ADMISSIBLE FUNCTIONS FOR THE DIRICHLET SPACE

JAVAD MASHREGHI AND MAHMOOD SHABANKHAH

Abstract. Zero sets and uniqueness sets of the classical Dirichlet space \mathcal{D} are not completely characterized yet. We define the concept of admissible functions for the Dirichlet space and then apply them to obtain a new class of zero sets for \mathcal{D}. Then we discuss the relation between the zero sets of \mathcal{D} and those of A^∞.

1. Introduction

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be holomorphic on the open unit disk \mathbb{D}. Then, by direct verification, we obtain

$$
\mathcal{D}(f) := \frac{1}{\pi} \int_{\mathbb{D}} |f'(z)|^2 dA(z) = \sum_{n=1}^{\infty} n |a_n|^2,
$$

where dA is the two-dimensional Lebesgue measure. The Dirichlet space is by definition

$$
\mathcal{D} = \{ f \in \text{Hol}(\mathbb{D}) : \mathcal{D}(f) < \infty \}.
$$

It is clear that the classical Hardy space $H^2(\mathbb{D})$ contains the Dirichlet space \mathcal{D} as a proper subclass. Considering the norm

$$
\|f\|_D = \mathcal{D}(f) + \|f\|_{H^2}^2,
$$

the Dirichlet space becomes a Hilbert space of analytic functions on the open unit disc whose inner product is given by

$$
\langle f, g \rangle = \sum_{n=0}^{\infty} (n + 1) a_n \overline{b}_n,
$$

where $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ are arbitrary elements of \mathcal{D}.

A sequence $(z_n)_{n \geq 1}$ in \mathbb{D} is called a zero set for \mathcal{D} provided that there is an element $f \in \mathcal{D}$, $f \not\equiv 0$, such that $f(z_n) = 0$, $n \geq 1$. Since $\mathcal{D} \subset H^2(\mathbb{D})$,