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Abstract
In this work we develop some automatic procedures for computing high order polynomial

expansions of local (un)stable manifolds for equilibria of differential equations. Our method
incorporates validated truncation error bounds, and maximizes the size of the image of the
polynomial approximation relative to some specified constraints. More precisely we use that
the manifold computations depend heavily on the scalings of the eigenvectors: indeed we
study the precise effects of these scalings on the estimates which determine the validated
error bounds. This relationship between the eigenvector scalings and the error estimates
plays a central role in our automatic procedures. In order to illustrate the utility of these
methods we present several applications, including visualization of invariant manifolds in the
Lorenz and FitzHugh-Nagumo systems and an automatic continuation scheme for (un)stable
manifolds in a suspension bridge problem.
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1 Introduction

Invariant sets are fundamental objects of study in dynamical systems theory. Sometimes we are
interested in an invariant set which is a smooth manifold, and we seek a representation of a
chart patch as the graph of a function or as the image of a chart map. Semi-numerical methods
providing high order formal expansions of invariant manifolds have a long history in dynamical
systems theory. We refer to the lecture notes of Simó [1], the historical remarks in Appendix B
of the paper by Cabré, Fontich, and de la Llave [2], the manuscript of Haro [3], as well as the
book by Meyer and Hall [4] for more complete discussion of this literature.

The present work is concerned with algorithms for computing local stable/unstable mani-
folds of equilibria solutions of differential equations, with validated error bounds. The methods
employed here have some free computational parameters and we are especially interested in
choosing these in an automatic way. We employ the parameterization method of [2, 5, 6] in our
computations. This method provides powerful functional analytic tools for studying invariant
manifolds. The core of the parameterization method is an invariance equation which conjugates
a chart map for the local stable/unstable manifold to the linear dynamics given by the eigen-
values (see for example (3) in Section 2). Expanding the invariance equation as a formal series
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and matching like powers leads to homological equations for the coefficients of the series. These
homological equations are solved to any desired order, yielding a finite approximation.

Given a finite approximate parameterization we would like to evaluate the associated trun-
cation error. An important feature of the parameterization method is that there is a natural
notion of a posteriori error, i.e. one can “plug” the approximate solution back into the invari-
ance equation and measure the distance from zero in an appropriate norm. Further analysis
is of course necessary in order to obtain validated error bounds, as small defects need not im-
ply small truncation errors. When the invariance equation is formulated on a regular enough
function space it is possible to apply a Newton-Kantorovich argument to get the desired bounds.

A uniqueness result for the parameterization method states that the power series coefficients
are unique up to the choice of the scalings of the (un)stable eigenvectors [5]. This freedom in the
choice of scaling can be exploited in order to control the numerical properties of the scheme. For
example by increasing or decreasing the length of the eigenvectors it is possible to manipulate
the decay rates of the power series coefficients, and thus influence the numerical stability of the
scheme.

One of the main findings of the present work is that the bounds required in the Newton-
Kantorovich argument (see the definition of the radii polynomials bounds in (20)) depend in
an explicit way on the choice of the eigenvector scalings. This result leads to algorithms for
optimizing the choice of eigenvectors scalings under some fixed constraints. The algorithms
developed in the present work complement similar automatic schemes developed in [7] (for
computer assisted study of periodic orbits) and are especially valuable in continuation arguments,
where one wants to compute the invariant manifolds over a large range of parameter values in
an automatic way.

Remark 1.1. The optimization constraints referred to above can be chosen in different ways
depending on ones goals. For example when the goal of the computation is visualization of the
manifold it is desirable to choose scalings which maximize the “extent” of the manifold in phase
space (i.e. maximize the surface measure of the patch). On the other hand when the eigenvalues
have different magnitudes then it may be desirable to maximize the image of the manifold under
the constraint that the ratios of the scalings of the eigenvectors are fixed (this is especially useful
in “fast-slow” systems). In other situations one might want to optimize some other quantity
all together. Whatever constraints one chooses, we always want to optimize while holding the
error of the computation below some specified tolerance. The main point of the present work
is that whatever the desired constraints, the explicit dependency of the bounds on the scaling
facilitates the design of algorithms which respect the specified error tolerance.

Remark 1.2. In the present work we fix the domain of our approximate parameterization to
be the unit ball in Cm (where m is the number of (un)stable eigenvalues, i.e. the dimension
of the manifold) and vary the scalings of the eigenvectors in order to optimize with respect to
the constraints. Another (theoretically equivalent approach) would be to fix the scalings of the
eigenvectors and vary the size of the domain. However the scalings of the eigenvectors determine
the decay rates of the power series coefficients, and working with analytic functions of fast decay
seems to stabilize the problem numerically.

Remark 1.3. In many previous applications of the parameterization method the free constants
were selected by some “numerical experimentation.” See for example the introduction and
discussion in Section 5 of [8], Remark 3.6 of [9], Remark 2.18 and 2.20 of [10], the discussion of
Example 5.2 in [11], Remark 2.4 of [12], and the discussion in Sections 4.2 and 6 of [12]. The
present work address the need for systematic procedures suggested by these previous studies.

Remark 1.4. The present work is concerned entirely with the computation of local sta-
ble/unstable manifolds. Once these local computations have been optimized one could extend or
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“grow” larger patches of the local manifold using adaptive integration/continuation techniques.
This is a topic of substantial research and we refer the interested reader to the survey article
[13]. See also the works of [14, 15, 16, 17, 18] and the references therein. Combining these inte-
gration/continuation algorithms with the methods of the present work could be an interesting
topic for future research.

Remark 1.5. In recent years a number of authors have developed numerical methods based on
the parameterization method (e.g. see [11, 19, 20] for more discussion). The parameterization
method can also be used to compute stable/unstable manifolds associated with periodic orbits of
differential equations [10, 21, 22], as well as stable/unstable manifolds associated with invariant
circles/tori [23, 24]. Indeed the parameterization method can be extended in order to compute
the invariant tori themselves [25], leading to a KAM theory “without action angle coordinates”.
For more complete discussion of numerical methods based on the parameterization method we
refer to the upcoming book [26]. For the moment we remark that the algorithms developed in
the present work could be adapted to these more general settings as well.

Our paper is organized as follows. In Section 2 we present briefly the parameterization
method and discuss its behaviour with respect to some specific changes of variable. In Section 3
we give a way to numerically compute an approximate parameterization and then address the
issue of finding a rescaling that maximize the image of the parameterization, while verifying some
a posteriori bounds that ensure (in some sense) the validity of the approximate parameterization.
One possible way of proving the validity of the approximation is to use the ideas of rigorous
computation, which we detail in Section 4. We conclude in Section 5 by presenting the results
obtained with our method to compute maximal patches of local manifolds for several examples.
The codes for all the examples can be found at [32].

2 The parameterization method

In this section, we introduce the parameterization method for the stable manifold of an equilib-
rium solution of a vector field. The unstable manifold is obtained by time reversal.

2.1 Invariance equation for stable manifolds of equilibria of vector fields

We consider an ordinary differential equation (ODE) of the form

y′ = g(y), (1)

where g : Rn → Rn is analytic. Assume that p ∈ Rn is an equilibrium point, i.e. g(p) = 0,
and assume that the dimension of the stable manifold at p is given by ns ≤ n. Denote (λk, Vk),
1 ≤ k ≤ ns the stable eigenvalues (that is <(λk) < 0, for k = 1, . . . , ns) together with associated
eigenvectors, and denote Λ = diag(λ1, . . . , λns).

We want to find an analytic parameterization of the local stable manifold at p. So we look
for a power series representation

f(θ) =
∑
|α|≥0

aαθ
α, θ =

 θ1
...
θns

 ∈ Rns , aα =


a

(1)
α
...

a
(n)
α

 ∈ Rn, (2)

with the classical multi-indexes notations |α| = α1 + . . .+αns and θα = θα1
1 . . . θ

αns
ns , and assume

that f is the parameterization given by Hartman-Grobman’s theorem, that is

f
(
eΛtθ

)
= ϕ(t, f(θ)),
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where ϕ is the flow induced by g. Differentiating with respect to t and taking t = 0, we get that
f satisfies the invariance equation

Df(θ)Λθ = g(f(θ)), (3)

and to get a well-posed problem we add the following constraints

f(0) = p, Df(0) =
(
V1 . . . Vns

)
. (4)

Endow Cns with norm ‖θ‖Cns = max{|θk| : k = 1, . . . , ns}, where | · | denotes the complex
modulus, and using that norm, denote by Bν ⊂ Cns the ball of radius ν centered at 0. We look
for a parameterization f which is analytic on a ball Bν ⊂ Cns with ν > 0. We call the image
f [Bν ] a patch of the local invariant manifold.

Remark 2.1. If some of the eigenvalues happen to be complex-conjugate, say λ1 = λ2, . . . , λ2m−1 =
λ2m, it is easier to consider a power series f with complex coefficients (i.e. with aα ∈ Cn) and
acting on θ ∈ Cns . We can then recover the real parameterization by considering, for θ ∈ Rns ,

freal(θ1, . . . , θns) = f(θ1 + iθ2, θ1 − iθ2, . . . , θ2m−1 + iθ2m, θ2m−1 − iθ2m, θ2m+1, . . . , θns).

See [27] for a more detailed explanation of this fact. To be general in the sequel of our presen-
tation, we will assume that f is a complex power series.

Remark 2.2. We say that there is a resonance of order α between the stable eigenvalues if

α1λ1 + . . .+ αnsλns = λj (5)

for some 1 ≤ j ≤ ns. If there is no resonance for any α ∈ Nns then we say that the stable
eigenvalues are non-resonant. Note that if |α| is large enough then a resonance is impossible.

It is shown in [5] that if g is analytic then Equation (3) has an analytic solution f as long
as the eigenvalues are non-resonant. Moreover the power series coefficients of f are uniquely
determined up to the choice of the scalings of the eigenvectors. This abstract result does not
however provide explicit bounds on the size of the domain of analyticity Bν for the parameteri-
zation: hence the need for a-posteriori validation of our numerical computations. We also note
that if there is a resonance then the invariance equation can be modified so that we conjugate to
a polynomial (instead of linear) dynamical system [5, 29]. Adapting the methods of the present
work to the resonant case will be the topic of a future study.

2.2 Change of coordinates

Assume that f is a power series of the form (2) satisfying (3) and (4) (therefore it is a local
parameterization of the stable manifold at p). Now consider a change of coordinates in Cns ,
defined by some invertible matrix Γ ∈Mns(C), and the new power series

f̃(θ) = f(Γθ).

Thanks to (3), we have that

Df̃(θ)Λθ = Df(Γθ)ΓΛθ = g(f(Γθ)) = g(f̃(θ)). (6)

So if Γ is such that ΓΛ = ΛΓ, then f̃ also satisfies the invariance equation (3), together with the
slightly modified conditions

f̃(0) = p, Df̃(0) = Γ
(
V1 . . . Vns

)
. (7)
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Remark 2.3. From now on we assume that Γ = diag(γ1, . . . , γns), which is sufficient to have
ΓΛ = ΛΓ (it is also necessary if the λk are pairwise distinct). We also assume that the γi
are all real positive numbers and that coefficients γi corresponding to two complex conjugates
eigenvalues are equal. Taking γi real is natural if all the eigenvalues are real (and f is therefore
a real power series). On the other hand if there are some complex-conjugate eigenvalues, say
λ1 = λ2, then the recovery of a real parameterization as explained in Remark 2.1 uses the
fact that the corresponding eigenvectors V1 and V2 also are complex-conjugate, and that this
property is propagated to all the coefficients of the parameterization when recursively solving
the invariance equation (9). By taking γ1 and γ2 real and equal, we ensure that this property
is conserved after the rescaling (namely γ1V1 = γ2V2), so that we can still easily recover a real
parameterization. Admittedly, we could relax this hypothesis and only assume that γ1 and γ2
themselves are complex-conjugate, but we will not consider this possibility here.

As announced, we now consider Γ = diag(γ1, . . . , γns), where γi ∈ R+ for all 1 ≤ i ≤ ns, and
f̃ defined as f̃(θ) = f(Γθ). The above discussion shows that f̃ is a new parameterization of the
local manifold, since it satisfies (6) and (7). Besides, the Taylor expansion of f̃ can be easily
expressed in terms of the Taylor expansion of f . Indeed if we write f̃ as

f̃(θ) =
∑
|α|≥0

ãαθ
α,

then the coefficients are given by
ãα = aαγ

α, (8)

where γ = (γ1, . . . , γns) and again standard multi-indexes notations. Therefore it is enough to
find one parameterization f of the local manifold (or more precisely its coefficients aα) to get all
the re-parameterizations f̃ (at least those given by a diagonal matrix Γ) without further work.
Let us introduce an operator acting on sequences to express this rescaling in a condensed way.

Definition 1. Given γ = (γ1, . . . , γns), we define L (acting on a) component-wise by

Lα(a) = γαaα, ∀|α| ≥ 0.

Therefore, if a is the sequence of coefficients of the parameterization f , the sequence of
coefficients of the parameterization f̃ defined as above is given by L(a).

3 How to compute f and maximize the local manifold patch

In this section we present a method to compute numerically a parameterization of the manifold
(that is the coefficients (aα)) and then choose a proper rescaling γ to maximize the corresponding
image. We assume in the sequel that the nonlinearities in g are polynomials. Note that this not so
restrictive as it might first seems, since elementary functions of mathematical physics (powers,
exponential, trigonometric functions, rational, Bessel, elliptic integrals, etc.) are themselves
solutions of first or second order linear ODEs, which can be appended to the original problem
of interest in order to obtain a new problem with only polynomial nonlinearities (but with more
variables and more equations). This trick has been used in [28] to compute periodic orbits.

3.1 Computation of the approximate parameterization

Let f be a power series as in (2), assume g is a polynomial vector field of degree d given by

g(y) =
∑
|β|≤d

bβy
β, bβ ∈ Rn
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and plug it into the invariance equation (3). We obtain

∑
|α|≥0

(α1λ1 + . . .+ αnsλns) aαθα =
∑
|β|≤d

bβ

∑
|α|≥0

aαθ
α

β =
∑
|α|≥0

∑
|β|≤d

bβ
(
aβ
)
α
θα, (9)

where again we use multi-indexes notations, aβ =
(
a(1)

)β1 ∗ . . . ∗
(
a(n)

)βn
, and ∗ denotes the

Cauchy product. Notice that the two conditions in (4) imply that the coefficients of order 0 and
1 are the same on both sides of (9). There are several ways to obtain an approximation of the
coefficients (aα)|α|≥2 so that (9) is satisfied, one of them being to compute them recursively for
increasing |α|. Here we present another method, which fits naturally with the ideas of rigorous
computations exposed later in the paper. We define the infinite dimensional vector a = (aα)|α|≥0
and the operator F , acting on a component-wise by

Fα(a) =


a0 − p, if α = 0,
aei − Vi, if α = ei, ∀ 1 ≤ i ≤ ns
(α1λ1 + . . .+ αnsλns) aα −

∑
|β|≤d

bβ
(
aβ
)
α
, ∀ |α| ≥ 2.

Finding a solving (9) and the additional conditions (4) is equivalent to solve

F (a) = {Fα(a)}|α|≥0 = 0. (10)

Given γ = (γ1, . . . , γns), finding a rescaled parameterization (that is solving (3) and (7)) can
also be expressed as finding the zero of the function F̃ , which is defined the same way as F
except for the indices |α| = 1:

F̃α(a) =


a0 − p, if α = 0,
aei − γiVi, if α = ei, ∀ 1 ≤ i ≤ ns
(α1λ1 + . . .+ αnsλns) aα −

∑
|β|≤d

bβ
(
aβ
)
α
, ∀ |α| ≥ 2.

(11)

Notice that the discussion in Section 2.2 shows that F (a) = 0 if and only if F̃ (L(a)) = 0.
Remark 3.1. Since a0 and the aei are fixed by the additional conditions (4), we could also
consider them as parameters and define F as (Fα)|α|≥2, acting only on (aα)|α|≥2. We do this
for the examples of Sections 5.1 and 5.2, but we keep the above definition of F and F̃ when we
use rigorous computation (Section 4 and example in Section 5.3), because it allows for a simpler
presentation.

Now we fix an integer N and define the truncated operator F [N ] = (Fα)|α|<N , acting on a
truncated sequence a[N ] = (aα)|α|<N , by

Fα(a[N ]) =


a0 − p, if α = 0,
aei − Vi, if α = ei, ∀ 1 ≤ i ≤ ns
(α1λ1 + . . .+ αnsλns) aα −

∑
|β|≤d

bβ
(
aβ
)
α
, ∀ 2 ≤ |α| < N.

Since the problem is now finite dimensional, we can use Newton’s method to compute an ap-
proximate zero of F [N ]. In the rest of this paper, ā will denote such an approximate solution
completed with 0 for |α| ≥ N . See Section 5 for explicit examples. Also note that the only
property that really matters concerning the approximate parameterization ā is that āα = 0 for
all |α| ≥ N . As long as it satisfies this property, everything in the sequel will work, even if
ā was obtained in a different fashion than the one we just presented (for instance by solving
inductively a finite number of homological equations).
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Remark 3.2. Taking N larger leads to a better approximation but at the expense of compu-
tational cost, so its choice depends on how precise an approximation you need, and how much
computational resources you have.

3.2 Maximizing the image of the parameterization

Now that we have an approximate parameterization, we focus on maximizing the image of the
corresponding manifold, while checking that our approximation is still valid. The power series
f given by (2) is now considered as

f : Bν → Cn

for some ν > 0. One approach in getting the largest possible image of f would be to maximize
the ν for which (3) is valid on Bν . We give in Definition 2 and Definition 3 two different
definitions of parameterization validity.

Remark 3.3. For reasons of numerical stability, we always consider the parameter space Bν for
ν = 1 and instead use the γ introduced in the reparameterization of Section 2.2 as a parameter.
Indeed, assume that the parameterization f is valid on Bν1 for some ν1, then proving that it
still is on Bν2 for a different ν2 is equivalent to prove that f̃(θ) = f(Γθ) = f(γ1θ1, . . . , γnsθns) is
valid on Bν1 , with γk = ν2

ν1
for all k. So we can always keep ν = 1 and rather try to maximize

the γk for which f̃ is valid on B1.

Based on the previous remark, from now on, and for the rest of the present paper, we always
fix ν = 1, and therefore drop all references to this parameter.

Remark 3.4. If the eigenvalues are real and not all equal to the same value, it may be useful to
consider different scalings for each direction, that is to take Γ = diag(γ1, . . . , γns) with different
γk rather than Γ = diag(γ, . . . , γ). Indeed in this work we aim at maximizing the surface of
the manifold patch, but for some specific problem (a fast-slow system for instance), you may
rather want to enlarge the manifold in one precise direction, in which case you should definitely
consider different γk for each k.

In this paper we will use two different criteria to say that our parameterization is valid on
Bν . The first one is a numerical a posteriori estimate and the second is a rigorous validation. In
order to measure the validity of a parameterization, we need to compute the norm of a sequence
a = {aα}|α|≥0 with aα ∈ Cn. For this, let us introduce the space

`1ν
def=

u = {uα}|α|≥0 | uα ∈ C and ‖u‖`1ν
def=

∑
|α|≥0

|uα|ν|α| <∞

 .

Given a = (aα)|α|≥0, with aα =


a

(1)
α
...

a
(n)
α

 ∈ Cn, denote a(i) =
(
a

(i)
α

)
|α|≥0

. Then, consider the

product space

X
def=
(
`1ν

)n def=
{
a = (aα)|α|≥0 | ‖a‖X

def= max
1≤i≤n

∥∥∥a(i)
∥∥∥
`1ν
<∞

}
.

Definition 2. Fix a defect threshold εmax > 0, a truncation dimension N and an approximate
solution ā[N ] computed using the method of Section 3.1. Denote ā = ā[N ]. We say that

f(θ) def=
N∑
|α|=0

āαθ
α (12)
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is defect-valid on Bν if
‖F (ā)‖X < εmax. (13)

Equivalently, we say that ā is defect-valid on Bν if (13) holds. Given γ = (γ1, . . . , γns), we also
say that the rescaled parameterization L(ā) is defect-valid on Bν if

‖F̃ (L(ā))‖X < εmax. (14)

Remember that g is assumed to be polynomial, and so F is also polynomial, say of degree d.
Since āα = 0 for |α| ≥ N , then Fα(ā) = 0 for all |α| ≥ d(N −1) + 1. Thus the quantity ‖F (ā)‖X
in (13) is only a finite sum and can be computed explicitly.

Assume now that we have computed all the Fα(ā) for |α| ≤ d(N − 1) (which can be quite
long because of the Cauchy products coming from the nonlinearities). When we then consider
some γ = (γ1, . . . , γns) and the rescaled parameterization L(ā), we get (using the fact that the
nonlinearities are polynomial and the definition of the Cauchy product) that for all |α| ≥ 0,

F̃α(L(ā)) = γαFα(ā). (15)

This way, the evaluation of ‖F̃ (L(ā))‖X for any rescaling is computationally cheap and thus it
is rather straightforward to find the γ for which the re-parameterization L(ā) gives the largest
image of the manifold, while being defect-valid. Let us be a little more precise about this.
Depending on our goal we use two different approaches.

Method 1: We look for eigenvector scalings which maximize the surface measure, subject to
the restriction that the rescaled parameterization is defect-valid. Therefore we find numerically
a mesh of the compact set {

γ ∈ Rns+ | ‖F̃ (a(γ))‖X = εmax
}

and then approximately compute the surface area of the image for each point of the mesh. We
refer to Sections 5.1 and 5.2 for explicit examples in dimension 2.

Method 2: We want to emphasize some specific directions when computing the manifold.
Therefore we fix some weights ω1, . . . , ωns and consider only rescalings of the form

γ = γ(t) = (tω1, . . . , tωns).

We then look for the largest t such that the rescaled parameterization is defect-valid. By doing
so we obtain a manifold that stretches more in the directions with the largest weights. We refer
to Sections 5.1 and 5.2 for explicit examples in dimension 2 where we stretch the manifolds in
the slow direction.

Remark 3.5. When there is only one stable/unstable eigenvalue (or a single pair of complex
conjugate eigenvalues) then Method 2 reduces to choosing the largest possible scaling for the
eigenvector (or for the complex conjugate pair of eigenvectors) so that the rescaled parameteri-
zation is defect-valid.

Now we would like to present a different definition of validity of a parameterization, inspired
by the field of rigorous computing. For this, we briefly review the ideas of rigorous computation.
The idea is to reformulate the problem F (a) = 0 given in (10) and to look for a fixed point of a
Newton-like equation of the form

T (a) = a−AF (a)
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where A is an approximate inverse of DF (ā), and ā is a numerical approximation obtained by
computing a finite dimensional projection of F (in our case we called it F [N ]). Let us explain
how we construct A. Remembering that

Fα(a) = (α1λ1 + . . .+ αnsλns) aα −
∑
|β|≤d

bβ
(
aβ
)
α
, ∀ |α| ≥ 2

we consider the following approximation for DF (ā)

A† =


DF [N ](ā) 0

AN
0 AN+1

. . .


where for each k ≥ N , Ak is a finite bloc diagonal matrix, each of its diagonal block being of size
n and of the form (α1λ1 + . . .+ αnsλns) In, where |α| = k and In the n by n identity matrix.
In other words

Ak (aα)|α|=k = ((α1λ1 + . . .+ αnsλns) aα)|α|=k .

We then define an approximate inverse A of DF (ā) as

A
def=


D 0

MN

0 MN+1
. . .

 , (16)

where D is a numerical approximation of DF [N ](ā)−1 while the Mk
def= A−1

k are the exact
inverses. We then prove the existence of a zero of F by using a contraction argument yielding
the existence of a fixed point of T . A precise theorem is stated below, but just before that we
need (given γ = (γ1, . . . , γns)) to define a rescaled operator

T̃
def= I − ÃF̃ (17)

that we can use in a similar fashion to prove the existence of a zero of F̃ . Remembering that

F̃ (L(a)) = LF (a)

we have
DF̃ (L(a)) = LDF (a)L−1

and therefore we consider

Ã†
def= LA†L−1 and Ã

def= LAL−1 (18)

as approximations for DF̃ (L(ā)) and
(
DF̃ (L(ā))

)−1
respectively.

We then get the existence of a solution by the following theorem. For more details on this
approach for rigorous computations of stable and unstable manifolds of equilibria, we refer to
[29]. Given r > 0, denote by Br(a) ⊂ X =

(
`1ν
)n the ball centered at a ∈ X of radius r.

Theorem 3.6. Let γ = (γ1, . . . , γns) ∈ Rns+ . Assume that the linear operator A in (16) is
injective. For each i = 1, . . . , n, assume the existence of bounds Ỹ =

(
Ỹ (1), . . . , Ỹ (n)

)
and

Z̃(r) =
(
Z̃(1)(r), . . . , Z̃(n)(r)

)
such that∥∥∥∥(T̃ (L(ā))− L(ā)

)(i)
∥∥∥∥
`1ν

≤ Ỹ (i) and sup
b,c∈Br(0)

∥∥∥∥(DT̃ (L(ā) + b)c
)(i)

∥∥∥∥
`1ν

≤ Z̃(i)(r). (19)
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If there exists r > 0 such that

P̃ (i)(r) def= Ỹ (i) + Z̃(i)(r)− r < 0, for all i = 1, . . . , n (20)

then T̃ : Br(L(ā)) → Br(L(ā)) is a contraction. By the contraction mapping theorem, there
exists a unique a∗ ∈ Br(L(ā)) ⊂ X such that F̃ (a∗) = 0. Moreover, ‖a∗ − L(ā)‖X ≤ r.

As we see in Section 4, the bounds P̃ (1)(r), . . . , P̃ (n)(r) given in (20) can be constructed as
polynomials in r and are called the radii polynomials.

The statement of Theorem 3.6 is now used to define our second definition of validity of a
parameterization, which is of course more costly than the first one but provides rigorous bounds.

Definition 3. Fix a proof threshold rmax, a truncation dimension N and an approximate solu-
tion ā. Given a numerical zero ā of F and γ = (γ1, . . . , γns), we say that the parameterization
L(ā) is proof-valid on Bν if there exists r > 0 such that condition (20) holds for some r ≤ rmax.

In the next section we explain how the bounds Ỹ and Z̃ can be constructed so that they
depend explicitly on the scaling γ. Then, as for Definition 2, you only need to do the costly
computations once for ā (that is for γ = (1, . . . , 1)) and then the new bounds (and thus the new
radii polynomials P̃ (i)) can be computed easily for any rescaling. Therefore the process of finding
the rescaling γ which maximizes the image of a manifold given by a proof-valid parameterization
is also rather straightforward. We give in Section 5.3 an example of application where we
explicitly compute the bounds Ỹ and Z̃.

4 Explicit dependency of the radii polynomials in the scaling γ

In this section we construct the bounds Ỹ and Z̃ satisfying (19) with an explicit dependency on
the γ whose action is given by (8).

4.1 The bound Ỹ

Proposition 4.1. The bound Ỹ = (Ỹ (1), . . . , Ỹ (n)) defined component-wise by

Ỹ (i) =
∥∥∥(LAF (ā))(i)

∥∥∥
`1ν
, ∀ 1 ≤ i ≤ n,

satisfies (19).

Proof. By definition of T̃ ,
T̃ (L(ā))− L(ā) = LAF (ā)

and we have that
ÃF̃ (L(ā)) = LAF (ā),

which yields the formula for Ỹ .

Remark 4.2. As previously mentioned, Fα(ā) = 0 if |α| ≥ d(N − 1) + 1, and since A is of the
form

A =


D

Tail


,

10



where Tail is a diagonal matrix (see (16)), then Ỹ can be computed as a finite sum. Moreover,
the Ỹ bound can be expensive to evaluate, since it requires computing the Cauchy products
involved in F (ā), the matrix D which is the numerical inverse of the full and possibly large
matrix DF [N ](ā), and the product AF (ā). However, once AF (ā) is computed, we only need
to do the component-wise multiplication defined by L and the finite sum corresponding to the
`1ν norm to get the bound Ỹ for any rescaling γ. Therefore, recomputing the bound Ỹ for a
different rescaling is cheap.

4.2 The bound Z̃

For the clarity of the exposition, we now assume that the nonlinearity of g (and thus of F )
are of degree 2. We insist that the method presented here still holds for nonlinearity of higher
degree (see for instance [8, 9]) but staying fully general would only obscure the point with
notations, hence our restriction to quadratic nonlinearities. To compute the Z̃ bound, we split
DT̃ (L(ā) + b)c as

DT̃ (L(ā) + b)c =
(
I − ÃÃ†

)
c+ Ã

(
DF̃ (L(ā) + b)Ã†

)
c

=
(
I − ÃÃ†

)
c+ Ã

(
DF̃ (L(ā))− Ã†

)
c+D2F̃ (L(ā))(b, c)

and we are going to bound each term separately.

4.2.1 The bound Z̃0

We start this section with a result providing an explicit formula for the `1ν operator norm of a
matrix.

Lemma 4.3. Let B ∈MnN(N+1)
2

(C). For all c ∈
(
`1ν
)n,

∥∥∥∥(Bc[N ]
)(i)

∥∥∥∥
`1ν

≤
n∑
j=1

K
(i,j)
B

∥∥∥c(j)
∥∥∥
`1ν
,

where

K
(i,j)
B = max

0≤|β|<N

 1
ν|β|

∑
0≤|α|<N

∣∣∣B(i,j)
α,β

∣∣∣ ν|α|
 , ∀ 1 ≤ i, j ≤ n. (21)

Proof.

∥∥∥∥(Bc[N ]
)(i)

∥∥∥∥
`1ν

=
∑

0≤α<N

∣∣∣∣∣∣
∑

0≤β<N

n∑
j=1

(
B

(i,j)
α,β c

(j)
β

)(i)
∣∣∣∣∣∣ ν|α|

≤
n∑
j=1

∑
0≤β<N

∣∣∣c(j)
β

∣∣∣ ν|β|
 1
ν|β|

∑
0≤α<N

∣∣∣B(i,j)
α,β

∣∣∣ ν|α|


≤
n∑
j=1

K
(i,j)
B

∑
0≤β<N

∣∣∣c(j)
β

∣∣∣ ν|β|.
Proposition 4.4. Let B def= InN(N+1)

2
−D(DF [N ](ā)) and

B̃
def= L[N ]B

(
L[N ]

)−1
. (22)
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Let the bound Z̃0 = (Z̃(1)
0 , . . . , Z̃

(n)
0 ) defined component-wise by

Z̃
(i)
0

def=
n∑
j=1

K
(i,j)
B̃

, ∀ 1 ≤ i ≤ n.

Then ∥∥∥∥((I − ÃÃ†) c)(i)
∥∥∥∥
`1ν

≤ Z̃(i)
0 , ∀ 1 ≤ i ≤ n,

for all c such that ‖c‖X ≤ 1.
Remark 4.5. This bound can also be quite costly, because of the matrix-matrix multiplication
required to get B. But again, once B has been computed, we only need to do the multiplication
by the diagonal matrices associated do L[N ] and

(
L[N ]

)−1
to get B̃ and then to compute the

quantities K(i,j)
B̃

to get the new bound for any rescaling.
Proof. We start by noticing that

I − ÃÃ† = L
(
I −AA†

)
L−1.

Then by definition of A† and A,
((
I −AA†

)
c
)
α

= 0 for all |α| ≥ N and we have∥∥∥∥((I − ÃÃ†) c)(i)
∥∥∥∥
`1ν

=
∥∥∥∥∥
(
L[N ]

(
InN(N+1)

2
−D

(
DF [N ](ā)

))(
L[N ]

)−1
c[N ]

)(i)
∥∥∥∥∥
`1ν

,

and Lemma 4.3 yields the formula for Z̃0.

4.2.2 The bound Z̃1

In this section we will need two additional results. The first one is a quantitative statement that
`1ν is a Banach algebra and allows us to bound the nonlinear terms.
Lemma 4.6.

∀ u, v ∈ `1ν , ‖u ∗ v‖`1ν ≤ ‖u‖`1ν ‖v‖`1ν .
The second one bounds the action of the (infinite) diagonal part of A.
Lemma 4.7. Let d ∈ X =

(
`1ν
)n, such that dα = 0 for all |α| < N . Then∥∥∥(Ad)(i)

∥∥∥
`1ν
≤ 1
N min

1≤l≤ns
|<(λl)|

∥∥∥d(i)
∥∥∥
`1ν
, ∀ 1 ≤ i ≤ n.

Proof. ∥∥∥(Ad)(i)
∥∥∥
`1ν

=
∑
|α|≥N

∣∣∣(Ad)(i)
α

∣∣∣ ν|α|
≤
∞∑
k=N

∑
|α|=k

∣∣∣d(i)
α

∣∣∣
|α1λ+ . . .+ αnsλns |

νk

≤
∞∑
k=N

∑
|α|=k

∣∣∣d(i)
α

∣∣∣
k min

1≤l≤ns
|<(λl)|

νk

≤ 1
N min

1≤l≤ns
|<(λl)|

∑
|α|≥N

∣∣∣d(i)
α

∣∣∣ ν|α|
≤ 1
N min

1≤l≤ns
|<(λl)|

∥∥∥d(i)
∥∥∥
`1ν
.
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Proposition 4.8. The bound Z̃1 =
(
Z̃

(1)
1 , . . . , Z̃

(n)
1

)
defined component-wise by

Z̃
(k)
1 =

∑
1≤i≤n

∣∣∣b(k)
βi

∣∣∣+∑
1≤i,j≤n

∣∣∣b(k)
βi,j

∣∣∣ ∥∥∥(L(ā))(i)
∥∥∥
`1ν

N min
1≤i≤ns

|<(λi)|
, ∀ 1 ≤ k ≤ n,

satisfies ∥∥∥∥(Ã (DF̃ (L(ā))− Ã†
)
c
)(i)

∥∥∥∥
`1ν

≤ Z̃(i)
1 , ∀ 1 ≤ i ≤ n,

for all c such that ‖c‖X ≤ 1.

Remark 4.9. This bound is not costly, as we only need to get L(ā) from ā (a component-wise
multiplication) and then to evaluate a finite sum to get the `1ν norm of L(ā).

Proof. We first prove the bound without rescaling (that is for γ = (1, . . . , 1)). By definition of
A†,

((
DF (ā)−A†

)
c
)
α

= 0 for all |α| < N . For |α| ≥ N , remember that the general expression
for F is (for quadratic linearity)

Fα(a) = (α1λ1 + . . .+ αnsλns) aα −
∑
|β|≤2

bβ
(
aβ
)
α
, ∀ |α| ≥ 2.

Then, again by definition ofA†, the (α1λ1 + . . .+ αnsλns) term cancels out in
((
DF (ā)−A†

)
c
)
α

and what is left is

((
DF (ā)−A†

)
c
)
α

= −

 ∑
1≤i≤n

bβic
(i)
α +

∑
1≤i,j≤n

bβi,j

(
ā(i) ∗ c(j)

)
α

 , ∀ |α| ≥ N, (23)

where βi must be understood as the multi-index with 1 at index i and 0 elsewhere, and βi,j as
the multi-index with 1 at indexes i and j, and 0 elsewhere. We then use Lemma 4.6 to get∥∥∥∥((DF (ā)−A†

)
c
)(k)

∥∥∥∥
`1ν

≤
∑

1≤i≤n

∣∣∣b(k)
βi

∣∣∣ ∥∥∥c(i)
∥∥∥
`1ν

+
∑

1≤i,j≤n

∣∣∣b(k)
βi,j

∣∣∣ ∥∥∥ā(i)
∥∥∥
`1ν

∥∥∥c(j)
∥∥∥
`1ν
.

We now use Lemma 4.7 which yields

∥∥∥∥(A (DF (ā)−A†
)
c
)(k)

∥∥∥∥
`1ν

≤

∑
1≤i≤n

∣∣∣b(k)
βi

∣∣∣ ∥∥∥c(i)
∥∥∥
`1ν

+
∑

1≤i,j≤n

∣∣∣b(k)
βi,j

∣∣∣ ∥∥∥ā(i)
∥∥∥
`1ν

∥∥∥c(j)
∥∥∥
`1ν

N min
1≤l≤ns

|<(λl)|
,

and the formula for Z1 follows (in the particular case when γ = (1, . . . , 1)), since we assumed
that ‖c‖X ≤ 1. Now we want to get the general bound. First notice that

Ã
(
DF̃ (L(ā))− Ã†

)
c = LA

(
DF (ā)−A†

)
L−1c. (24)

Then, going back to (23) and using that ā ∗ L−1c = L−1 (L(ā) ∗ c), we get for all |α| ≥ N that

((
DF (ā)−A†

)
L−1c

)
α

= −

 ∑
1≤i≤n

bβi

(
L−1c

)(i)

α
+

∑
1≤i,j≤n

bβi,j

(
L−1

(
(L(ā))(i) ∗ c(j)

))
α

 .
(25)

Then, since we only need to consider the action of the diagonal part of A (that is for |α| ≥ N)
we can commute A and L in (24). Finally, applying L to (25) the L and L−1 cancel out and
using again Lemma 4.7 we get the announced formula for Z̃1.
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4.2.3 The bound Z̃2

To get the last bound we need a last lemma, which is a combination of Lemma 4.3 and Lemma 4.7
and thus provides a bound on the full action of A.

Lemma 4.10. For any d ∈
(
`1ν
)n and for all 1 ≤ i ≤ n,

∥∥∥(Ad)(i)
∥∥∥
`1ν
≤ max

 1
N min

1≤l≤ns
|<(λl)|

,K
(i,i)
D

∥∥∥d(i)
∥∥∥
`1ν

+
∑
j 6=i

K
(i,j)
D

∥∥∥d(j)
∥∥∥
`1ν
,

where we remind that D = A[N ].

Proposition 4.11. The bound Z̃2 =
(
Z̃

(1)
2 , . . . , Z̃

(n)
2

)
defined component-wise by

Z̃
(k)
2 = max

 1
N min

1≤i≤ns
|<(λi)|

,K
(k,k)
D̃

 ∑
1≤i,j≤n

∣∣∣b(k)
βi,j

∣∣∣+∑
l 6=k

K
(k,l)
D̃

∑
1≤i,j≤n

∣∣∣b(l)βi,j ∣∣∣ , ∀ 1 ≤ k ≤ n,

where
D̃ = L[N ]D

(
L[N ]

)−1
,

satisfies ∥∥∥∥(ÃD2F̃ (L(ā))(b, c)
)(i)

∥∥∥∥
`1ν

≤ Z̃(i)
2 ,

for all b and c such that ‖b‖X ≤ 1 and ‖c‖X ≤ 1.

Remark 4.12. The only costly part in this bound is to get D̃ (and the quantities K(k,l)
D̃

), but
we already needed to compute D̃ for the Ỹ bound.

Proof. Again we prove the bound without rescaling first (that is for γ = (1, . . . , 1)). Since we
assume that F is quadratic, we get that

D2F (ā)(b, c) = −
∑

1≤i,j≤n
bβi,jb

(i) ∗ c(j), (26)

with the same conventions as in Section 4.2.2 for the βi,j . Therefore, using Lemma 4.6 and since
‖b‖X ≤ 1 and ‖c‖X ≤ 1, ∥∥∥∥(D2F (ā)(b, c)

)(k)
∥∥∥∥
`1ν

≤
∑

1≤i,j≤n

∣∣∣b(k)
βi,j

∣∣∣ .
Lemma 4.10 then yields the formula for Z2 (in the particular case when γ = (1, . . . , 1)). To get
the general formula, we can compute

ÃD2F̃ (L(ā))(b, c) = LAD2F (ā)(L−1b,L−1c)
= LAL−1D2F (ā)(b, c),

where we used
(
L−1b

)
∗
(
L−1c

)
= L−1 (b ∗ c) in (26). The infinite part of LAL−1 (for |α| ≥ N)

is the same as the one of A since the infinite part of A is diagonal. The only difference is that(
LAL−1)[N ] = L[N ]D

(
L[N ]

)−1
= D̃, which yields the formula for Z̃2.
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4.3 Radii polynomials

Let us sum up the results of the previous sections.

Proposition 4.13. Given γ = (γ1, . . . , γns), we consider F̃ defined as in (11). We also consider
ā an element of X =

(
`1ν
)n such that (āα)α = 0 for all |α| ≥ N (in practice a numerical

approximate zero of F ) and the operator T̃ defined by (17), (18) and (16). Then the bound Ỹ
defined in Proposition 4.1, and the bound

Z̃(r) = (Z̃0 + Z̃1)r + Z̃2r
2,

where Z̃0, Z̃1 and Z̃2 are defined in Propositions 4.4, 4.8 and 4.11 respectively, satisfy the
hypothesis (19) of Theorem 3.6.

Then, for each 1 ≤ i ≤ n, P̃ (i) defined in Theorem 3.6 is a quadratic polynomial. If there
exists r∗ > 0 such that P̃ (i)(r∗) < 0 for all 1 ≤ i ≤ n, then there exists an interval I = (r0, r1)
such that P̃ (i)(r) < 0 for all 1 ≤ i ≤ n and for all r ∈ I. By Theorem 3.6, we know that for all
r ∈ I, within a ball of radius r centered in L(ā) their exists a unique local parameterization of the
manifold. Moreover, if one wants to make this fully rigorous, a final step consists of computing
the bounds Ỹ and Z̃ with interval arithmetic and then check, still with interval arithmetic, that
P̃ (i)(r) is negative.

Finally, if the goal is to get a proof-valid parameterization while having the largest possible
image, we process as follows. We start by computing the bounds (and the associated radii
polynomials) without rescaling. Then if I is empty, or if rmax < r0, we can rescale ā to L(ā) by
some γ and then compute the interval I associated to the rescaled polynomials P̃ (i) (of course
one should choose γk < 1) but this time the computation of the coefficients of the polynomials,
namely Ỹ , Z̃0, Z̃1 and Z̃2, are much faster thanks to the formulas of the previous sections.
Conversely, if r0 is small compared to rmax, we can rescale ā to L(ā) by some γ, this time with
γk > 1 larger and larger, which will give a larger and larger manifold patch associated to the
rescaled parameterization, until we reach the limit of r0 = rmax. We explain more in detail how
we do this on an example in Section 5.3.

5 Examples

5.1 Defect-valid parameterizations for the Lorenz system

As a first example, we consider the Lorenz system, given by the vector field

g(x, y, z) =

 σ(y − x)
ρx− y − xz
xy − βz

 ,
with standard parameter values : σ = 10, β = 8

3 and ρ = 28. In this case it is well known
that the origin has a two dimensional stable manifold. We detail on this example the method
presented in Sections 2 and 3 to automatically compute a maximal patch of the local stable
manifold at p = 0.

We start by recalling that the stable eigenvalues are

λ1 = −1
2

(
σ + 1 +

√
(σ − 1)2 + 4σρ

)
and λ2 = −β,

together with the stable eigenvectors

V1 =


σ

λ1+σ
1
0

 and V2 =

0
0
1

 .
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As explained in Section 2, we look for a parameteriztion of the local stable manifold in the form
of a power series f , which should satisfy the invariance equation

Df(θ)
(
λ1 0
0 λ2

)
θ = g(f(θ)). (27)

together with the condition conditions

f(0) = p and Df(0) =
(
V1 V2

)
.

Notice that in this case the two stable eigenvalues are real and therefore we can directly work
with a real power series defined on [−1, 1]2. Expanding f into a power series, (27) rewrites as

∑
|α|≥2

(α1λ1 + α2λ2)aαθα =
∑
|α|≥2


σ
(
a

(2)
α − a(1)

α

)
ρa

(1)
α − a(2)

α −
(
a(1) ∗ a(3)

)
α(

a(1) ∗ a(2)
)
α
− βa(3)

α

 θα,
where

aα =

a
(1)
α

a
(2)
α

a
(3)
α

 .
So we set a0,0 = p, a1,0 = V1, a0,1 = V2 and define F = (Fα)|α|≥2, acting on a = (aα)|α|≥2, by

Fα(a) = (α1λ1 + α2λ2)aα −


σ
(
a

(2)
α − a(1)

α

)
ρa

(1)
α − a(2)

α −
(
a(1) ∗ a(3)

)
α(

a(1) ∗ a(2)
)
α
− βa(3)

α

 , ∀ |α| ≥ 2.

Our goal is now to find a numerical zero ā and then the rescaling γ = (γ1, γ2) so that the
parameterization f̃ defined as

f̃(θ) =
∑
|α|≥0

Lα(ā)θα, ∀ θ ∈ [−1, 1]2,

gives us the maximal patch of manifold, while checking (according to Definition 2) that ‖F̃ (L(ā))‖X <
εmax, which will ensure that L(ā) is a good approximate parameterization.

First we fix an integer N and consider a truncated version of F , that is

F [N ] = (Fα)2≤|α|<N ,

for which we can numerically compute a zero ā with Newton’s method. Then we fix an εmax
and use Method 1 described in Section 3. First we compute F (ā), which can be done explicitly
because by construction āα = 0 for any |α| ≥ N , so for i = 1, F (i)(ā) = 0 for any |α| ≥ N and
for i ∈ {2, 3}, F (2)(ā) = 0 for any |α| ≥ 2N − 1 (because of the quadratic terms). Then we find
numerically the curve in the plane (γ1, γ2) that corresponds to ‖F̃ (L(ā))‖X = εmax. In our case,
we took a sample of values of γ1 and for each we looked for the largest γ2 for which ‖F̃ (L(ā))‖X <
εmax (as explained in Section 3 this doesn’t require much computations since the coefficient of
F (ā) are already known). Finally we compute the surface of the corresponding patch of the
manifold along this sample and find its maximum. The result is displayed in Figure 1, along
with the results of similar computations for the unstable manifolds of the nontrivial equilibria,
or “eyes,” of the attractor.

By way of contrast we consider another parameterization of the local stable manifold at
p but focusing on the slow direction given by V2. Therefore we apply Method 2 described in
Section 3: we define the ratio % def=

∣∣∣λ1
λ2

∣∣∣ and only consider rescalings of the form γ = (γ1, %γ1).
Then we simply find numerically the largest γ1 such that the rescaled parameterization L(ā) is
defect valid, and obtain the results displayed in Figure 2.
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Figure 1: Lorenz System: local stable manifold of the origin and local unstable manifolds of the
eyes. The unstable manifolds have complex conjugate eigenvalues, so we maximize the length
of the eigenvectors subject to a defect constraint of 10−5. The order of these parameterizations
is N = 50. The origin has real distinct eigenvalues, and this figure illustrates the results of
maximizing the surface area of the local stable manifold subject to a defect constraint of 10−5.
The order of this parameterization is N = 30.

5.2 Defect-valid parameterizations for the FitzHugh-Nagumo equations

We consider the vector field given by

g(u, v, w) =

 v
1
∆
(
sv + w − q + u3 − (1 + σ)u2 + σu

)
ε
s (u− ζw)

 ,
where

σ = 1
10 , s = 1.37, ∆ = 1, q = 0.001, ε = 0.1 and ζ = 5.

There are trivial zeros given by v = 0, w = u
ζ and u solution of the cubic equation

u3 − (1 + σ)u2 +
(
σ + 1

ζ

)
u− q = 0.

We want to compute the stable local manifold at one of them:

p '

0.003374970076610
0

0.000674994015322

 .
With the selected values of the parameters we have two real stable eigenvalues at this point p:

λ1 ' −0.662724919921474 and λ2 ' −0.184083645070452,
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Figure 2: Lorenz System: the figure illustrates the results of maximizing the lengths of the stable
eigenvectors of the origin subject to the constraint that the slow eigenvector is % = |λ1|/|λ2|
times longer than the fast eigenvector and that the defect is less than 10−5. The order of
this parameterization is N = 50. Note that the resulting patch covers more of the slow stable
manifold than the patch shown in Figure 1, however the surface area is smaller.

with associated eigenvectors

V1 '

−0.576099055982516
0.381795200742850
−0.722732524787547

 and V2 '

−0.966141520359494
0.177850852721684
−0.186921472344981

 .
In this case we also want to compute a parameterization of the local stable manifold at p focusing
more on the slow direction given by V2. Therefore we again apply Method 2 and obtain the
results displayed in Figure 3.

5.3 Proof-valid parameterizations for the suspension bridge equation

We consider the vector field

g(v) =


v2 + v1v2

v3
v4

−βv3 − v1

 ,
which is obtained after a change of variable when one looks for travelling waves in the suspension
bridge equation (e.g. see [30, 31])

∂2u

∂t2
= −∂

4u

∂x4 − (eu − 1) .

We are going to rigorously compute the stable manifold at 0 (for a given β ∈ (0, 2)), which
is two-dimensional. The stable eigenvalues are λ and λ, where

λ = −1
2
√

2− β + i
1
2
√

2 + β, (28)
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Figure 3: FitzHugh-Nagumo System: the figure illustrates the results of maximizing the lengths
of the stable eigenvectors of the origin subject to the constraint that the slow eigenvector is
% = |λ1|/|λ2| times longer than the fast eigenvector and that the defect is less than 10−5. The
order of this parameterization is N = 30. The red star indicates the location of the equilibrium.
The local manifold illustrated here is not the graph of any function over the stable eigenspace,
i.e. the parameterization follows a fold in the manifold. Note that the triangulation in the figure
is an artifact of the plotting procedure for the manifolds, and not part of the parameterization
computation. If a finer mesh is desired we simply evaluate the polynomial approximation at
more points. It is not necessary to re-compute the parameterization.

and associated eigenvectors are given by

V1 =


1
λ
λ2

λ3

 and V2 = V 1.

We then define F = (Fα)|α|≥0, acting on a = (aα)|α|≥0 ∈
(
`1
)4, by

Fα(a) =



a0 − 0, if α = 0,
a1,0 − V1, if α = (1, 0)
a0,1 − V2, if α = (0, 1)

(α1λ+ α2λ)aα −


a

(2)
α + (a(1) ∗ a(2))α

a
(3)
α

a
(4)
α

−a(1)
α − βa(3)

α

 , ∀ |α| ≥ 2.

This time since the eigenvalues are not real, we consider complex parameterization a, i.e. aα ∈ C4

for all α. Then we compute a numerical zero ā with the method described in Section 3.1. To
rigorously prove the existence of a nearby solution a we follow the ideas exposed in Section 3
and consider an operator T of the form

T : a 7→ a−AF (a).
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The following infinite matrix should be a good approximation of DF (ā) (at least for N large
enough)

A† =


DF [N ](ā) 0

AN
0 AN+1

. . .

 ,
where for each k ≥ N , Ak is a 4(k + 1) by 4(k + 1) bloc diagonal matrix defined as

Ak =


kλI4 0

((k − 1)λ+ λ)I4

0 . . .
kλI4

 ,
with I4 the 4 by 4 identity matrix. Therefore we define

A =


D 0

MN

0 MN+1
. . .

 ,

where D is a numerical approximation of DF [N ](ā)−1 while the Mk = A−1
k are exact inverses.

We are now ready to compute the bounds Ỹ and Z̃ defined in Section 3 in order to apply
Theorem 3.6 an prove the existence of a true parameterization near ā. In practice, we first
compute the bounds without rescaling (that is for γ = (1, 1)) and denote them simply Y and Z,
and then we find the largest rescaling for which the parameterization is still proof valid.

5.3.1 Computation of the bounds Y and Z, and of the radii polynomials

Concerning the bounds Y and Z0, there is nothing to add or to specify to what was said in
Section 4. We set, for 1 ≤ i ≤ 4

Y (i) =
∥∥∥(AF (ā))(i)

∥∥∥
`1ν
,

and

Z
(i)
0 =

4∑
j=1

K
(i,j)
B ,

where the K(i,j)
B are defined as in Section 4.2.1. For Z1 and Z2 we can specify the bounds of

Section 4, because we now work with a specific non linearity. We get

Z
(1)
1 =

1 +
∥∥∥ā(1)

∥∥∥
`1ν

+
∥∥∥ā(2)

∥∥∥
`1ν

N |<(λ)| , Z
(2)
1 = 1

N |<(λ)| , Z
(3)
1 = 1

N |<(λ)| , Z
(4)
1 = 1 + β

N |<(λ)| ,

and

Z
(1)
2 = 2 max

(
K

(1,1)
D ,

1
|<(λ)|N

)
, Z

(2)
2 = 2K(2,1)

D , Z
(3)
2 = 2K(3,1)

D , Z
(4)
2 = 2K(4,1)

D .

Now we can consider, for all 1 ≤ i ≤ 4, the radii polynomial defined by

P (i)(r) = Y (i) + (Z(i)
0 + Z

(i)
1 − 1)r + Z

(i)
2 r2

and we can try and look for a positive r such that P (i)(r) < 0 for all 1 ≤ i ≤ 4.
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Remark 5.1. Y should be very small if ā is a good approximative zero of F . Z0 should also
be very small because B = IN(N+1)

2
−D(DF [N ](ā)) and D is a numerical inverse of (DF [N ](ā)).

Finally Z1 can be made very small by choosing N large enough. Therefore the radii polynomials
are of the form

P (i)(r) = ε− (1− η)r + Z
(i)
2 r2

where ε could be made arbitrarily small if we could get an arbitrarily good approximation ā and
η could be made arbitrarily small if we could take with an arbitrarily large N (and if we could
numerically compute inverses of matrices with sufficient accuracy). So up to having sufficient
computational precision we should always be able to find a positive r such that P (i)(r) < 0.

5.3.2 Results

For this problem we are interested in proving (rigorously and with and error bound r smaller
than rmax) the largest possible patch of the stable manifold, for values of β between 0.5 and 2.
Since we already computed the bounds Y , Z0, Z1 and Z2 without rescaling, we can now easily
compute the radii polynomial P̃ for any rescaling, and so we look by dichotomy for the largest
γ such that the rescaled radii polynomial P̃ has a positive root r0 which is less or equal to rmax.
Notice that the eigenvalues are complex conjugated for this problem and that is why we only
consider uniform rescaling (i.e. γ1 = γ2).

When β goes to 2, the real part of λ goes to 0 (remember (28)) so we expect it to be harder
and harder to compute the manifold when β goes to 2. Indeed we observe that the largest γ for
which we are able to do the proof becomes smaller and smaller when β goes to 2 (see Figure 4).
The computations were made with N = 30, ν = 1 and rmax = 10−5 for the proof.

0.5 1 1.5 2
0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 4: Maximal value of γ for which we can still do the proof with r ≤ rmax, for different
values of β. The manifold computations are completely automated.

Remark 5.2. Another interesting point here is that a closer look at the bound Z0 shows why
it is better to take ν = 1. The matrix B is supposed to be approximatively 0, and we want the
terms K(i,j)

B of Lemma 4.3 to be as small as possible, but their definition

K
(i,j)
B = max

|β|<N

 1
ν|β|

∑
|α|<N

∣∣∣B(i,j)
α,β

∣∣∣ ν|α|
 .

show that there is a risk of numerical errors if ν is too small or too large, hence our choice of
always considering ν = 1.
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To speed up the process of redoing the proof after a rescaling, we kept track of the γ
dependency in the bound Y and Z, and constructed the rescaled bound Ỹ and Z̃ based on the
original ones. However by doing things this way we introduce in the Z̃0 bound the same kind of
instability that comes with taking ν 6= 1 (see (22)). If the Z̃0 bound becomes too big, we could
deal with it (at the expense of speed), by recomputing all the bounds without using the fact
that they came from a rescaling and thus eliminating this numerical instability issue.
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