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Quantum magnetic particle on H
H = C+ = {x + iy : x ∈ R, y > 0} — hyperbolic Lobachevsky
plane, ds2 = (dx2 + dy 2) · y−2

−∆H = −y 2

(
∂2

∂x2
+

∂2

∂y 2

)
is hyperbolic −Laplacian

τ ∈ R (large), Dτ := −∆H + 2iτy
∂

∂x
is magnetic Hamiltonian

Horocycle (eigen)functions: Dτnun = s2
nun

u = un : H→ C, τ = τn → +∞, s = sn = o(τ), n = 1, 2, . . . .

If ~ = 1/τ then:
(
−~2∆H + 2i~y

∂

∂x

)
u = cu, c ~→0−−→ 0

Auxiliary condition: sup
n∈N, z∈H

‖un‖L1(BH(z,1)) < +∞.
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Symbol. Classical flow

H1(x , y , ξ1, ξ2) :=
(yξ1 − 1)2 + (yξ2)2

2
: T ∗H→ R,

1
τ2 · Dτ = Op~(2H1 − 1)

At {H1 = 1/2} ⊂ T ∗H (shifted circle bundle), H1 as a classical
Hamiltonian gives horocycle flow.
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Quantum Unique Ergodicity. Horocycle case

Null set {H1 = 1/2} is{
(1+cos θ) dx+sin θ dy

y
at x + iy : θ ∈ Rmod 2π, x + iy ∈ C+

}
.

In this coordinates, dµL :=
dx dy dθ

y 2
is invariant Liouville measure

for {H1 = 1/2}.

Definition
{un}∞n=1 is Quantum Uniquely Ergodic (QUE) sequence if, for any
a ∈ C∞0 (T ∗H) we have

〈(Op1/τn a)un, un〉L2(H)
n→∞−−−→

∫
{H1=1/2}

a dµL.
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Horocycle QUE at compact hyperbolic surface
Γ < Isom+(H) is a discrete torsion-free group with compact
fundamental domain F ⊂ H. γ ∈ Γ is H 3 z 7→ γz = az+b

cz+d
,

a, b, c, d real with ad − bc = 1.

X = Γ \H is compact hyperbolic surface

u : H→ C is τ -form w.r.t. Γ (τ ∈ R) if u(γz) =
(
cz+d
cz̄+d

)τ
u(z) for

any z ∈ H and γ ∈ Γ. F τ (Γ) := {τ -forms}

Theorem 1 (S. Zelditch’92, D.’21)
un ∈ F τn(Γ), Dτnun = s2

nun, τn →∞, sn = o(τn),∫
F
|un|2 dAH = 2πAH(F ), dAH = dx dy

y2 .
Then sequence {un}∞n=1 is QUE.

Proof: pass Furstenberg Theorem on classical unique ergodicity of
horocycle flow on X through semiclassical correspondence.
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Complexification!

HC = {(X ,Y ) : X ,Y ∈ C} is Bruhat–Whitney’59 complexification
of H

For x1 + iy1, x2 + iy2 ∈ H,

cosh distH(x1 + iy1, x2 + iy2) := 1 +
(x1 − x2)2 + (y1 − y2)2

2y1y2
.

u(= un) as above can be analytically continued to a certain
neighborhood G1 of H in HC
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Main results, preliminary form. Growth

Theorem 2 (on growth)
There exist smooth B0, b : G1 \H→ R, b > 0 with:

|τn|1/2 · |un|2 · exp(|τn|B0) −−−⇁
τn→∞

∗ b in D′(G1 \H).

Z̃n = {un = 0} ⊂ G1(⊂ HC) is regular up to negligible singular set.
In any P ∈ Z̃n, mn(P) is integer multiplicity of divisor of un in P .
For test 2-forms ω smooth on G1 \H, put Zn(ω) :=

∫
Z̃n

mnω.

Lelong–Poincaré formula: de Rham current Zn of degree 2 is

Zn(ω) =
i

π

∫
G1

∂∂̄ log |un| ∧ ω.
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Main results, preliminary form. Divisor
Theorem 3 (corollary on divisor)
Zn

|τn|
n→∞−−−⇁ 1

2πi
∂̄∂B0 in D′(G1).

Proof: in

|τn|1/2 · |un|2 · exp(|τn|B0) −−−⇁
τn→∞

∗ b in D′(G1 \H)

take logarithm using (pluri)subharmonic dichotomy to arrive at

log |un|
τn

n→∞−−−→ −B0

2
in L1

loc(G1),

then use distributional relation Zn =
i

π
∂∂̄ log |un|, �
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Boutet de Monvel’79 intuition

For, e.g., 2d compact real analytic manifold X consider operators
exp(−t

√
−∆X ), t ∈ R+, and also exp(−t

√
−∆X )u for some wave

u : X → C. They smoothen u. But u travels to complexified XC

almost unitarily.

Namely, let gt : T ∗X → X be geodesic flow. It possesses an
analytic by time continuation gt : T ∗X → XC for t ∈ C with |=t|
small enough.

For t > 0 consider 3d hypersurface
Σ̃t := {git(x , ξ) : (x , ξ) ∈ S∗X} ⊂ XC. Then
exp(−t

√
−∆X ) : X → Σ̃t is almost unitary. Also, for u ∈ L2(X ),

exp(−t
√
−∆X )u is complex-analytic in XC near X .
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Analytic continuation with an integral operator
For P = (X ,Y ) ∈ HC put Z (P) = X + iY , Z̃ (P) = X − iY , the
analytic by X and Y continuations of x ± iy from H to HC.

For z ∈ H, P = (X ,Y ) ∈ HC and t > 0, put ct := 4
4t−t3 and

Kt(z ,P) :=
(

z−Z̃(P)
z̄−Z(P)

)
e−ct ·cosh distH(z,P).

Remark. We need an extra mollification of this kernel to arrive to
FIO/PDO with non-singular symbol.

Let Dτu = s2u, v(P) :=
∫
H u(z)K τ

t (z ,P) dAH(z). Then, for some
S(t, τ, s) ∈ C not depending on u, function v(P)/S(t, τ, s) is an
analytic continuation of u to a neighborhood of H in HC ([Fay77]).

Remark. Due to kernel gauge factor
(

z−Z̃(P)
z̄−Z(P)

)τ
(
(

z1−z̄2

z̄1−z2

)τ
in

non-complexified case), such operator acts on F τ (Γ) for a
Γ < Isom+(H).
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Complexified horocycle flow
(Almost) any horocycle at H can be parametrized as

R 3 t 7→ x0 +
y0(t − t0)

(t − t0)2 + 1
+ i · y0

(t − t0)2 + 1
∈ H for some

x0, t0 ∈ R, y0 > 0. In both real and imaginary parts we may put
t ∈ C with |=t| < 1 to get their analytic (w.r.t. t) continuations.

z ∈ H, θ ∈ Rmod 2π, t ∈ R, let ht(z , θ) ∈ H be (basepoint of)
horocycle starting from z under angle θ to horizontal line ∂

∂x
.

Further, for t ∈ (0, 1), consider h−it(z , θ) ∈ HC.

Proposition (on horocycle Grauert tube)
R×R+ × (0, 1)× (Rmod 2π) 3 (x , y , t, θ) 7→ h−it(x + iy , θ) ∈ HC

is a diffeomorphism from its domain to a set of the form G1 \H
where G1 is some open neighborhood of H in HC. This G1 is called
horocycle Grauert tube.
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Slices. Graph

In HC, consider 3d hypersurface

Σt := {h−it(z , θ) : z ∈ H, θ ∈ Rmod 2π}.

Define Mt : {H1 = 1/2} → HC by

Mt

(
covector

(1 + cos θ) dx + sin θ dy

y
at x + iy

)
:= h−it(x+iy , θ)

Intuitively, operator with kernel
K τ

t (z ,P) =
(

z−Z̃(P)
z̄−Z(P)

)τ
e−τct ·cosh distHC (z,P) is a semiclassical

(~ = 1/τ) Fourier Integral Operator H→ Σt with a canonical graph

{((z , ξ), (Mt(z , ξ), some covector at Mt(z , ξ)) : (z , ξ) ∈ {H1 = 1/2}} ⊂
⊂ {H1 = 1/2} × T ∗Σt ⊂ T ∗H× T ∗Σt .
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Turn microlocalization to localization
Thus, K τ

t takes microlocal mass of u on null-set {H1 = 1/2} to
local mass of u on Σt , up to factors not depending on u.

Proposition
Put v(P) := Tu(P) =

∫
H u(z)K τ

t (z ,P) dAH(z).
Let a ∈ C∞0 (Σt). For some φ(P) smooth, we have:∫

Σt

dµL,Σt (P)a(P)|v(P)|2e−τφ(P) = O(τ−4) + τ−3〈Au, u〉

with A = Op1/τ (b(x , ξ) · a(Mt(x , ξ))), b(x , ξ) not depending on a
nor on u, and µL,Σt be a natural Liouville measure on Σt .

Proof. Drop e−τφ(P). Then LHS is 〈T ∗MaTu, u〉L2(H),Ma being
multiplier by a. Then derive Composition Theorem for semiclassical
FIOs with complex phase by hands. �

M. Dubashinskiy (Chebyshëv Lab) On complexified horocycle eigenfunctions 13 / 16



A technicality. To apply stationary phase method for FIO
Composition Theorem, we need global maximum property: for
θ ∈ Rmod 2π,

arg max
z2∈H

|Kt(z1, h−it(z2, θ))| = z1.

{(z1, h−it(z1, θ)) : z1 ∈ H, θ ∈ Rmod 2π} leads to FIO graph.

The answer. Any P ∈ G1 is of the form P = h−it(z , θ) for some
t ∈ (0, 1), z ∈ H, θ ∈ Rmod 2π. Take B0(P) to have

exp(−B0) =

∣∣∣∣∣z − Z̃ (P)

z̄ − Z (P)

∣∣∣∣∣
2

=
2 + (t2 + 2t) · (1 + cos θ)

2 + (t2 − 2t) · (1 + cos θ)
. Then

|τn|1/2 · |un|2 · exp(|τn|B0) −−−⇁
τn→∞

∗ b in D′(G1 \H), or, since,

u(P) = S−1(t, τ, s)
∫
H

(
z−Z̃(P)
z̄−Z(P)

)τ
e−τct cosh distH(z,P)u(z) dA(z),

Growth of a complexified horocycle eigenfunction is given by
the growth of kernel gauge factor restricted to the canonical graph.
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A reference request
If Dτu = s2u then, for v(P) :=

∫
H u(z)K τ

t (z ,P) dAH(z), then
v(z) = S(t, τ, s)u(z) whenever z ∈ H. S(t, τ, s) ∼?

Put u(x + iy) := y 1/2+i s̃ , s̃ =
√

s2 − 1/4, u(i) = 1,

S(t, τ, s) =

∫
H
y−

3
2

+i s̃

(
i − x + iy

−i − x − iy

)τ
·e−τct cosh distH(i ,x+iy) dx ∧dy .

Then R 3 x → X ∈ C, R 3 y → Y ∈ C, and move this 2d contour
of integration in 4d HC to hit a saddle-point suggested by global
maximum property. And then apply machinery from

[Федорюк, Метод перевала, 1977]

on higher dimensional saddle point (steepest descent) method —
???
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Thank you for attention!
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