ON THE INNER RADIUS OF NODAL DOMAINS

Dan Mangoubi

The Hebrew University November 27, 2023

Consider a closed Riemannian manifold of dimension d. Let u be an eigenfunction of the Laplace-Beltrami operator with eigenvalue λ . Every connected component Ω of $u \neq 0$ is called a nodal domain of u. It follows from the Faber-Krahn inequality that $\operatorname{Vol}(\Omega) \geq C\lambda^{-d/2}$, where C = C(M,g) > 0. A refined question due to Leonid Polterovich is whether one can inscribe in Ω a ball of radius $C\lambda^{-1/2}$. The answer is positive in dimension two (M., 2006). In higher dimensions we show that this is true up to a logarithmic power factor: One can inscribe in Ω a ball of radius $C\lambda^{-1/2}$. Where a_d is a positive constant depending on dimension only. I will explain several ideas which go into the proof.

The talk is based on joint work with Philippe Charron.