Growth and divisor of complexified horocycle eigenfunctions

M. Dubashinskiy

Chebyshëv Laboratory, Saint-Petersburg State University

Quantum magnetic particle on \mathbb{H} $\mathbb{H} = \mathbb{C}^+ = \{x + iy : x \in \mathbb{R}, y > 0\}$ — hyperbolic Lobachevsky plane, $ds^2 = (dx^2 + dy^2) \cdot y^{-2}$

$$-\Delta_{\mathbb{H}} = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$
 is hyperbolic –Laplacian

 $au \in \mathbb{R}$ (large), $D^{ au} := -\Delta_{\mathbb{H}} + 2i au y \frac{\partial}{\partial x}$ is magnetic Hamiltonian

Horocycle (eigen)functions: $D^{\tau_n}u_n = s_n^2 u_n$

 $u = u_n$: $\mathbb{H} \to \mathbb{C}, \ \tau = \tau_n \to +\infty, s = s_n = o(\tau), n = 1, 2, \dots$

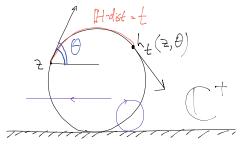
If
$$\hbar = 1/\tau$$
 then: $\left(-\hbar^2 \Delta_{\mathbb{H}} + 2i\hbar y \frac{\partial}{\partial x}\right) u = cu, \ c \xrightarrow{\hbar \to 0} 0$

Auxiliary condition: $\sup_{n \in \mathbb{N}, z \in \mathbb{H}} \|u_n\|_{L^1(\mathcal{B}_{\mathbb{H}}(z,1))} < +\infty.$

Symbol. Classical flow

$$egin{aligned} & H_1(x,y,\xi_1,\xi_2) := rac{(y\xi_1-1)^2+(y\xi_2)^2}{2} \colon T^*\mathbb{H} o \mathbb{R}, \ & rac{1}{ au^2} \cdot D^ au = \operatorname{Op}_\hbar(2H_1-1) \end{aligned}$$

At $\{H_1 = 1/2\} \subset T^*\mathbb{H}$ (shifted circle bundle), H_1 as a *classical* Hamiltonian gives *horocycle* flow.



Quantum Unique Ergodicity. Horocycle case

Null set
$$\{H_1 = 1/2\}$$
 is $\left\{\frac{(1+\cos\theta)\,dx+\sin\theta\,dy}{y} \text{ at } x + iy \colon \theta \in \mathbb{R} \mod 2\pi, \ x + iy \in \mathbb{C}^+\right\}.$

In this coordinates, $d\mu_L := \frac{dx \, dy \, d\theta}{y^2}$ is invariant Liouville measure for $\{H_1 = 1/2\}$.

Definition

 $\{u_n\}_{n=1}^{\infty}$ is Quantum Uniquely Ergodic (QUE) sequence if, for any $a \in C_0^{\infty}(T^*\mathbb{H})$ we have

$$\langle (\operatorname{Op}_{1/\tau_n} a) u_n, u_n \rangle_{L^2(\mathbb{H})} \xrightarrow{n \to \infty} \int_{\{H_1 = 1/2\}} a \, d\mu_L.$$

Horocycle QUE at compact hyperbolic surface $\Gamma < \text{Isom}^+(\mathbb{H})$ is a discrete torsion-free group with compact fundamental domain $F \subset \mathbb{H}$. $\gamma \in \Gamma$ is $\mathbb{H} \ni z \mapsto \gamma z = \frac{az+b}{cz+d}$, a, b, c, d real with ad - bc = 1.

 $X = \Gamma \setminus \mathbb{H}$ is compact hyperbolic surface

 $u: \mathbb{H} \to \mathbb{C} \text{ is } \tau\text{-form w.r.t. } \Gamma \ (\tau \in \mathbb{R}) \text{ if } u(\gamma z) = \left(\frac{cz+d}{c\overline{z}+d}\right)^{\tau} u(z) \text{ for any } z \in \mathbb{H} \text{ and } \gamma \in \Gamma. \ \mathcal{F}^{\tau}(\Gamma) := \{\tau\text{-forms}\}$

Theorem 1 (S. Zelditch'92, D.'21)

$$u_n \in \mathcal{F}^{\tau_n}(\Gamma), D^{\tau_n}u_n = s_n^2 u_n, \tau_n \to \infty, s_n = o(\tau_n),$$

 $\int_F |u_n|^2 d\mathcal{A}_{\mathbb{H}} = 2\pi \mathcal{A}_{\mathbb{H}}(F), d\mathcal{A}_{\mathbb{H}} = \frac{dx \, dy}{y^2}.$
Then sequence $\{u_n\}_{n=1}^{\infty}$ is QUE.

Proof: pass Furstenberg Theorem on classical unique ergodicity of horocycle flow on *X* through semiclassical correspondence.

Complexification!

$\mathbb{H}^{\mathbb{C}} = \{(X, Y) \colon X, Y \in \mathbb{C}\}$ is Bruhat–Whitney'59 complexification of \mathbb{H}

For
$$x_1 + iy_1, x_2 + iy_2 \in \mathbb{H}$$
,
 $\cosh \operatorname{dist}_{\mathbb{H}}(x_1 + iy_1, x_2 + iy_2) := 1 + \frac{(x_1 - x_2)^2 + (y_1 - y_2)^2}{2y_1y_2}.$

 $u(=u_n)$ as above can be analytically continued to a certain neighborhood \mathcal{G}_1 of \mathbb{H} in $\mathbb{H}^{\mathbb{C}}$

Complexification!

 $\mathbb{H}^{\mathbb{C}} = \{(X, Y) \colon X, Y \in \mathbb{C}\}$ is Bruhat–Whitney'59 complexification of \mathbb{H}

For $(X_1, Y_1), (X_2, Y_2) \in \mathbb{H}^{\mathbb{C}}$, $\cosh \operatorname{dist}_{\mathbb{H}}((X_1, Y_1), (X_2, Y_2)) = 1 + \frac{(X_1 - X_2)^2 + (Y_1 - Y_2)^2}{2Y_1Y_2}.$

 $u(=u_n)$ as above can be analytically continued to a certain neighborhood \mathcal{G}_1 of \mathbb{H} in $\mathbb{H}^{\mathbb{C}}$

Main results, preliminary form. Growth

Theorem 2 (on growth)

There exist smooth $B_0, b: \mathcal{G}_1 \setminus \mathbb{H} \to \mathbb{R}$, b > 0 with:

$$|\tau_n|^{1/2} \cdot |u_n|^2 \cdot \exp(|\tau_n|B_0) \xrightarrow[\tau_n \to \infty]{}^* b \text{ in } \mathcal{D}'(\mathcal{G}_1 \setminus \mathbb{H}).$$

 $\tilde{\mathcal{Z}}_n = \{u_n = 0\} \subset \mathcal{G}_1(\subset \mathbb{H}^{\mathbb{C}})$ is regular up to negligible singular set. In any $P \in \tilde{\mathcal{Z}}_n$, $m_n(P)$ is integer multiplicity of divisor of u_n in P. For test 2-forms ω smooth on $\mathcal{G}_1 \setminus \mathbb{H}$, put $\mathcal{Z}_n(\omega) := \int_{\tilde{\mathcal{Z}}_n} m_n \omega$.

Lelong–Poincaré formula: de Rham current \mathcal{Z}_n of degree 2 is $\mathcal{Z}_n(\omega) = \frac{i}{\pi} \int_{\mathcal{G}_1} \partial \bar{\partial} \log |u_n| \wedge \omega.$ Main results, preliminary form. Divisor Theorem 3 (corollary on divisor) $\frac{\mathcal{Z}_n}{|\tau_n|} \xrightarrow{n \to \infty} \frac{1}{2\pi i} \bar{\partial} \partial B_0 \quad in \mathcal{D}'(\mathcal{G}_1).$

Proof: in

$$| au_n|^{1/2} \cdot |u_n|^2 \cdot \exp(| au_n|B_0) \xrightarrow[au_n \to \infty]{*} b \text{ in } \mathcal{D}'(\mathcal{G}_1 \setminus \mathbb{H})$$

take logarithm using (pluri)subharmonic dichotomy to arrive at

$$\frac{\log |u_n|}{\tau_n} \xrightarrow{n \to \infty} -\frac{B_0}{2} \text{ in } L^1_{\text{loc}}(\mathcal{G}_1),$$

then use distributional relation $\mathcal{Z}_n = \frac{i}{\pi} \partial \bar{\partial} \log |u_n|$,

Boutet de Monvel'79 intuition

For, e.g., 2d compact real analytic manifold X consider operators $\exp(-t\sqrt{-\Delta_X})$, $t \in \mathbb{R}^+$, and also $\exp(-t\sqrt{-\Delta_X})u$ for some wave $u: X \to \mathbb{C}$. They smoothen u. But u travels to complexified $X^{\mathbb{C}}$ almost unitarily.

Namely, let $g_t \colon T^*X \to X$ be geodesic flow. It possesses an analytic by time continuation $g_t \colon T^*X \to X^{\mathbb{C}}$ for $t \in \mathbb{C}$ with $|\Im t|$ small enough.

For t > 0 consider 3d hypersurface $\tilde{\Sigma}_t := \{g_{it}(x,\xi) \colon (x,\xi) \in S^*X\} \subset X^{\mathbb{C}}$. Then $\exp(-t\sqrt{-\Delta_X}) \colon X \to \tilde{\Sigma}_t$ is almost unitary. Also, for $u \in L^2(X)$, $\exp(-t\sqrt{-\Delta_X})u$ is complex-analytic in $X^{\mathbb{C}}$ near X. Analytic continuation with an integral operator For $P = (X, Y) \in \mathbb{H}^{\mathbb{C}}$ put Z(P) = X + iY, $\tilde{Z}(P) = X - iY$, the analytic by X and Y continuations of $x \pm iy$ from \mathbb{H} to $\mathbb{H}^{\mathbb{C}}$.

For
$$z \in \mathbb{H}$$
, $P = (X, Y) \in \mathbb{H}^{\mathbb{C}}$ and $t > 0$, put $c_t := \frac{4}{4t - t^3}$ and $K_t(z, P) := \left(\frac{z - \tilde{Z}(P)}{\bar{z} - Z(P)}\right) e^{-c_t \cdot \cosh \operatorname{dist}_{\mathbb{H}}(z, P)}.$

<u>Remark.</u> We need an extra mollification of this kernel to arrive to FIO/PDO with non-singular symbol.

Let $D^{\tau}u = s^2u$, $v(P) := \int_{\mathbb{H}} u(z)K_t^{\tau}(z, P) d\mathcal{A}_{\mathbb{H}}(z)$. Then, for some $\mathcal{S}(t, \tau, s) \in \mathbb{C}$ not depending on u, function $v(P)/\mathcal{S}(t, \tau, s)$ is an analytic continuation of u to a neighborhood of \mathbb{H} in $\mathbb{H}^{\mathbb{C}}$ ([Fay77]).

Remark. Due to *kernel gauge factor*
$$\left(\frac{z-\tilde{Z}(P)}{\bar{z}-Z(P)}\right)^{\tau} \left(\left(\frac{z_1-\bar{z}_2}{\bar{z}_1-z_2}\right)^{\tau}$$
 in non-complexified case), such operator acts on $\mathcal{F}^{\tau}(\Gamma)$ for a $\Gamma < \text{Isom}^+(\mathbb{H})$.

M. Dubashinskiy (Chebyshëv Lab) On complexified horocycle eigenfunctions

Complexified horocycle flow

(Almost) any horocycle at \mathbb{H} can be parametrized as $\mathbb{R} \ni t \mapsto x_0 + \frac{y_0(t-t_0)}{(t-t_0)^2+1} + i \cdot \frac{y_0}{(t-t_0)^2+1} \in \mathbb{H}$ for some $x_0, t_0 \in \mathbb{R}, y_0 > 0$. In both real and imaginary parts we may put $t \in \mathbb{C}$ with $|\Im t| < 1$ to get their analytic (w.r.t. t) continuations.

 $z \in \mathbb{H}$, $\theta \in \mathbb{R} \mod 2\pi$, $t \in \mathbb{R}$, let $h_t(z, \theta) \in \mathbb{H}$ be (basepoint of) horocycle starting from z under angle θ to horizontal line $\frac{\partial}{\partial x}$.

Further, for $t \in (0, 1)$, consider $h_{-it}(z, \theta) \in \mathbb{H}^{\mathbb{C}}$.

Proposition (on horocycle Grauert tube)

 $\mathbb{R} \times \mathbb{R}^+ \times (0,1) \times (\mathbb{R} \mod 2\pi) \ni (x, y, t, \theta) \mapsto h_{-it}(x + iy, \theta) \in \mathbb{H}^{\mathbb{C}}$ is a diffeomorphism from its domain to a set of the form $\mathcal{G}_1 \setminus \mathbb{H}$ where \mathcal{G}_1 is some open neighborhood of \mathbb{H} in $\mathbb{H}^{\mathbb{C}}$. This \mathcal{G}_1 is called horocycle Grauert tube.

Slices. Graph

In $\mathbb{H}^{\mathbb{C}}$, consider 3d hypersurface $\Sigma_t := \{h_{-it}(z,\theta) \colon z \in \mathbb{H}, \theta \in \mathbb{R} \mod 2\pi\}$ Define $M_t \colon \{H_1 = 1/2\} \to \mathbb{H}^{\mathbb{C}}$ by $M_t \left(\operatorname{covector} \frac{(1 + \cos \theta) \, dx + \sin \theta \, dy}{y} \text{ at } x + iy \right) := h_{-it}(x + iy, \theta)$

Intuitively, operator with kernel $K_t^{\tau}(z, P) = \left(\frac{z-\tilde{Z}(P)}{\bar{z}-Z(P)}\right)^{\tau} e^{-\tau c_t \cdot \cosh \operatorname{dist}_{\mathbb{H}^{\mathbb{C}}}(z,P)}$ is a semiclassical $(\hbar = 1/\tau)$ Fourier Integral Operator $\mathbb{H} \to \Sigma_t$ with a canonical graph $\{((z,\xi), (M_t(z,\xi), \text{some covector at } M_t(z,\xi)) : (z,\xi) \in \{H_1 = 1/2\}\} \subset$ $\subset \{H_1 = 1/2\} \times T^*\Sigma_t \subset T^*\mathbb{H} \times T^*\Sigma_t.$

Turn microlocalization to localization

Thus, K_t^{τ} takes microlocal mass of u on null-set $\{H_1 = 1/2\}$ to local mass of u on Σ_t , up to factors not depending on u.

Proposition

Put
$$v(P) := Tu(P) = \int_{\mathbb{H}} u(z) K_t^{\tau}(z, P) d\mathcal{A}_{\mathbb{H}}(z)$$
.
Let $a \in C_0^{\infty}(\Sigma_t)$. For some $\phi(P)$ smooth, we have:

$$\int_{\Sigma_t} d\mu_{L,\Sigma_t}(P) a(P) |v(P)|^2 e^{-\tau \phi(P)} = O(\tau^{-4}) + \tau^{-3} \langle Au, u \rangle$$

with $A = \operatorname{Op}_{1/\tau} (b(x,\xi) \cdot a(M_t(x,\xi)))$, $b(x,\xi)$ not depending on a nor on u, and μ_{L,Σ_t} be a natural Liouville measure on Σ_t .

Proof. Drop $e^{-\tau\phi(P)}$. Then LHS is $\langle T^*\mathcal{M}_a Tu, u \rangle_{L^2(\mathbb{H})}$, \mathcal{M}_a being multiplier by *a*. Then derive Composition Theorem for semiclassical FIOs with complex phase by hands.

A technicality. To apply stationary phase method for FIO Composition Theorem, we need global maximum property: for $\theta \in \mathbb{R} \mod 2\pi$,

$$rgmax_{z_2\in\mathbb{H}}|\mathcal{K}_t(z_1,h_{-it}(z_2, heta))|=z_1.$$

 $\{(z_1, h_{-it}(z_1, \theta)) \colon z_1 \in \mathbb{H}, \theta \in \mathbb{R} \text{ mod } 2\pi\}$ leads to FIO graph.

The answer. Any $P \in \mathcal{G}_1$ is of the form $P = h_{-it}(z, \theta)$ for some $t \in (0,1)$, $z \in \mathbb{H}$, $\theta \in \mathbb{R} \mod 2\pi$. Take $B_0(P)$ to have $\exp(-B_0) = \left|\frac{z - \tilde{Z}(P)}{\bar{z} - Z(P)}\right|^2 = \frac{2 + (t^2 + 2t) \cdot (1 + \cos\theta)}{2 + (t^2 - 2t) \cdot (1 + \cos\theta)}.$ Then $| au_n|^{1/2} \cdot |u_n|^2 \cdot \exp(| au_n|B_0) \xrightarrow[au_n \to \infty]{*} b \text{ in } \mathcal{D}'(\mathcal{G}_1 \setminus \mathbb{H}), \quad \text{or, since,}$ $u(P) = S^{-1}(t,\tau,s) \int_{\mathbb{H}} \left(\frac{z - \tilde{Z}(P)}{\bar{z} - Z(P)} \right)^{\tau} e^{-\tau c_t \cosh \operatorname{dist}_{\mathbb{H}}(z,P)} u(z) \, d\mathcal{A}(z),$ Growth of a complexified horocycle eigenfunction is given by

the growth of kernel gauge factor restricted to the canonical graph.

A reference request

If
$$D^{\tau}u = s^2 u$$
 then, for $v(P) := \int_{\mathbb{H}} u(z)K_t^{\tau}(z, P) d\mathcal{A}_{\mathbb{H}}(z)$, then
 $v(z) = \mathcal{S}(t, \tau, s)u(z)$ whenever $z \in \mathbb{H}$. $\mathcal{S}(t, \tau, s) \sim$?
Put $u(x + iy) := y^{1/2 + i\tilde{s}}$, $\tilde{s} = \sqrt{s^2 - 1/4}$, $u(i) = 1$,
 $\mathcal{S}(t, \tau, s) = \int_{\mathbb{H}} y^{-\frac{3}{2} + i\tilde{s}} \left(\frac{i - x + iy}{-i - x - iy}\right)^{\tau} \cdot e^{-\tau c_t \cosh \operatorname{dist}_{\mathbb{H}}(i, x + iy)} dx \wedge dy.$

Then $\mathbb{R} \ni x \to X \in \mathbb{C}$, $\mathbb{R} \ni y \to Y \in \mathbb{C}$, and move this 2d contour of integration in 4d $\mathbb{H}^{\mathbb{C}}$ to hit a saddle-point suggested by global maximum property. And then apply machinery from

[Федорюк, Метод перевала, 1977]

on higher dimensional saddle point (steepest descent) method — ???

Thank you for attention!