
Redefining the maximum sustainable yield for
the Schaefer population model including

multiplicative environmental noise

Nicolas Bousquet, Thierry Duchesne ∗ and Louis-Paul Rivest

Department of Mathematics and Statistics, Pavillon Vachon, Laval University,
1045 av. de la Médecine, Québec, QC, G1V 0A6, Canada

Abstract

The focus of this article is to investigate the biological reference points, such as the
Maximum Sustainable Yield (MSY), in a common Schaefer (logistic) surplus pro-
duction model in the presence of a multiplicative environmental noise. This type of
model is used in fisheries stock assessment as a first-hand tool for biomass modelling.
Under the assumption that catches are proportional to the biomass, we derive new
conditions on the environmental noise distribution such that stationarity exists and
extinction is avoided. We then get new explicit results about the stationary behav-
ior of the biomass distribution for a particular specification of the noise, namely
the biomass distribution itself and a redefinition of the MSY and related quantities
that now depend on the value of the variance of the noise. Consequently, we obtain
a more precise vision of how less optimistic the stochastic version of the MSY can
be than the traditionally used (deterministic) MSY. In addition, we give empirical
conditions on the error variance to approximate our specific noise by a lognormal
noise, the latter being more natural and leading to easier inference in this context.
These conditions are mild enough to make the explicit results of this paper valid in a
number of practical applications. The outcomes of two case-studies about northwest
Atlantic haddock (Spencer and Collie 1997) and South Atlantic albacore tuna (Mil-
lar and Meyer 2000) are used to illustrate the impact of our results in bioeconomic
terms.
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1 Introduction

In ecology, bioeconomics and more specifically in fisheries research, surplus production models
(SPM) are a traditional first analytical tool for stock assessment when the only available data
consist of a time series of catches (or harvest) and some index of abundance for an exploited pop-
ulation. Though they are less realistic than age-structured models, SPM are useful for illustrating
relevant concepts in harvest strategies (Jensen 2002b). Moreover, sometimes they may even provide
better estimates of biological landmarks than age-structured models (Laloe 1995). Besides, SPM
are still used for species for which age classes are difficult to determine like tropical fish (Prager
2002), or simply because of a lack of research funds, especially in developing countries (Chavance
et al. 2002). These models are also useful for an age-structured analysis for the recruitment of the
first age population (Beard et al. 2003).

Let Δ denote the difference operator (Δxt = xt+1 −xt). SPM are usually defined by the difference
equation

ΔBt = f(Bt) − Ct, (1)

where Bt, Ct ≥ 0 denote the biomass and the catches at time t, respectively, and f is a so-
called production function. In this article, we are especially concerned with the simple Schaefer,
or logistic, production function (Schaefer 1954)

f(Bt) = rBt

(
1 − Bt

K

)
, t ≥ 0, (2)

r > 0 being the per capita growth rate and K > 0 the carrying capacity (the point at which growth
and decline rates are equal). Though some authors (Maunder 2002b, Prager 2002) do not consider
that the Schaefer model is a tool powerful enough for effective stock assessment, it remains useful
in preliminary efforts to evaluate harvesting strategies and assessment methods (Millar and Meyer
2000, Hammond and Trenkel 2005, de Valpine and Hilborn 2005).

As in numerous other studies in fisheries research, this study will be done within the framework
of discrete time series analysis. Indeed, a discrete-time approach should be more relevant in our
application of SPM to fisheries, since time steps between environmental measures are large in
comparison to the lifetime cycle of the studied species.

One key purpose of SPM consists in the estimation of the maximum sustainable yield (MSY)
and its associated biomass (or resource), which are biological reference parameters for fisheries
management (Jensen 2002b). The MSY is defined as the maximal possible catch such that the
population biomass can continue to regenerate. Its expression in function of the biological pa-
rameters is derived under an assumption of equilibrium for the biomass (ΔBt = 0). For instance,
choosing f as (2) in (1) yields MSY= rK/4.

However, deterministic SPM have been criticized since they ignore the effect of environmental
variability on the population dynamics, that is reflected in the observed data (Gore and Paranje,
2001, p. 207-208). In the past, MSY estimations from models that ignored biological and statistical
uncertainties were certainly involved in overoptimistic decision making, leading to major fishery
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collapses (Larkin 1977, Clark 1981, Lewis 1981, Amundsen and Bjørndal 1999), jointly with in-
abilities to enforce regulations or poor institutional arrangements (Patterson 1998, Hammond and
Trenkel 2005). However, despite the warnings from scientists, the MSY is still viewed as a key
parameter for the fisheries (Maunder 2002a, Jacobson et al. 2002) and a starting point for interna-
tional environmental policies (Holt 2007). Thus, some authors advocate to set harvesting quotas
as a fraction of the deterministic MSY (Doubleday 1976, Caddy and Mahon 1995, Roughgarden
and Smith 1996, Jensen 2002a) to maximize short-term revenue and preserve ecological stability.
They suggest that the MSY is in itself a relevant indicator, but that efforts should be focused on
a) taking stochasticity into account in its calculation and b) avoiding the frequent disrespect of
quotas by exploiters (Rosenberg et al. 1993).

To this end, it has become standard to incorporate an environmental noise (process error), say
εt, in analytical expressions of the biomass dynamics to reflect its natural variability, and thus to
increase the relevance of the SPM (Penn and Caputi 1986, Gudmundsson 1994, Patterson et al.
2001 for a review).

Therefore, in this article, we will consider a stochastic form of the SPM: incorporating a multi-
plicative environmental noise εt into (1), namely considering the Markov chain

Bt+1 =
(
Bt + rBt

{
1 − Bt

K

}
− Ct

)
εt+1, t ≥ 0, (3)

our aim will be to define a stochastic equilibrium in order to obtain explicit derivations of the
MSY and some related quantities at this stochastic equilibrium. In recent years stochastic SPM
with multiplicative noise have been largely used in fisheries research (see for instance de Valpine
and Hastings 2002, Punt 2003), but their stochastic properties have not been studied extensively.

The biomass variable Bt then becomes random with distribution FBt and the deterministic equi-
librium assumption (ΔBt = 0) has to be replaced by a stochastic equilibrium assumption, such as
stationarity (FBt+1 = FBt).

As we shall see, the “dispersion” of the noise εt, typically quantified by its variance σ2, should
appear in the recalculation of the reference points and can have important effects. Such a concern
is not new. Since the 1970’s a great deal of attention has been devoted to the analysis of the
impact of environmental fluctuations on harvesting strategies, in biological as well as in economical
contexts. Most of the studies have been led in the frameworks of perturbation methods and
diffusion theory, assuming continuous time and unpredictable additive perturbations; see Lande
et al. (1997) for a survey of the main references, and Kirkwood (1980) and Lande et al. (1995) for
detailed presentations. Beddington and May (1977), May et al. (1978), Ludwig (1979) and Ludwig
and Varah (1979), Ludwig (1980), Pyndick (1984), Alvarez and Shepp (1998), Alvarez et al. (2001),
Shah and Sharma (2003) have obtained exact or approximated recalculations of bioeconomic
reference points when a stochastic term is added to the production function. When additive
perturbations are not assumed to be stochastic, Jensen (2002a, 2005) derived similar reference
points, including environmental trends. In the same way, understanding the impact of stochasticity
on the time before extinction has become the subject of increasing research (Routledge and Irvine
1999, Dushoff 2000, Hakoyama and Iwasa 2000, Allen et al. 2005).
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To our knowledge, the work about the transmission of environmental patterns into population be-
haviors is limited in discrete frameworks. Besides, it seems that cases where the noise is included
multiplicatively (Eq. 3) have retained even less attention in stochastic studies. In the fishery liter-
ature such a noise is however largely used in articles which mainly focus on parameter estimation
or biological case-studies (Millar and Meyer 2000, de Valpine 2002, Punt 2003, de Valpine and
Hilborn 2005, among others). In his seminal work, Reed (1978) studied the stochastic behavior
of the biomass under the SPM (3), considering cases where at low biomass levels the population
size increases with probability one. He obtained general conditions on the noise leading to the
stationarity of the biomass Markov chain (a bounded εt with bounded dispersion). Including this
uncertainty in the computation of the reference points, he studied the optimality of some harvest-
ing strategies (Reed 1978, 1979) and highlighted serious overestimations of the available resources
resulting from using deterministic reference points, leading to unwelcomed economic and ecological
decisions. This conclusion was shared with most of the previously cited authors. See Flåm (1981)
for a more specific stochastic investigation, Clark and Kirkwood (1986) for a Bayesian approach
to the problem and Sethi et al. (2005) for a recent continuance of this research, including other
error sources, in a time-continuous framework using dynamic programming.

Thus, Reed’s work draws the main steps of a general study, but it cannot be directly applied to
stochastic logistic cases. In this article, we complement his approach to apply it to the Schaefer
SPM. The novelty in our work can be summarized in three points which are treated in Section
2. First, we obtain necessary and sufficient conditions on the environmental noise to obtain the
stochastic equilibrium. Second, for a given form of the noise (called “product-of-beta” throughout
this article) and assuming an upper bound for its variance σ2, we obtain explicitly the unique
stationary biomass distribution. Third we study the impact of σ on the MSY and related quan-
tities by deriving explicit expressions for these reference points. A classic conclusion, shared with
the majority of previously cited authors, is that harvesting according to the deterministic MSY
rule is clearly an underoptimized strategy and can lead to strong decreases of the resource (see
especially Larkin 1977, Reed 1978, Roughgarden and Smith 1996). As a corollary of our results
from Section 2, we highlight the stronger conclusion that a deterministic long-term strategy is
incompatible with the assumption of equilibrium: on average, one cannot hope to harvest more
than the stochastic MSY. Furthermore, constant harvesting fatally leads to the extinction of the
resource; thus optimizing the harvest must be done by optimizing the harvest rate, which implies
that precise information about the levels of the stock through the timescale must be obtained,
and not only a good estimation of the biological parameters. Another noticeable result is the sub-
stantial influence of σ2 on reference point BMSY , the mean stock level in the optimized harvesting
conditions. Since it is an indicator from which the notion of “overfishing" is usually derived in
fisheries management, an explicit approximation of BMSY as a function of σ is emphasized. Fi-
nally, we indicate how to derive other reference points, for instance defined under bioeconomic
constraints.

In Section 3, we give conditions under which the commonly used lognormal distribution can be
approximated by a product-of-beta without having a serious impact on the biomass trajectories.
This amounts to giving guidelines under which the new expressions for biological landmarks derived
in Section 2 under a product-of-beta noise remain pertinent under a lognormal noise.
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Finally, two numerical applications are presented in Section 4, using fishery data on the Georges
Bank haddock in the northwest Atlantic and the albacore tuna in South Atlantic.These examples
illustrate the possible shortfall, in bioeconomic terms, resulting from the use of a deterministic
strategy to manage a stochastic population.

2 A stochastic Schaefer model

2.1 Description and stationarity

We assume that catches in Eq. (2) are always proportional to the biomass, i.e. Ct = φBt, where
the capture rate φ is supposed constant over time; this assumption can possibly be relaxed (see
Section 5 for further discussion). Then (3) becomes

Bt+1 = [(1 − φ+ r)Bt − rB2
t /K]εt+1, (4)

where the εt are assumed to be positive independent and identically distributed (i.i.d.) random
variables. Without loss of generality, we suppose that the expectancy E(εt) = 1. Indeed, suppose
that E(εt) = μ �= 1 and let rμ = rμ+ μ − 1, φμ = φμ, and Kμ = Krμ/(rμ). Then the model can
be re-expressed as

Bt+1 = [(1 − φμ + rμ)Bt − rμB
2
t /Kμ]εt/μ,

which has the same form as the original model, but with innovations εt/μ that have mean 1. To
obtain a simpler writing of the dynamics, set

Zt =
rBt

K(1 − φ+ r)
, t = 0, 1 . . .

Then (4) is equivalently rewritten as

Zt+1 = (1 − φ+ r)Zt(1 − Zt)εt+1. (5)

We now derive some results about the stationary behavior of the Markov chain defined by (5).
(All proofs are given in the Appendix.) Essential arguments of stationarity are irreducibility and
aperiodicity (Robert and Casella 2004). Theorem 2.1 indicates that a necessary and sufficient
condition of irreducibility is a bounded noise as a function of (r, φ), without presuming any form
for its density. Aperiodicity is then obtained under a very mild condition, and this leads to a
unique stationary distribution.

Theorem 2.1 Let {Zt} be the Markov chain defined by (5) and put γ = r− φ. Assume that {εt}
are continuous i.i.d random variables with probability density function fε. Assume that the support
of fε, Supp(fε), is a subset of IR+.

(A) The chain is irreducible if and only if Supp(fε) ⊂ [0, 4(1+γ)−1] and the initial state z0 ∈]0, 1[.
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(B) Assume that z0 ∈]0, 1[ and Supp(fε) = [0, 4(1 + γ)−1]. Then the chain is irreducible and ape-
riodic. Consequently, for almost every z0, the chain admits a unique stationary distribution.

Theorem 2.1 thus gives us a first hope to generate biomass series that do not threaten to collapse
or explode. Notice, however, that unbounded lognormal noises cannot lead to stationarity.

If Theorem 2.1 stays very general about the form of the noise fε, Theorem 2.2 is specific to a
particular choice of fε which we will term “product-of-beta” and define as follows:

Definition 2.1 Denote Γ the gamma function and Be(α, β) the beta distribution with density

f(x|α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1

�{0≤x≤1}

defined for strictly positive α and β. Let

Ut ∼ Be

(
α + β + 1

2
,
α+ β − 1

2

)
,

Vt ∼ Be

(
α + β

2
,
β − α

2

)

be two independent random variables (with α+ β > 1 and α < β). The random variable εt is said
to follow a product-of-beta distribution with parameter (α, β) if

εt =
4β

1 + α + β
UtVt. (6)

Theorem 2.2 Let γ = r − φ > 0 be the difference between the per capita growth rate r and the
fishing rate φ and σ2 ∈ [0, σ2

M [ be the innovation variance where

σ2
M = 1 − 1 + γ + 2γ3

(1 + γ)3
. (7)

Define α = γβ − 1 where

β =
1

2(1 + γ)σ2

({
2 − γ − (1 + γ)σ2

}
+

√
8σ2 + {2 − γ − (1 + γ)σ2}2

)
. (8)

Suppose εt is defined by (6). Then

a) E[εt] = 1 and Var[εt] = σ2;
b) for any initial state z0 ∈]0, 1[, the process {Zt} admits the Be(α, β) as its unique stationary

distribution.

The upper bound (7) on the innovation variance is a re-expression, in terms of (γ, σ2), of the
condition that α > 0 in Definition 2.1. Theorem 2.2 indicates that by choosing the noise according
to (6) (i) the conditions of Theorem 2.1 are respected and (ii) the stationary distribution of the
biomass is explicitly known and is, up to a scaling constant, a nondegenerate beta distribution for
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any initial state z0 ∈]0, 1[. In an illustrative purpose, the upper bound σM is plotted as a function
of γ in Figure B.1. Notice that when φ = r (γ = 0), there is no stationnary distribution and
extinction is unavoidable.

PLACE FIGURE B.1 ABOUT HERE

Extinction condition. The condition σ2 < σ2
M is a necessary and sufficient condition for

nonextinction. If it is not met the process Bt converge to 0 with probability 1. It is stronger than
the local condition given by Reed (1978, Eq. (2.6)) on the noise dispersion. In our framework,
Reed’s necessary condition for non-extinction of the population can be written as

V = exp(−E[log εt]) − 1 ≤ g′(0) − 1, (9)

where g(x) = (1 + γ)x(1 − x) (in Reed’s original work g does not incorporate the capture rate
since he first considers an unexploited population). Thus g′(0) = 1 + γ. We obtain the following
proposition, whose proof is given in Appendix.

Proposition 2.1 Assume a product-of-beta environmental noise εt. Then the non-extinction con-
dition σ2 < σ2

M implies (9).

Finally note that σ2 < σ2
M implies (9) for all γ > 0 in the case of a lognormal noise (cf. Section

3), where V =
√

1 + σ2 − 1.

2.2 Derivation of biological reference points

Assume for the biomass the stochastic equilibrium given in Theorem 2.2. The expectation of the
stationary distribution for Bt is then

E(Bt) =
K(1 + r − φ)

r

α

α + β
=
K(r − φ)

r

{
1 − (r − φ)−1σ2

(2 − r + φ)
+ o(σ3)

}
,

where α and β are defined in Theorem 2.2 and g(σ) = o(σn) means that g(σ)/σn → 0 as σ → 0.
The expected catch φE(Bt) is thus maximal when

φopt =
r

2
− 2(2 − r)

(4 − r)2
σ2 + o(σ3). (10)

The difference is obvious with the well known deterministic case where φopt = r/2 (e.g., Jensen
2002b). Substituting (10) into (7) yields a more general upper bound for σ in terms of r which
is displayed in Figure B.2. The MSY and the mean biomass under maximal exploitation are
respectively MSY = φoptE[Bt|φ = φopt] and BMSY = E[Bt|φ = φopt]. Both expressions are
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unexplicit too but can be accurately approximated using Taylor expansion in σ. The following
computations were performed by using MapleTM (Monagan et al. 2005). We obtain

MSY (σ) =
rK

4

(
1 − σ2

r(1 − r/4)
+

4σ4

r2(4 − r)4

[
r4 − 4r3 − 12r2 + 48r − 16

]
+ o(σ5)

)
, (11)

BMSY (σ) =
K

2

(
1 − 8σ2

r(4 − r)2
− 8σ4

r(4 − r)5

[
3r3 − 18r2 + 12r + 32

]
+ o(σ5)

)
. (12)

For some chosen values of r, the functions MSY (σ)/MSY (0) and BMSY (σ)/BMSY (0) are dis-
played on Figures B.3 and B.4. Notice that for a small r and a value of σ large enough, taking
the stochastic environment into account can reduce the the deterministic MSY (0) = rK/4 more
than 50%! As a matter of comparison, authors like Pindyck (1984) expressed MSY as a decreasing
function of σ, proportional to 1−σ2/r, in a time-continuous framework with additive environmen-
tal noises of variance σ2. A less conventional result is the fact that BMSY (σ) can be significantly
lower than K/2, even if the decrease of BMSY (σ) as a function of σ appears to be slower than
the decrease of MSY (σ). We discuss further the bioeconomical meaning of these results in the
discussion section.

PLACE FIGURE B.2 ABOUT HERE

PLACE FIGURE B.3 ABOUT HERE

PLACE FIGURE B.4 ABOUT HERE

It is essential to notice that MSY(σ) represents the maximal harvest which can be expected on
average in the long run when the harvesting strategy is optimized through the choice of the rate
φ (the effect of a non-optimized rate can be perceived on Figure B.5). Thus, linking φopt to an
optimal harvest strategy requires the knowledge of the immediate stock level Bt, as Copt

t = φoptBt.
Therefore information-gathering for the purpose of biomass estimation (e.g., abundance indexes)
is an indispensable prerequisite for strategy-making.

PLACE FIGURE B.5 ABOUT HERE

The implications of Theorems 2.1 and 2.2 actually go beyond the determination of an optimal
harvest strategy. A first corollary is that any choice of Ct that is not based on both an estimation
of Bt and φ will fatally lead to extinction. Another corollary is that no effort rate φ∗ can be
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found such that both a) the biomass distribution remains stationary and b) on average, the
expected harvest reaches the deterministic level rK/4. Indeed, such a φ∗ would be the solution of
φ∗E[Bt|φ = φ∗] = rK/4, which would imply, by definition, that

MSY (0) = rK/4 ≤ φoptE[Bt|φ = φopt] = MSY (σ),

which is true only when σ = 0.

Other reference points. The MSY is the most common biological reference point derived from
SPM. An alternative management policy could maximize catches subject to the constraint that
Bt does not drop below a fraction 0 < ρ < 1 of K with a high probability, say 1−α. Traditionally,
one chooses ρ = 0.2 (Katsukawa 2004). A new reference point MY C (maximum yield under
constraint) can then be defined as

MY C(σ) = max
0≤φ≤r

φ E (Bt|φ)

under the constraint P (Bt < ρK|φ) = α. Though an approximate expression for MY C(σ) cannot
be calculated easily, the new φopt and MY C(σ) as functions of σ can easily be numerically derived.
Figures (B.6) and (B.7) illustrate these values with ρ = 0.2 and α = 0.05. The difference between
MSY (σ) and MY C(σ) (or between the optimized harvest rates) is not excessive when σ < 0.2,
but it can severely increase otherwise. In some cases where a unique standard stochastic MSY
exists, a nonzero MY C might not exist.

PLACE FIGURE B.6 ABOUT HERE

PLACE FIGURE B.7 ABOUT HERE

In economic frameworks, constraints can be introduced under the form of a concave profitability
function (or the opposite of a cost function) I(q), where q denotes the fished quantity. One can write
I(q) = p(q)−c(q), where p is the selling price of the resource and c is the (economic/environmental)
fishing cost. Fishing effort φ is optimized if E[I(φBt)] is maximal, i.e., when φ = φ∗ with

∂E[I(φBt)]

∂φ
|φ=φ∗ = 0.

3 Lognormal approximation

The lognormal is a common choice of distribution for the multiplicative process error terms in
fishery research, and is probably more practical than the product-of-beta distribution for statistical
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inference. The biological rationale for this is as follows: the stock-recruitment process producing
the biomass at the end of the time period (one-year cycle) can be seen as the outcome of a series of
successive survivorships from the birth to the recruit. After n life stages, the complete survivorship
probability is the product of n survivorships. By a log transformation, the central limit theorem
suggests than the log-survivorship at each end of time period (assuming a large n) is normally
distributed. See Ricker (1975), Reed (1978) or Haddon (2001) for more precisions. Thus, our aim
in this section is to assess whether the explicit results established in Section 2 can be used when
a lognormal distribution is assumed for the process error instead of the product-of-beta. When
σ is small, the product-of-beta (bounded) distribution Fε with mean 1 and variance σ2 can be
approximated by a lognormal (unbounded) distribution F̃ε with same mean and variance (though
we cannot theoretically obtain stationarity of the Markov chain under the lognormal, cf. Theorem
2.1).

A reasonable approximation should be reflected by the fact that the difference between Fε and F̃ε

results in a difference between the related biomass distributions BFε and BF̃ε
that is not significant

at any time t. Thus deciding whether the approximation is reasonable or wrong can be formalized
by means of the following test of hypothesis:

H0: BFε = BF̃ε
vs H1: BFε �= BF̃ε

.

We propose a simple nonparametric Mann-Whitney implementation of this test (Wasserman 2005)
to compare the distributions of biomasses simulated independently, with similar initial conditions,
from both noises. We generate M = 8, 000 biomass trajectories of 2, 000 years for both distribu-
tions, and at each year, we compute the p-value of the Mann-Whitney test that the two samples
of 8, 000 biomasses have the same distribution. When this p-value becomes small, we reject the
hypothesis of similarity between the biomass distributions. For the simulations we chose values
of r and σ respecting condition (7) and set φ = φMSY according to (10). Initial states (z0)M

were sampled from the stationary B(α, β) distribution. Then the mean and standard deviation
of the p-value, computed on 2, 000 years, are displayed on Figures B.8 and B.9. We noticed no
extinction in the lognormal case. When σ is close to 0, the distribution of the p-value appears
uniform with mean 0.5 and standard deviation 1/(2

√
3) � 0.29. A sensible break appears after

σ = 0.25, on average on r, where the difference between biomass distributions becomes more and
more statistically significant with time and increasing σ. A very small standard deviation means
that the discrepancy between the distributions comes very early in the timescale.

PLACE FIGURE B.8 ABOUT HERE

PLACE FIGURE B.9 ABOUT HERE

Thus we suggest that, in terms of statistical inference, without knowing r, the lognormal approx-
imation could be considered when σ ≤ 0.25. For values of r higher than 0.4, the approximation
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remains satisfactory until σ = 0.35. Refinements of this result could certainly be the subject of
longer studies. These estimated upper limits can be compared with the typical values encountered
in the dedicated literature (converted to the scale used in this paper), and appear rather rea-
sonable. For instance, in a Bayesian framework, Meyer and Millar (1999) and Millar and Meyer
(2000) proposed prior estimates of σ (based on biological considerations) in the 95% domain
(0.0498,0.0717) and obtained posterior estimates close to 0.06. Hammond and Trenkel (2005) ob-
tained estimates beetwen 0.033 and 0.092. de Valpine and Hilborn (2005) got estimates between
0.022 and 0.14. However, no real consensus exists about the definition of a "low" or "high" value
of σ. Thus, de Valpine and Hastings (2002, for a Ricker model) or Punt (2003) proposed higher
values of σ (up to 0.3) for simulation studies, considering that they can be seen as being low or
high in a variety of biological situations.

4 Illustrations

To illustrate the impact of our results, we look back at two case-studies that have been formerly
treated in the literature. The first one is a bioeconomic study presented by Spencer and Collie
(1997), who considered the stocks of Georges Bank haddock (Melanogrammus aeglefinus) in the
northwest Atlantic during the years 1931 to 1993. Statistical estimations of parameters can today
be considered as crude, but it is a useful example to obtain orders of magnitude of market prices
and to observe the repercussions of an overoptimistic fishing policy. Besides, this is one of the
rare real case-studies where the stochastic SPM obeys to our specifications (especially E[εt] =
1). The second case-study has been treated by Millar and Meyer (2000), about the Bayesian
assessment of a stochastic Schaefer SPM to fit the stocks of South Atlantic albacore tuna (Thunnus
alalunga) during the years 1967 to 1978, formely studied by Polacheck et al. (1993) . The estimation
procedure appears to be more reasonable than in the first case-study. Reproducing the Bayesian
posterior parameter simulation of Millar and Meyer (2000), we can correct their posterior mean
of the MSY.

4.1 Example 1: Georges Bank haddock

Spencer and Collie (1997) used the Schaefer SPM in parallel with a Steele-Henderson model that
incorporates a predation term. A multiplicative lognormal environmental noise εt = exp(νt) is
assumed, such that

νt ∼ N
(
−σ

2
ν

2
, σ2

ν

)

(thus E[εt] = 1). Real catch and estimated biomass data are used to fit the models with the “total
least squares” method of Ludwig et al. (1988). A residual measurement lognormal error μt with
variance σ2

μ (similar to a nuisance parameter at each time t) between the estimated and (unknown)
real biomass is introduced into the fitting criterion. However, the framework remains very close
to a “pure process error” case-study since λ = σ2

μ/(σ
2
μ + σ2

ν) = 0.01. Using biological arguments,
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Spencer and Collie concluded that the Schaefer model is relevant for the years 1976-1993 and
produced estimates r̂ = 0.4, K̂ = 129 kt (kilotonnes) and σμ = 0.31, which implies σ = 0.3176.

Following the conclusions of Section 3, we may use the results of Section 2.2. The MSY and its
associated biomass BMSY are presented in Table 1, in the deterministic and stochastic frameworks.
Standard deviations have been reestimated using the Delta method (Patterson et al. 2001). Some
simplified economic consequences are derived in the two cases for the years after 1993: the observed
price (U.S. dollars per kilogram) per year is given by (Spencer and Collie 1997)

P = a+ bQ+ cT

where Q is the quantity landed (kilotonnes) in the northeastern United States and T is a time
index (T = 30 from year 1993). The authors provided estimations a = 1.82, b = −0.022, c = 0.033
to obtain a maximum revenue policy, using dynamic programming. A simplified projection over
the years following 1993 is assuming that all the landed stocks will be sold. From the results of
Table 1, one can crudely estimate that on average, the use of a deterministic strategy will predict
an estimated gain of 8.3 million dollars above the maximal possible income.

PLACE TABLE B.1 ABOUT HERE

Even though the estimations of (r,K, σν) should probably be improved using recently developed
techniques (de Valpine and Hilborn 2005), these results do highlight the need of studying carefully
the influence of σ on the management landmarks. It is a convergence point between ecological and
economic stakes.

4.2 Example 2: South Atlantic albacore tuna

Millar and Meyer (2000) used a multiplicative lognormal environmental noise εt = exp(νt) such
that

νt ∼ N
(
0, σ2

ν

)
,

thus E[εt] = exp(σ2
ν/2) �= 1. The authors provided prior distributions for biological and variance

parameters (observation and process errors) and obtained samples from posterior distributions
using Gibbs sampling. Focusing on the posterior sensitivity to prior modifications, Millar (2004)
concluded to the relative stability of these distributions, the posterior information being carried
by the data for the most part.

Removing the model bias due to the choice of εt, as explained in the beginning of Section 2.1, and
using the same priors and techniques, we obtained posterior means for the parameters that are
close to those of Millar and Meyer’s. Our results are summarized in Table 2.

PLACE TABLE B.2 ABOUT HERE
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With E[r] = 0.330 and E[σν ] = 0.0632, following the conclusions of Section 3 the results of
Section 2.2 can be applied with relevance. Thus the posterior mean of the stochastic MSY is
E[MSY ] = 19.18 (kt) which, given the stochastic model, is a more appropriate quota value than
the deterministic value of 19.42 kt. These results differ slightly from those reported in Millar
and Meyer (2000) since their parametrization do not satisfy the constraint E[εt] = 1. The gap
between the deterministic and stochastic MSY appears more pronounced than the gap between
the two BMSY , as predicted by the results in § 2.2. Notice that, though the point estimates are
well-differentiated, the posterior credibility intervals of MSY and BMSY are quite similar for this
example.

5 Discussion

In this article we have investigated the stochastic properties of a Schaefer SPM with a constant
catch rate, which implies constant catchability and fishing effort. Our main results are neces-
sary and sufficient conditions on the features of an environmental multiplicative noise to obtain
stochastic stationarity, which is the primary condition to derive the maximum sustainable yield
(MSY) and related biological reference points. Slight modifications to the statistical justifications
should be enough to obtain similar results for other SPM, especially the Pella-Tomlinson model
(Pella and Tomlinson 1969). For a given form of the noise, which can often be approximated by a
common lognormal distribution, the stationary distribution is known and the landmarks can be
accurately derived. Important conditions on the noise dispersion are given to avoid extinction. We
show that the optimization of the harvesting rate and the precise knowledge of the biomass size
are the key components of an optimized time-step to time-step harvesting strategy; besides, the
deterministic MSY appears to be an unreachable objective, that is incompatible with the condi-
tions of stationarity. Thus, our study has reinforced the conviction shared by numerous researchers
that biological reference points calculated in a deterministic framework can be far from optimal
in stochastic settings.

The approximated expressions of the reference points as functions of σ are noticeable results,
especially BMSY which is a prominent indicator of the stock level for fisheries management. In
the United States, the Magnusson-Stevens Act demands BMSY values for any exploited stock.
Therefore an important point is the fact that the stochastic BMSY can be significantly lower than
the deterministic value K/2. A consequential implication for fisheries management is that the
traditional way of considering the stocks as “overfished", namely when they are depleted to a pre-
specified fraction of K, could be modified to account for the estimation of σ. For instance setting
the limit of “overfishing" to a pre-specified fraction of the stochastic BMSY should be considered.
Allowing a small probability α of overfishing, an optimized long-term fishing strategy should refer
to the constrained MYC proposed at the end of Section 2.2.

These explicit results can be directly used by fisheries and other resource exploiters when Schaefer
model is a reasonable choice. Clearly, this model made our calculations tractable and further
study for larger classes of SPM (Pella and Tomlinson 1969) or more complicated models with
age-dependence (Lassen and Medley 2000) might be more challenging. Since there is a consensus
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among researchers that the practical relevance of the Schaefer model is questionable, even in its
stochastic form, this study seems to be highly relevant.

One of the major conditions to obtain stationarity is to assume a bounded process error. This was
considered by Reed (1978, 1979) as a sufficient condition, but it becomes a necessary condition
in our work. Biological circumstances can probably help to justify this statistical requirement.
For example, a geographically limited habitat should yield an upper limit for the biomass. In
cases where the process error does not satisfy our stationarity conditions, then no equilibrium
assumption can be derived and landmarks such as the MSY should not be derived. However
reasoning with quasi-stationary rather than stationary distributions in those cases might also lead
to certain management criteria (Lande et al. 1995).

Although it has not been treated in this article, a complete study of the stochastic process, viewed
as a prediction tool of the future state of stocks, should incorporate a survey of its forecasting
properties. Studying autocorrelation patterns can give an idea of the potential for forecasting the
future values of the process Bt (Box et al. 1994). Our numerical experimentations have shown that,
on average on r ∈ [0, 1], when φ = φopt, the process becomes unpredictable after 5 years. More
studies have to be done, but these first results call for a regular renewal of parameter and biomass
stock estimations in short periods of time. Actually, this estimation updating has become central
to decision-making and our results support this policy. Finally, a more rigorous treatment of the
predictability of the biomass series may possibly be given using tools from dynamics processing
such as the Lyapunov exponent (Chaudhuri 2006).

An issue which deserves to be discussed is the validity of the constant catch rate assumption.
Again, this choice made our calculations simpler, but it is probably unrealistic in the long term,
since numerous fishery jurisdictions have adopted threshold management strategies which reduce
the harvest rate (possibly to zero values) for stocks depleted to below a threshold level. See for
instance Zheng et al. (1993), Myers et al. (1994), Jonzén et al. (2003), Katsukawa (2004) and Iskin
da Silveira Costa (2007). Thus, in practice the harvest rate likely evolves through time according
to a piecewise constant function. In this context, however, our results remain valuable. First, the
harvest rate linked to the stochastic MSY provides an upper bound for this series of rates. Second,
notice that a modification of φ at time t, when the biomass follows the stationary distribution
before t, makes the biomass enter into a new stable Markov chain (if φnew ≤ φMSY ), for which
the probability of coming back to high levels of the stocks (or conversely to decrease to low stock
levels) can be easily reestimated, thanks to the knowledge of the explicit biomass distribution. (We
have started to focus on the relaxation time between these two equilibrium distributions and we
hope to present detailed results of different management procedures in a future article.) Thus our
results can help to optimize the interplay between harvesting and growth of exploited populations.

Note that inferentially speaking, the constant catch rate assumption could otherwise be softened
by assuming that C∗

t = φBtνt where C∗
t means the observed catches and νt is an observation error.

This choice could help to obtain a simple definition of the likelihood (and even to consider that
observed catches are censored values, following the recent idea of Hammond and Trenkel 2005).
Model estimation and fitting tests should be presented in future work.
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Finally, although SPM can be seen as basic representations of the reality (and thus as first-hand
tools), they are still used as decision tools by international commissions. Recently (in 2006), the
European Commission proposed to amend the Common Fisheries Policy according to the MSY
principle, making a fundamental objective of the restoration and maintenance of fish stocks to
levels and conditions in which they are capable of providing maximum sustainable yields. Faced
with the overoptimism of this principle, Holt (2007) claimed the necessity of redefining the MSY.
Studying carefully the stochastic behavior of an even simple SPM can help to improve this policy.
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A Appendix

A.1 Proofs of Theorems 2.1 and 2.2 and of Proposition 2.1

We use some of the notation from Meyn and Tweedie (1993, chapters 4 to 7), henceforth referred to
as MT. Our stochastic Schaefer model (SSM) is a typical example of a scalar nonlinear state-space
model whose associated deterministic control model CM(F ) can be written as

Fk(z0, ε1, . . . , εk) = F (Fk−1(z0, ε1, . . . , εk−1), εk)

with F (z, ε) = Fγ(z, ε) = (1 + γ)z(1− z)ε. We denote the state space Z = {z} and let Å represent
the interior of a set A. We put Oε = ˚Supp(fε) and denote the set of all states reachable from z at
time k by CM(F ) as A0

+(z) = z and for k ≥ 1,

Ak
+(z) = {Fk(z, ε1, . . . , εk) : εi ∈ Oε, 1 ≤ i ≥ k} .

Proof of Theorem 2.1. The Markov chain cannot be irreducible if {0, 1} ∈ Z: no state except
0 can be reached after 0 or 1. Then we will suppose for simplicity that Z ⊂ IR − {0, 1}. Now we
use some results about irreducibility. For all z ∈ Z and A ∈ B(Z) denote the Markovian kernel of
the chain P (z, A) = P (Zt+1 ∈ A|Zt = z). Then

P (z, A) =
1

λ(z)

∫
A
fε

(
ε

λ(z)

)
dε,

where λ(z) = (1+γ)z(1−z). The chain is ψ−irreducible if there exists a measure ψ on B(Z) such
that for all z ∈ Z, whenever ψ(A) > 0, there exists some n ∈ IN+ (possibly depending on both A
and z) such that P n(z, A) > 0 where, for any 0 ≤ m ≤ n,

P n(z, A) =
∫
Z
Pm(z, dy)P n−m(y, A).

Since
P n(z, A) = λ−1(z)

∫
Z
. . .
∫
Z︸ ︷︷ ︸

n−1

Qλ,yRλ,y dy1 . . . dyn−1 (A.1)

with Rλ,y =
∫

A
fε

(
yn

λ(yn−1)

)
and

Qλ,y =
fε

(
y1

λ(z)

)
λ(yn−1)

n−2∏
i=1

λ−1(yi)fε

(
yi+1

λ(yi)

)
,
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a necessary condition of Lebesgue irreducibility is having λ(z) > 0 ∀z ∈ Z, which means Z ⊂]0, 1[.
Then, for all z ∈ Z, we have P (z, ]0, 1[) = 1. It leads to

∫ 4
1+γ

0
fε(ε) dε+

∫ (1+γ)−1

z(1−z)

4
1+γ

fε(ε) dε = 1 (A.2)

since z(1 − z) ≤ 1/4 in ]0, 1[. Because this equation is true for all z ∈ Z ⊂]0, 1[, it is especially
true for z = 1/2. Thus the second term of the left-hand side of (A.2) becomes zero. Since fε is
a density, we have necessarily Supp(f) ⊂ [0, 4(1 + γ)−1]. Reciprocally, the conditions of Theorem
2.1 insure a) that if z0 ∈]0, 1[ then A+(z0) ⊂]0, 1[; b) that integral terms in (A.1) are all finite and
strictly positive, and 0 < λ(z) < (1 + γ)2/4. Thus the conditions are sufficient for irreducibility.

To show aperiodicity we use arguments proposed in MT (sections 7.2.1 and 7.3). If (B) of Theorem
2.1 is satisfied, since we assume a continuous fε, then there exists a unique (topologically) closed
minimal set M for the deterministic control model CM(F ) such that M ⊂ A+(M) (Theorem
7.2.6). Moreover, Oε and M are connected. Since the chain is irreducible and necessarily forward
accessible (MT p.151), it is aperiodic from Theorem 7.3.2.

Proof of Theorem 2.2. First assume εt follows a product-of-beta distribution with parameters
(α, β). Elementary calculations show that the constraint E(εt) = 1 is respected and that the
process error variance is given by

Var(εt) =
2β2 + β(α+ 3) − (α + 1)2

(β + 1)(α + β + 1)2
,

=
2 + β(2 − γ)(1 + γ)

β(β + 1)(1 + γ)2
, (A.3)

if (α + 1)/β = γ. Now suppose that φ, r (and thus γ) and σ2 = Var(εt) are fixed. We can then
easily get an expression for β by solving (A.3). Thus, a) can be proved.

Second, we prove the Harris recurrence of the chain, which means that the chain converges to a
unique stationary distribution for every starting point z0 ∈]0, 1[. Third we show that the Be(α, β)
distribution is invariant for the chain. Necessarily, it is the stationary distribution.

a) Harris recurrence. We note easily that Oε is the interior of (0, 4(1+γ)−1) and fε is non-zero
on Oε. Thus we satisfy (B) and the chain is irreducible and aperiodic. Now we prove a so-called
drift condition to obtain the Harris recurrence. For a given b <∞ denote

f(zt) = E[Zt+1|zt] − zt + 1 − bI{zt∈]0,1[}.

Since E[εt] = 1, we have
f(zt) = γzt − (1 + γ)z2

t + 1 − bI{zt∈]0,1[}.
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This function takes its maximum value in ]0, 1[ in z∗t = γ(1 + γ)−1/2 and

f(z∗t ) = 1 +
γ2

4(1 + γ)
− b.

We will now use the fact that if a Markov chain has a ψ−irreducible kernel taking its values in a
separable space, any set with positive measure ψ admits a petite set (Neveu 1972). If we choose
b ≥ 1 + γ2/(4(1 + γ)), then, for any petite subset C of B(Z) we satisfy the drift condition

E [V (Zt+1)|zt] ≤ V (zt) − 1 + b�{zt∈C},

where V : Z → [0,∞) is the identity function which is everywhere finite and bounded in C. From
Theorem 11.3.4 in MT, it is enough to prove the Harris recurrence of process Zt.

b) Invariance of the Be(α, β) distribution. Let Zt ∼ Be(α, β) and suppose that innovations
satisfy (6), then we prove that Zt+1 given by (5) follows the same Be(α, β) distribution. We
prove this by showing that all the moments of the two sides of (5) coincide. Indeed, a bounded
distribution is uniquely determined by its moments (Shobat and Tamarkin 1943, p.11). The nth
moment of a Be(α, β) is

E(Zn
t ) =

Γ(α + β)Γ(α+ n)

Γ(α + β + n)Γ(α)
.

In addition
E{Zn

t (1 − Zt)
n} =

Γ(α + β)Γ(β + n)Γ(α + n)

Γ(α + β + 2n)Γ(α)Γ(β)
.

From (6),

E{(1 − φ+ r)nεnt } = 4n
Γ(α+ β)Γ

(
β+α+1

2
+ n

)
Γ(α+ β + n)Γ

(
β+α+1

2

) Γ(β)Γ
(

β+α
2

+ n
)

Γ(β + n)Γ
(

β+α
2

) .
The duplication formula for the gamma function gives Γ(2z) = 22z−1Γ(z)Γ(z + 1/2)/Γ(1/2). Thus

E{(1 − φ+ r)nεnt } =
Γ(β + α + 2n)

Γ(α+ β + n)

Γ(β)

Γ(β + n)
,

and E{(1 − φ + r)nεnt } × E{Zn
t (1 − Zt)

n} gives the moments of a beta random variable. Finally,
there are conditions on (γ, σ) such that parameters of the considered Beta distributions are all
strictly positive. Moreover, we must have β > α > 0 and α + β > 1. It leads to the sufficient
conditions

0 < γ ≤ 1 and β > γ−1.

From (8), we obtain σ2 < 1 − 1 + γ + 2γ3

(1 + γ)3
.

Proof of Proposition 2.1. Let Ψ be the digamma function (Ψ(x) = d log Γ(x)/dx). Assume
Z ∼ Be(λ, ν). We have

E[logZ] = Ψ(λ) − Ψ(λ+ ν). (A.4)
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To prove this statement, denote G(λ, θ) the gamma distribution with mean λθ and variance λθ2.
Then one can write logZ = logX − log(X + Y ) where (X, Y ) are independent and X ∼ G(λ, θ)
and Y ∼ G(ν, θ) with 0 < θ < ∞. Then X + Y ∼ G(λ + ν, θ). Since E[logX] = Ψ(λ) − log θ (see
for instance Penny 2001), we obtain (A.4). Then, from (6),

E[log εt] = log
4

1 + γ
+ Ψ

(
α + β + 1

2

)
− Ψ (α + β) + Ψ

(
α + β

2

)
− Ψ(β).

The duplication formula for the gamma function yields the following formula for the digamma
function,

Ψ(2x) =
1

2
(Ψ(x) + Ψ(x+ 1/2)) + log 2.

Then, replacing x by (α + β)/2, we obtain

E[log εt] = − log(1 + γ) + Ψ (α + β) − Ψ(β)

then
V = (1 + γ) exp {Ψ (β) − Ψ (α + β)} − 1.

Because Ψ(x) is a strictly increasing function on IR+, Ψ (β) − Ψ (α + β) < 0 for strictly positive
(α, β). Then

V < γ

and (9) is automatically verified when (α, β) are well defined, assuming (7).
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B Tables and figures

Deterministic case Stochastic case

MSY (kt) 12.9 (3.2) 9.326 (3.6)

BMSY (kt) 64.5 (19.9) 53.85 (22.5)

Market price ($/kg) 2.5262 (0.07) 2.6048 (0.08)

Expected revenue (106$) 32.58 (0.22) 24.29 (0.28)
Table B.1
Bioeconomic landmarks and expected revenue per year after 1993. Standard deviations are given in paren-
theses.

r 0.330

K 240.2 (kt)

σν 0.0632

Deterministic MSY 19.50 (kt) (14.0,24.2)

Stochastic MSY 19.18 (kt) (13.8,23.9)

Deterministic BMSY 120.1 (kt) (65.8,186.1)

Stochastic BMSY 118.6 (kt) (61.2,178.4)
Table B.2
Posterior means and 95% credibility intervals (2.5th and 97.5th percentiles, between parentheses) of
the stochastic Schaefer parameters from Millar and Meyer (2000). Estimations are corrected to get an
innovation variance of 1.
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gamma = r − phi
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Figure B.1. Plots of the upper limit (7) for σ as
a function of γ = r − φ.
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Figure B.2. Plots of the upper limit (7) for σ as
a function of r, assuming φ = φopt (Eq. 10).
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Figure B.3. Plots of the ratio MSY (σ)/MSY (0)
as a function of σ, for some representative values
of r and σ ∈ (0, σM ) ,see (7). MSY (0) is the de-
terministic yield rK/4. Quantities are calculated
using a higher order approximation than (11).
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Figure B.4. Plots of the ratio
BMSY (σ)/BMSY (0) as a function of σ, for
some representative values of r and σ ∈ (0, σM )
,see (7). BMSY (0) corresponds to the determin-
istic maximally exploited biomass K/2. Plots
are drawn using a higher order approximation
than (12).
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r = 0.1

relative fishing rate phi/r
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Figure B.5. Plots of the ratio of mean catches over the deterministic maximum sustainable yield
φE[Bt]/MSY (0) as a function of the relative fishing effort φ/r, for r = 0.1 and some values of σ. There
are no catches for large ratio φ/r and values of σ larger than (7). A non-optimized φ can induce a severe
shortfall especially when σ is large.
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Figure B.6. Plots of the ratio φopt(σ)/φopt(0) as a
function of σ, for some representative values of r.
φopt(0) is the deterministic fraction r/2. Two def-
initions of the stochastic φopt are used: the stan-
dard φopt (10) which corresponds to the fishing
rate of the MSY, and the φopt calculated under
the constraint P (Bt < 0.2K|φ = φopt) = 0.05.
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Figure B.7. Plots of the ratios
MSY (σ)/MSY (0) and MY C(σ)/MSY (0)
as functions of σ, for some representative values
of r. MSY (0) is the deterministic yield rK/4.
The stochastic MSY (σ) refers to (11). MY C(σ)
is defined as the maximal yield under the
constraint P (Bt < 0.2K|φ = φopt) = 0.05.
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Figure B.8. Plots of the mean of the Mann-Whit-
ney p-values averaged on 2,000 time steps as a
function of σ and r.
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Figure B.9. Plots of the standard deviation of the
Mann-Whitney p-values averaged on 2,000 time
steps as a function of σ and r.
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