D or
∂h

∂N
(p) > 0.

But ∂D and ∂Ω are tangent at p, hence they have the same inner unit
normal; as v is the reflection of u one has:

∂v

∂N
(p) =

∂u

∂N
(p) = c ,

hence
∂h

∂N
(p) = 0.

We conclude that h = 0 and u = v . This happens only if Ω is symmetric
about T̄ , and we are done.
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Case 2. Now assume that ii) holds. This case is more delicate and we
only sketch the argument.

The problem is that ∂D has a right corner at q, and we cannot apply the
usual Hopf boundary point lemma.

First, Serrin proves a boundary point lemma adapted to the situation, and
concludes that either h must be constant on D, or one of the two cases:

∂h

∂ν
(q) > 0 or

∂2h

∂ν2
(q) > 0

must hold, where ν is any vector at q entering D non-tangentially.

Then, one shows that h has a zero of order 2 at q, in the sense that all
derivatives up and including order 2 are zero. Hence, the second case
cannot occur, which means that h = 0 and, again, Ω is simmetric w.r.t.
T̄ . The proof is complete.
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The proof by Weinberger

We start by recalling the Bochner formula in Rn:

Lemma
For all functions on Rn:

〈∇∆u,∇u〉 = |∇2u|2 +
1

2
∆(|∇u|2).

Another useful formula is Pohozaev identity (sometimes also called
Rellich identity) :

Lemma
Let x = x1

∂

∂x1
+ · · ·+ xn

∂

∂xn
be the position vector. For any smooth

function u on Ω:∫
Ω

2〈x ,∇u〉∆u + (n − 2)|∇u|2 =

∫
∂Ω

2〈x ,∇u〉 ∂u

∂N
− |∇u|2〈x ,N〉.
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Recall that we have to prove that, if Ω is a domain in Rn which supports
a solution to the overdetermined problem

∆u = 1

u = 0,
∂u

∂N
= c on ∂Ω

Then Ω is a ball.

For the proof, introduce the function

q = |∇u|2 +
2

n
u.

We compute its Laplacian. The Bochner formula says that

∆(|∇u|2) = −2|∇2u|2.

hence

∆q = −2|∇2u|2 +
2

n
.
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If A is an n × n matrix, one has |A|2 ≥ 1

n
(trA)2, with equality iff A = cI

(a scalar matrix).

Then:

|∇2u|2 ≥ 1

n
(tr∇2u)2 =

1

n
(∆u)2 =

1

n
.

Conclude that q is subharmonic: ∆q ≤ 0, hence it takes its absolute
maximum on the boundary, where it is constant, equal to c2.

That is, one has on Ω:

|∇u|2 +
2

n
u ≤ c2.

We integrate this inequality over Ω. By the Green formula∫
Ω

|∇u|2 =

∫
Ω

u∆u −
∫
∂Ω

u
∂u

∂N
=

∫
Ω

u.

and we arrive at
n + 2

n

∫
Ω

u ≤ c2|Ω|. (6)
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It is important to remark that, if equality holds, then ∇2u must be a
scalar matrix, and since tr∇2u = −1 at all points of Ω one sees that

∇2u = −1

n
I . (7)

We now verify that equality holds, by throwing u inside the Pohozaev
identity.

Observe that
∫

Ω
|∇u|2 =

∫
Ω

u, and that ∇u = cN on ∂Ω. The right hand
side becomes, since div x = −n:

c2

∫
∂Ω

〈x ,N〉 = c2

∫
Ω

div x = −nc2|Ω|

Acting similarly on the left hand side one arrives easily at

−(n + 2)

∫
Ω

u.

Therefore, equating the two sides:

n + 2

n

∫
Ω

u = c2|Ω|.

That is, we have equality in (6) and thus we have also (7).
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It remains to show that the identity ∇2u = −1

n
I implies that Ω must be

a ball.

On the boundary one has ∇u = cN; fix an othonormal basis
(e1, . . . , en−1) of T∂Ω such that

S(ej) = ηjej

for all j = 1, . . . , n − 1.

Now
∇2u(ej , ej) = 〈∇ej∇u, ej〉 = c〈∇ej N, ej〉.

By definition ∇ej N = −S(ej) = −cηjej hence

−1

n
= ∇2u(ej , ej) = −cηj

for all j and we see that ηj =
1

nc
for all j .

Hence ∂Ω is an umbilical hypersurface of Rn, hence, it must be a sphere
(of the appropriate radius). This means that Ω is a ball. The proof is
complete.
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