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Summary

In this paper we propose inference methods based on the EM algorithm for esti-

mating the parameters of a weakly parameterised competing risks model with masked

causes of failure and second-stage data. With a carefully chosen definition of complete

data, the maximum likelihood estimation of the cause-specific hazard functions and of

the masking probabilities is performed via an EM algorithm. Both the E- and M-steps

can be solved in closed form under the full model and under some restricted models

of interest. We illustrate the flexibility of the method by showing how grouped data

and tests of common hypotheses in the literature on missing cause of death can be

handled. The method is applied to a real dataset and the asymptotic and robustness

properties of the estimators are investigated through simulation.

Some key words: Grouped data; Likelihood ratio test; Missing data; Piecewise constant

hazard; Proportional hazards; Robustness; SEM algorithm; Symmetry assumption; Time-

varying masking probability.

1



1. Introduction

In many applications of survival analysis with competing causes of failure, the true

cause of failure is not identified at the time of the initial data collection. However, it

may be possible to restrict the diagnosis to a subset of all causes. In this case we say

that the actual failure cause is masked by the restricted group (Flehinger et al., 1998).

In practice one may be able to conduct a second-stage analysis, such as autopsy, in

which the true cause can be uniquely determined. The second-stage analysis tends to

be costly, so usually only a subset of the masked items are further analysed.

Some authors have derived semi- and nonparametric inference procedures in the

case with two failure causes and no second-stage analysis, which often occurs in car-

cinogenicity bioassays: Dinse (1986) proposed nonparametric maximum likelihood es-

timators of prevalence and mortality; Goetghebeur & Ryan (1990) derived a modified

log-rank test for comparing the survival of populations, which they later extended to

proportional hazards regression (Goetghebeur & Ryan, 1995); Racine-Poon & Hoel

(1984) considered inference for this model when a probability of death from each miss-

ing cause is provided by a pathologist; and Kodell & Chen (1987) tackled the problem

via the EM algorithm. In the case of a general number of failure causes and avail-

ability of second-stage analysis data, Flehinger et al. (1998, 2002) propose maximum

likelihood estimation under a model with nonparametric proportional cause-specific

hazards (Flehinger et al., 1998) and a model with completely parametric cause-specific

hazards (Flehinger et al., 2002).

When one purpose of the analysis is the estimation of cumulative incidence func-

tions or inference about the competing risk model, proportionality between the cause-

specific hazard functions or their complete parametric specification are strong con-

straints on the model, and methods for testing these assumptions could be useful. In

this paper, we propose an approach based on the EM algorithm which allows simple
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inference, even under very general models. The method can be used to conduct ro-

bust likelihood ratio tests, in particular of the proportional hazards assumption, the

so-called symmetry assumption which is described in § 4, and some assumptions made

in Dinse (1986) and Goetghebeur & Ryan (1995). Furthermore, the framework devel-

oped here easily accommodates an extension in which the masking probabilities vary

with time, and makes inference with grouped data feasible with only minor modifi-

cations. Finally, the estimators of piecewise constant cause-specific hazard functions

along with their variance estimates can be used for the goodness-of-fit assessment of a

fully parametric model or for exploratory data analysis.

We describe the data and formulate the likelihood of the observed data in terms

of the expected value of a complete-data likelihood in § 2, and we describe our EM

algorithm and discuss its convergence properties in § 3. Inference procedures are

addressed in § 4. Section 5 presents a simulation study and an analysis of hard-drive

reliability data complementary to that of Flehinger et al. (2002). Concluding remarks

and ideas for further research are given in § 6.

2. Complete and observed-data likelihoods

2·1. Data and notation

Suppose that we observe n independent items and that each item can fail as a result

of exactly one of J possible causes. The data collection is performed in two stages. In

the first stage, for each item i, i = 1, . . . , n, we observe one of three possible outcomes: i

fails because of cause ji at time ti; i fails because of a cause that is not known precisely,

but is known to belong to a group of failure causes gi ⊂ {1, . . . , J}; or i had still not

failed by time ti. For some of the items whose cause of failure was not determined

uniquely at the first stage, a second-stage analysis is done and a unique cause of

failure is determined. Therefore, some of the uncensored items will have a masking
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group instead of a failure cause, and all the items have a failure time or a censoring

time. We define the complete data as the dataset that would be obtained if every item

with a masked failure time were sent to a second-stage analysis. The observation for

item i in this complete dataset would be (ti, γig1 , . . . , γigG+J
, δi1, . . . , δiJ), where γig is

the indicator that item i’s failure cause was masked to group g at the first stage; if

the failure cause is known to be j at the first stage, then we say that it is masked to

g = {j}. Also, δij is the indicator that item i’s actual failure cause is j; if an item is

right-censored, then all the indicators δij, j = 1, . . . , J , are 0. In addition, G + J is

the total number of masking groups in the dataset, including the J groups consisting

of the individual failure causes. The masking groups containing more than one cause

will be called proper and in the remainder of this paper we will assume that g1, . . . , gG

are proper.

2·2. General model

Our statistical model is made up of two parts, a competing risk part for the failure

times and failure causes and a masking part for the masking group indicators. The

competing risk part is the usual competing risk model found in the survival analysis

literature (Lawless, 2003, Ch. 9). Let T ∗ denote the failure time and J∗ denote the

failure cause. Define the counting processes Nij(t) = I(T ∗
i ≤ t, J∗ = j, i uncensored),

i = 1, . . . , n, j = 1, . . . , J , t ∈ [0, τ ], and the at-risk indicators Yi(t) = I(i at risk at t),

i = 1, . . . , n, t ∈ [0, τ ]. Put Ȳ (t) =
∑

i Yi(t) and N̄·j(t) =
∑

i Nij(t). The cause-specific

hazard functions are defined as

λj(t) = lim
h↓0

pr(t < T ∗ ≤ t + h, J∗ = j|T ∗ ≥ t)

h
, j = 1, . . . , J. (1)

From equation (1) we obtain that S(t) = pr(T ∗ > t) = exp
{
− ∫ t

0

∑J
j=1 λj(u) du

}
.

The cumulative incidence functions are Fj(t) = pr(T ∗ ≤ t, J∗ = j) =
∫ t
0 λj(t)S(t) dt.

Regression can be handled by letting λj(t) depend on a vector of covariates. This
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may be done with a proportional hazards model, either parametrically (Lawless, 2003,

Ch. 9) or semiparametrically (Goetghebeur & Ryan, 1995; Lawless, 2003, Ch. 9).

Given a failure of cause j at time t, from the model assumptions it results that the

{γig : g ∈ {g1, . . . , gG+J}, g 3 j} have a multinomial distribution with total 1 and prob-

abilities given by the masking probabilities

Pg|j(t) = pr(cause masked to group g at stage 1| T ∗ = t, J∗ = j), j ∈ g. (2)

Of obvious interest to practitioners and of prime importance in our EM algorithm are

the diagnostic probabilities (Flehinger et al., 1998, 2002)

πj|g(t) = pr(actually failed of cause j|failed at time t and failure cause masked in g).

Using Bayes’ rule one obtains

πj|g(t) =
λj(t)Pg|j(t)∑
l∈g λl(t)Pg|l(t)

. (3)

Let θ be the parameter vector specifying λj(·) and Pgm|j(·), j = 1, . . . , J , m =

1, . . . , G + J . Denote by Gj = {g : j ∈ g} the set of all masking groups that include

cause j and let G∗j = Gj/{j}. Using equations (1)-(2) we obtain the loglikelihood

function under the complete data as follows:

lC(θ) =
n∑

i=1

J∑

j=1

∫ τ

0

({
log λj(t)dNij(t)− Yi(t)λj(t) dt

}
(4)

+

[
(1− ∑

g∈G∗j
γig) log{1− ∑

g∈G∗j
Pg|j(t)}+

∑

g∈G∗j
γig log Pg|j(t)

]
dNij(t)

)
.

For right-censored observations, the term on the second line of equation (4) vanishes,

and hence the γig are not needed for right-censored observations.

Under masking some δij or, equivalently, dNij(ti), will be missing. Let M denote

the set of items that have a masked failure cause in stage 1 and for which there is

no stage-2 analysis. For any i ∈ M, the γig will be known so let gi be the masking
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group for item i, i.e. γigi
= 1. Since we assume a single cause of failure, the vector

{δij: j ∈ gi} follows a multinomial distribution with total 1 and probabilities given by

πj|g(ti), j ∈ gi. Hence, the loglikelihood of the missing data given the observed data can

be written as lM(θ) =
∑

i∈M
∑

j∈gi
δij log πj|gi

(ti). Using the well-known identity on

which the EM algorithm is based (Dempster et al., 1977; Wu, 1983) and denoting the

expectation conditional on the observed data by E(·|OBS), we can write the observed

loglikelihood as

lOBS(θ) = Q(θ|θ′)−H(θ|θ′)= Eθ′(lC(θ)|OBS)− Eθ′(lM(θ)|OBS) =

=
n∑

i=1

J∑

j=1

∫ τ

0

([
log λj(t)Eθ′{dNij(t)|OBS} − Yi(t)λj(t) dt

]
+

+

[
(1− ∑

g∈G∗j
γig) log{1− ∑

g∈G∗j
Pg|j(t)}+

∑

g∈G∗j
γig log Pg|j(t)

]
×

× Eθ′{dNij(t)|OBS}
)
− ∑

i∈M
∑

j∈gi

Eθ′(δij|OBS) log πj|gi
(ti), (5)

where Eθ′{dNij(t)|OBS} = 0, t 6= ti, and Eθ′{dNij(ti)|OBS} = Eθ(δij|OBS), with

Eθ(δij|OBS) =





1, if cause of failure of i known to be j.

0, if cause of failure of i known not to be j.

πj|gi
(ti), if cause of i masked in gi and no stage-2 data for i.

The model with loglikelihood (5) does not consider the selection process of the masked

items sent to a second-stage analysis, so inferences based on it are only correct if data

are missing at random (Rubin, 1987); the data are missing at random when pr(item i

is masked|OBS) does not depend on the missing δij. This is a weak assumption as it

allows the selection of items to be sent to stage 2 to be based on the observed times

to failure and/or masking groups.

If all the masked items were sent to the second stage, then equation (4) would
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imply that lC(θ) can be split into lC(θ) = lI(λ) + lII(p), where

lI(λ) =
n∑

i=1

J∑

j=1

∫ τ

0

{
log λj(t) dNij(t)− Yi(t)λj(t) dt

}
,

lII(p) =
n∑

i=1

J∑

j=1

{
(1− ∑

g∈G∗j
γig) log{1− ∑

g∈G∗j
Pg|j(t)}+

∑

g∈G∗j
γig log Pg|j(t)

}
dNij(t), (6)

λ represents the parameters of the competing risk part of the model and p represents

the parameters of the masking part. With complete data the maximum likelihood

estimates of λ and p are obtained independently. However, under masking the partition

in (6) cannot be performed because the Eθ(δij|OBS) are functions of both λ and p for

any item i that has a masked failure cause. Simulations in § 5 suggest that inferences

about the masking probabilities, Pg|j(t), retain the robustness to the misspecification

of the hazards even in the presence of missing data.

2·3. Specific models

Our preferred specification of the cause-specific hazard functions is the piecewise

constant model, i.e.

λj(t) =
K∑

k=1

λjk1k(t), (7)

where 0 = a0 < a1 < · · · < aK = τ , and 1k(t) is the indicator that t ∈ (ak−1, ak]. While

we have assumed, for ease of notation, that the cut-points a0, . . . , aK are the same for

all failure causes, this is not necessary in order to carry out all the computations in

closed form. Advantages of the piecewise constant specification include closed form

expressions for the maximum likelihood estimators under complete data in both the

unrestricted and proportional cause-specific hazards case, convergence of the EM al-

gorithm under mild assumptions, and flexibility in the shape of the hazard functions.

In this case the complete-data likelihood function is maximised by

λ̂jk =

∑n
i=1 δij 1k(ti)

ek

, (8)
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where ek =
∑n

i=1

∫ ti
0 1k(u) du denotes the total time lived by all items, i.e. the exposure,

in the interval (ak−1, ak]; see Lawless (2003, Ch. 9) for the derivation of (8) and of the

maximum likelihood estimators of the survivor and cumulative incidence functions.

Other specifications of λj(t) that also work in the context of masked failure causes

include the semiparametric proportional hazards model with λj(t) = rjλ(t), with

λ(t) arbitrary and
∑

j rj = 1. Let Λ(t) =
∫ t
0 λ(u) du. In this case parameter esti-

mators are r̂j =
∑

i δij/
∑

i

∑
j δij and Λ̂(t) =

∑
j

∫ t
0 dN̄·j(u)/Ȳ (u). A more general

model that includes both the piecewise constant and proportional hazards model is

the piecewise proportional model with λj(t) =
∑

k rjkλ(t)1k(t), with
∑

j rjk = 1.

Then the estimator of Λ(t) is the same as in the proportional hazards model and

r̂jk =
∑

i δij1k(ti)/
∑

i

∑
j{δij1k(ti)}. Note that in semiparametric cases the diagnostic

probability estimator is

π̂j|gi
(ti) =

dΛ̂j(ti)P̂gi|j(ti)∑
l∈gi

dΛ̂l(ti)P̂gi|l(ti)
.

Some authors, such as Flehinger et al. (2002) have also used a specification from a

parametric family, such as the Weibull family λj(t) = αj(t/βj)
αj−1/βj.

For the masking probabilities, Pg|j(t), previous work in the literature has extensively

considered the time-fixed model Pg|j(t) ≡ Pg|j. In this case the maximum likelihood

estimator of Pg|j under complete data is given by

P̂g|j =

∑n
i=1 δij γig∑n

i=1 δij

. (9)

We focus on this latter specification, though the framework of this paper allows for

time-varying masking probabilities. For instance we can consider a piecewise constant

model of the form Pg|j(t) =
∑

k Pg|j(k)1k(t), with maximum likelihood estimator

P̂g|j(k) =

∑
i γigδij1k(ti)∑

i δij1k(ti)
, (10)

which is just an interval-based version of (9). A drawback of the model with time-

varying masking probabilities is the large number of parameters involved, which makes
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it less appealing for applications with a small number of observations and/or a large

number of failure causes and masking groups. In § 5, we use (10) to test for the

hypothesis of time fixed masking probabilities in an analysis of hard drive failures.

2·4. Grouped data

The model with piecewise constant cause-specific hazards can handle grouped data

with little modification. Suppose that we are given the same observations regarding the

failure causes and the masking groups, but that we are no longer given exact failure

times, but rather the number of items that failed or were censored in each interval

(ak−1, ak], k = 1, . . . , K. Let djk represent the number of failures of cause j in the

interval (ak−1, ak] and let lk be the number of observations censored between ak−1 and

ak. Dykstra et al. (1995) give the loglikelihood for the competing risk part of the

model with grouped data and, upon substitution in (4), we obtain

l
Grouped
C (θ) =

K∑

k=1



(nk − d·k) log


1−

J∑

j=1

λjk


 +

J∑

j=1

djk log λjk



 +

+
n∑

i=1

n∑

j=1

δij





(1− ∑

g∈G∗j
γig) log(1− ∑

g∈G∗j
Pg|j) +

∑

g∈G∗j
γig log Pg|j





, (11)

where nk =
∑K

m=k(lm +
∑J

j=1 djm) is the number of items still at risk, i.e. alive and

uncensored, just before time ak and d·k =
∑J

j=1 djk. The missing data under masking

will be the djk =
∑n

i=1 δij1k(ti). Hence E(djk|OBS) =
∑n

i=1 E(δij|OBS)1k(ti), with

E(δij|OBS) still given by (6). The observed-data likelihood is obtained by replacing

Q(θ|θ′) based on lC(θ) in (5) by that based on l
Grouped
C (θ) given by (11).

3. EM algorithm

3·1. The algorithm

The simplicity of the complete-data loglikelihood (4) and the fact that it is lin-

ear in the missing data make the EM algorithm a fitting tool for this problem. The
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observed-data loglikelihood (5) is maximised, once a starting point is chosen, by iter-

ating between the following two steps.

E-step. Compute Eˆθ
(l−1)(δij|OBS) using (3) and (6).

M-step. Maximise Eθ′(lC(θ)|OBS) with respect to θ. For instance, in the piecewise

constant model with time fixed probabilities, this amounts to setting

λ̂
(l)
jk =

∑n
i=1 Eˆθ

(l−1)(δij|OBS) 1k(ti)

ek

and P̂
(l)
g|j =

∑n
i=1 Eˆθ

(l−1)(δij|OBS) γig

∑n
i=1 Eˆθ

(l−1)(δij|OBS)
.

(12)

In § 4 we show that the E-step and M-step can be solved in closed form even when the

parameters are restricted to some subspaces of interest.

In the case of grouped data, the E-step remains unchanged but in the M-step one

must use λ̂
(l)
jk =

∑n
i=1 Eˆθ

(l−1)(δij|OBS) 1k(ti)/nk. In the special case of grouped data

with a single interval and time-fixed masking probabilities, Flehinger et al. (1995)

obtain the maximum likelihood estimators of θ under observed data in closed form.

Indeed, it is easy to check that the EM algorithm of § 3·1 reaches a fixed point after

a single M-step when using π̂j|g = ng,j/n
+
g , where ng,j is the number of items whose

cause is masked in group g at stage 1 and found to be cause j at stage 2, and n+
g

denotes the number of items masked in g at stage 1 that went on to the second stage.

3·2. Convergence of the algorithm

We use the results of Wu (1983) to show that the algorithm of § 3·1 does con-

verge to a stationary point in the case with piecewise constant hazards and masking

probabilities.

Let Ω ⊂ Rd denote the parameter space of the model. The dimension d depends on

the number of intervals on which the hazards and masking probabilities are assumed

constant, the number of masking groups and the number of failure causes. For ease of
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notation, assume that the cut-points for the hazard and masking probability intervals

are the same. Suppose we choose these cut-points so that, for each interval k and each

failure cause j, there exists an i such that j ∈ gi and 1k(ti) = 1.

Lemma 1. With this choice of {ak, 0 ≤ k ≤ K}, for any θ0 such that lOBS(θ0) >

−∞, the set Ωθ0
= {θ ∈ Ω : lOBS(θ) ≥ lOBS(θ0)} is compact in Rd.

Proof. From (12), for any interval k and failure cause j and any masking group g

which includes j, 1/n ≤ Pg|j(k) ≤ (n − 1)/n and 1/ek ≤ λjk ≤ ∑n
i=1 1Ik

(ti)/ek. Since

the map lOBS(θ) is continuous, the set Ωθ0
= {θ ∈ Ω : lOBS(θ) ≥ lOBS(θ0)} is a

closed subset of a compact set, therefore it is also compact. ut
Lemma 1 implies that the conditions (5)–(7) in Wu (1983) are satisfied. Also, the

map Q(θ|θ′) is continuous in both θ and θ′ which implies (Wu, 1983, Theorem 2) that

the limit points of any instance θ(l) of the EM algorithm are stationary points of lOBS,

and lOBS(θ(l)) converges monotonically to lOBS(θ∗) for some stationary point θ∗.

Our simulations show that the algorithm converges quickly, in typically less than

20 steps, when the tolerance in estimate changes is 10−8 and even when the number of

items is in the thousands. There was no evidence of multimodality when starting the

algorithm at different initial values.

3·3. Absence of second-stage data

If no item is sent to a second-stage analysis, the algorithm proposed here still

works as long as the hazards are not proportional. In this case the convergence of

the EM algorithm is extremely slow, requiring thousands of iterations. This is not

surprising, given the direct connection between the amount of missing information

and the convergence rate of EM (Dempster et al., 1977; Meng & Rubin, 1991).

Under proportionality of the hazards and no second-stage data, the parameters of

the model under the observed data are unidentifiable (Flehinger et al., 1998). How-

ever, the EM algorithm still converges since the parameters are identifiable given the
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complete data. Dempster et al. (1977) state that, when the parameters are identifiable

only in the complete-data model, there is a ridge of local maxima in the observed-data

likelihood surface and the EM algorithm will converge to one of the points on the ridge,

depending on the starting point. The erratic behaviour of EM can be detected by using

multiple starting points. In such situations, we suggest using one of the alternative

approaches used in the literature to bypass the issue of over-parametrisation, such as

the symmetry assumption (Miyakawa, 1984; Dinse, 1986; Goetghebeur & Ryan, 1990,

1995; Lo, 1991).

4. Inference procedures

4·1. Likelihood ratio tests

Since we can easily calculate the values of the observed-data loglikelihood via (5),

tests based on the likelihood ratio statistic are readily obtained. Hypotheses of inter-

est that can be easily tested in this way include the time-fixed masking probabilities

assumption, Pg|j(t) = Pg|j, the symmetry assumption, Pg|j = Pg, the equal stage 1

identifiability assumption, P{1}|1 = · · · = P{J}|J , and the proportionality of cause-

specific hazards assumption, λj = φjλ1. We illustrate the method by deriving tests of

the hypotheses of symmetry and of proportional cause-specific hazards.

The symmetry assumption states that the conditional probabilities Pg|j are inde-

pendent of j. Formally, we have H0 : Pgi|j = Pi for all i ∈ {1, . . . , G}, and j ∈ gi. Note

that, when the number of possible failure causes is J = 2, this symmetry assumption

and assumption (ii) of Goetghebeur & Ryan (1990, 1995) are equivalent. Under H0,

complete data, and from (6), lII(p) is expressed as

lII, sym(p) =
n∑

i=1

J∑

j=1

δij





(1− ∑

g∈G∗j
γig) log(1− ∑

g∈G∗j
Pg) +

∑

g∈G∗j
γig log Pg





. (13)

The maximisation of (13) can be done in closed form if the proper masking groups

are nested, that is, when g1 ⊂ g2 ⊂ . . . ⊂ gG. The calculations for the general
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situation are shown in the Appendix and the solutions are found using first PG =

mPG
/(

∑G
l=1 mgl

+
∑J

j=1 nj) and then, recursively for each 1 ≤ k ≤ G− 1,

PG−k =
mPG−k

(1−∑k−1
h=0 PG−h)∑G−k

l=1 mgl
+

∑
j∈gG−k

nj

,

where mgk
represents the number of items whose failure causes are masked in the group

gk at stage 1, mgk
=

∑N
i=1

∑
j∈gk

δijγigk
, and nj =

∑N
i=1 δij(1 − ∑

{k:gk∈G∗j} γigk
) is the

number of items which have failed of cause j and the cause was not masked in stage

1. The nested-groups condition is satisfied in the important case of masking with only

one masking group (Racine-Poon & Hoel, 1984; Dinse, 1986; Goetghebeur & Ryan,

1990, 1995). In situations where the groups are not nested analytical solution to the

maximisation problem (13) is still possible, as can be seen in the simulation study

presented in § 5. If a closed-form solution cannot be found, a numerical maximisation

method, such as Newton-Raphson, can be implemented.

To perform the likelihood ratio test, we compute the likelihood ratio statistic

RSYM = 2{lOBS(θ̂) − lOBS(θ̂
SYM

)}, where θ̂
SYM

is the maximum likelihood es-

timate of the parameters under the symmetry assumption. If we denote by Gk the

number of causes in the masking group gk then standard first order large sample the-

ory gives an asymptotic distribution for RSYM that is chi-squared on
∑G

k=1 Gk − G

degrees of freedom, and this asymptotic distribution proves to be quite accurate in the

simulation study of § 5. We note that the asymptotic theory is applied conditional on

the fixed cut-points of the hazards intervals.

Another assumption of interest under masking is that of proportionality between

the cause-specific hazard functions. Under the piecewise constant model, this hypoth-

esis can be stated as H0 : λjk = φjλ1k, j = 2, . . . , J , k = 1, . . . , K, where φj > 0,

j = 2, . . . , J , are positive constants. Maximum likelihood estimation under complete

data and the constraint given by H0 can be performed analytically and the calculations

are outlined in the Appendix. This leads to a new M-step where the estimators of Pg|j
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are the same as in (12), but with

λ̂
(l)PH
1k =

E
ˆθ

(l−1)PH (
∑n

i=1 δi1|OBS)

N
×

E
ˆθ

(l−1)PH

(
n∑

i=1

J∑
j=1

δij1k(ti)

∣∣∣∣∣ OBS

)

ek

, k = 1, . . . , K,

(14)

φ̂
(l)
j =

E
ˆθ

(l−1)PH

(
n∑

i=1
δij

∣∣∣∣ OBS
)

E
ˆθ

(l−1)PH

(
n∑

i=1
δi1

∣∣∣∣ OBS
) , j = 2, . . . , J. (15)

The likelihood ratio statistic is RPH = 2{lOBS(θ̂)− lOBS(θ̂
PH

)}, where θ̂
PH

denotes

the maximum likelihood estimators of the parameters under the proportional hazards

assumption. The limit distribution of RPH is chi-squared on (J − 1)(K − 1) degrees

of freedom. We confirm the accuracy of this approximation and the robustness to

misspecification of the competing risk model through simulation in § 5.

4·2. Asymptotic variance estimators

Different methods for calculating the asymptotic variance-covariance matrix for EM

estimates have been devised by, among others, Louis (1982), Meng & Rubin (1991),

Oakes (1999) and Meng (2001). Since our EM algorithm can generally be performed

with both the E-step and the M-step in closed form, we prefer to use the supplemented

EM (SEM) algorithm (Meng & Rubin, 1991) because it uses only the code for EM itself

and simple code for standard matrix operations. Any iteration of an EM algorithm

defines a mapping θ(l+1) = M(θ(l)). Meng & Rubin (1991) showed that, with

(DM)ij ≡
(

∂Mj(θ)

∂θi

)∣∣∣∣∣
θ=

ˆθMLE

,

then Iom = DM Ioc, where Iom and Ioc are the missing and complete information

matrices, respectively. In most applications, the Jacobian of the map M cannot be

obtained analytically; however, following Meng & Rubin (1991), we determine the

elements of DM by running a series of restricted EM algorithms. The procedure

14



is attractive as each of these ‘forced’ EM algorithms is identical in form to the one

designed for the original problem but uses different initial values for θ(0). The desired

variance matrix V = var(θ̂) is given by V = I−1
oc + I−1

ocDM(I − DM)−1, where I is

the identity matrix. In our analyses the SEM algorithm shows stability. The stopping

rule of each of the constrained EM algorithms which make up for the SEM procedure

uses, as recommended by Meng & Rubin (1991), the square root of the tolerance used

in the original EM algorithm.

Once an asymptotic variance matrix is obtained, Wald-type confidence intervals can

be constructed. For example, for the piecewise constant hazards, we assume asymp-

totic normality of log λ̂jk and use λ̂jk exp(±1.96σ̂jk/λ̂jk), where σ̂2
jk is the SEM variance

estimate of λ̂jk. Asymptotic variances for the cumulative incidence or survivor func-

tions are obtained via the delta rule. For instance, for cumulative incidence functions,

we use equation (9.2.11) of Lawless (2003), with diag(v̂) replaced by V above.

5. Applications

5·1. Simulation study

Simulation results are obtained with data generated under four different models

with piecewise constant hazards, M1, . . . , M4, and four models with Weibull distributed

hazard rates, W1, . . . , W4. Each model is used to simulate 100 datasets, each containing

1000 items with observed failure times. The models Mi and Wi have the following

common features: a 30% probability that a masked item is sent to stage two, three

failure causes and three proper masking groups g1 = {1, 2}, g2 = {1, 3} and g3 =

{1, 2, 3}). The models Mi share the same hazard intervals, namely [a0, a1] = [0, 5],

(a1, a2] = (5, 10], and (a2, a3) = (10,∞). We use different masking probabilities {Pgk|j :

1 ≤ k ≤ 3, 1 ≤ j ≤ 3} and different values for the hazard rates {λjk : 1 ≤ j ≤ 3 , 1 ≤
k ≤ 3}. In fact, we choose these parameters so that we can inspect the properties of
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the likelihood ratio tests proposed in § 4. Define the matrices P = (Pij = Pgi|j)1≤i,j≤3

and Q = (Qij = Pgi|j)1≤i,j≤3 by

P =

1 2 3

{1,2}
{1,3}
{1,2,3}




0·2 0·4 0

0·2 0 0·3
0·2 0·4 0·4




Q =




0·3 0·3 0

0·2 0 0·2
0·2 0·2 0·2




.

Models M1 and M4 use the masking model given by P while models M2 and M3

use that given by Q and satisfy symmetry. The cause-specific hazard rates λj, j =

1, 2, 3, are piecewise constant and are defined by the vectors λ̃1 = (0·003, 0·02, 0·012),

λ̃2 = (0·006, 0·04, 0·024) and λ̃3 = (0·015, 0·01, 0·006) for models M1 and M2, and for

models M3 and M4 we take λ̃1 = (0·003, 0·02, 0·012), λ̃2 = (0·0045, 0·01, 0·03) and

λ̃3 = (0·001, 0·04, 0·01). For each i = 1, . . . , 4, models Wi and Mi have the same

masking probabilities. For models W1 and W2, for which the proportional hazards

assumption holds, λ1 ∼ Wei(3, 12), λ2 ∼ Wei(3, 10) and λ3 ∼ Wei(3, 10), where

λ ∼ Wei(a, b) has density f(t) = (a/b)(t/b)a−1 exp{−(t/b)a}. For models W3 and W4

we use λ1 ∼ Wei(0·9, 12), λ2 ∼ Wei(1·5, 10) and λ3 ∼ Wei(2, 10).

For inference we use four models with piecewise constant hazards. In each case

the lower bound of the first interval is zero and the upper bound of the last interval

is ∞. For data generated using models Mi, i = 1, 2, 3, 4, we consider two possible

choices for the remaining cut-points. Both choices correspond to misspecified hazard

rates. In model PCF1 we use two intervals with the separating cut-point equal to the

sample median of the failure times, while model PCF2 has four intervals with the cut-

points equal to, respectively, the 25th, 50th and 75th percentiles of the failure times.

Similarly, for data generated using models W1 to W4 we also consider intervals based

on sample quantiles. Model WEIF1 is with three intervals constructed with the 33rd

and 67th percentiles of the failure times, and model WEIF2 has four intervals defined
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by the 25th, 50th and 75th percentiles of the failure times.

Note that we do not use nested masking groups. Hence we cannot use the equations

derived in § 4·1 to test for symmetry. However, for the three masking groups g1 =

{1, 2, 3}, g2 = {1, 2} and g3 = {1, 3}, and with the notation of § 4·1, we have that under

the symmetry assumption the M-step results in P1 = mg123/(n1+n2+n3+mg12+mg13 +

mg123), P3 = B − (B2 − 4AC)1/2/(2A) and

P2 =
mg12

mg123/P1 − n3/(1− P1 − P3)
,

where A = n3+mg13+n1, B = n2
1+n1n3+3n1mg13+mg12n1+n2n1+mg12mg13+2n2mg13+

2m2
g13

+ 2n3mg13 + n2n3, and C = 2m2
g13

n2 + m3
g13

+ mg13n
2
2 + mg13n

2
1 + mg13n1mg12 +

mg13n2mg12 + mg13n3n1 + 2m2
g13

n1 + mg13n2n3 + n3m
2
g13

+ m2
g13

mg12 + 2mg13n2n1.

If we denote the hypothesis of symmetry by ASYM and the proportional hazard

hypothesis by APH, then the accuracy of the likelihood ratio test of ASYM and APH

for each model is summarised in Table 1. The numbers inside each cell represent the

observed number of rejections, at the 0·05 level, out of 100 replicates. The results

suggest that the tests are robust to the choice of the competing risk part of the model.

Plots, not shown, of the empirical cumulative distribution function constructed using

the 100 observed-data likelihood ratio statistics together with the cumulative distri-

bution function of the chi-squared distribution with the number of degrees of freedom

given in § 4·1, indicate that the chi-square distribution is a good approximation.

To verify the impact of the missing data on the precision of our estimates we per-

formed comparisons for each parameter under the eight different models Mi,Wi, i =

1, . . . , 4. The estimates of the masking probabilities are calculated for each of these

models 100 times. We restrict the presentation of findings to one of the parameters, as

the results are representative of all. Table 2 contains the results concerning P{1,2,3}|1.

The Monte Carlo average column presents the average estimate along with the esti-

mator’s standard error, SESEM, calculated using the SEM algorithm. The standard
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error of the SESEM estimates, which was computed using 100 replicates of the exper-

iment, is uniformly less than 0·002. For comparison, in the fourth column, the true

value of the parameter and the Monte Carlo estimate of the standard error, SEMC,

are also shown. The latter is obtained by calculating the sample standard error for

the estimates obtained from 1000 replicates of the data and can be considered a good

approximation of the true standard error of the estimator. Table 2 shows that even

if the hazard functions are misspecified the estimates of the masking probabilities are

still close to the true values. Figure 1 illustrates, for each Weibull model considered

and for both sets of cut-points, the true curve of π1|{1,2,3}(t) along with the Monte

Carlo average, the 5th, and the 95th percentiles. Again, a sample of 100 estimates has

been obtained by generating 100 datasets from the same underlying population. It is

seen that the true curve is always between the 5% and 95% Monte Carlo quantiles

except for a short interval close to the origin where the hazard rate decreases sharply,

a feature that our models cannot capture. For models W1 and W2 the proportional

hazards assumption is true so the value of π1|{1,2,3} is constant in time. It appears that

increasing the number of interval cut-points decreases the bias of the estimates. We

incur the classical trade-off for this reduction in bias, namely a higher variance.

5·2. Example: Hard-drive reliability

Flehinger et al. (2002) use a model with Weibull cause-specific hazards to model

the reliability of 10,000 hard-drives subject to three possible causes of failure. All the

hard-drives were put under test at time 0, and, during the observation period of 4

years, 172 of them failed. Many of the drives had a failure cause that was masked

to either {1, 3} or {1, 2, 3}. We use the techniques developed in this paper with the

piecewise constant hazards specification as a model assessment procedure. Table 3 gives

the cause-specific hazard estimates obtained thereby. The estimates of the masking

probabilities we obtain are identical to the third decimal place to those of Flehinger
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et al. (2002). Figure 2(a) shows that the Weibull parametric model and the piecewise

constant model are in good agreement for all three failure causes. The confidence limits

were calculated with the method of § 4·2. One may argue that the piecewise constant

model seems to be pointing toward bathtub shaped hazard function for cause 1, but

we would need more data to confirm this statement. Figure 2(b) shows the estimates

of the cause-specific survivor functions Sj(t) = exp{− ∫ t
0 λj(u) du}, in close agreement

with Fig. 1 of Flehinger et al. (2002).

Our methods allow us to test some of the assumptions made by Flehinger et al.

(2002). Using the likelihood ratio tests of § 4·1 we obtain likelihood ratio statistics

of 5·83 on 5 degrees of freedom and 12·5 on 10 degrees of freedom for the tests of

time-fixed masking probabilities against piecewise constant masking probabilities over

the intervals [0, 2) and [2, 4), and [0, 2), [2, 3) and [3, 4), respectively. These observa-

tions correspond to respective p-values of 0·32 and 0·25 and hence neither test rejects

the time-fixed masking probability assumption at the 0·05 level. We also obtained

likelihood ratio statistics of 30·53 on 4 degrees of freedom, p = 0·000004, and of 7·34

on 2 degrees of freedom, p = 0·0254, for the proportional hazards and symmetry as-

sumptions, respectively. Flehinger et al. (2002) also rejected the proportional hazards

assumption with their Weibull model, with a statistic of 32·2 on 2 degrees of freedom.

6. Conclusions and future work

The techniques described in this paper can be used on their own or as a complement

to the methods of Goetghebeur & Ryan (1990, 1995) or Flehinger et al. (1998, 2002)

to assess their goodness-of-fit or to guide with model selection. Our method is flexible

enough to handle cases with only one-stage data or grouped data, and to allow the

masking probabilities to depend on time. Moreover, simulations suggest that likelihood

based inference is robust to misspecification of the competing risk part of the model.
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Problems such as how to optimally select the items to be sent to a stage 2 analysis,

or how to analyse data when first-stage diagnosis may actually be wrong, have received

little attention in the literature and could represent interesting applications and/or

generalizations of the results presented in this paper.
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Appendix

Details of the M-steps

In the M-step with symmetry constraint assume that the proper masking groups

are nested, that is, g1 ⊂ g2 ⊂ . . . ⊂ gM = {1, 2, . . . , J}. For each k ∈ {2, . . . , M},
define Ak = gk\gk−1. We use the notation from § 4·1. The M-step requires the solution

to the following system of equations:

mPk

Pk

=
∑

j∈gk

nj

1−∑
{h:gh∈G∗j } Ph

, (A1)

for all k = 1, . . . , M and all j ∈ gk.

We first show by mathematical induction that the solution to (A1) also satisfies

∑

j∈gk

nj

1−∑
{h:gh∈G∗j } Ph

=

∑k−1
l=1 mgl

+
∑

j∈gk
nj

1−∑M
h=k Ph

, (A2)
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for any 2 ≤ k ≤ M . For k = 2, (A2) results from (A1) because, as a result of the

nesting,

mg1

P1

=
∑

j∈g1

nj

1−∑M
h=1 Ph

⇒ ∑

j∈g1

nj

1−∑M
h=1 Ph

=

∑
j∈g1

nj + mg1

1−∑M
h=2 Ph

,

and then

mg2

P2

=
∑

j∈g2

nj

1−∑M
h=1 Ph

=

∑
j∈g1

nj

1−∑M
h=1 Ph

+

∑
j∈A2

nj

1−∑M
h=2 Ph

=
mg1 +

∑
j∈g1

nj

1−∑M
h=2 Ph

.

Assume that (A2) is true for all 2 ≤ h ≤ k with k < M ; then (A1) for k + 1 gives

mk+1

Pk+1

=
∑

j∈gk+1

nj

1−∑
{h:gh∈G∗j } Ph

=
∑

j∈gk

nj

1−∑
{h:gh∈G∗j } Ph

+
∑

j∈Ak+1

nj

1−∑
{h:gh∈G∗j } Ph

⇒

mk+1

Pk+1

=

∑k
l=1 mgl

+
∑

j∈gk
nj +

∑
j∈Ak+1

nj

1−∑M
h=k+1 Ph

.

This proves (A2) for all 1 ≤ k ≤ M . A solution to the system (A1) is obtained

iteratively by first replacing k = M in (A1) and using (A2) to obtain

PM =
mPM∑M

l=1 mgl
+

∑J
j=1 nj

,

and then, using simple manipulations of (A1) and (A2), to obtain that, for each 1 ≤
k ≤ M − 1,

PM−k =
mPM−k

(1−∑k−1
h=0 PM−h)∑M−k

l=1 mgl
+

∑
j∈gM−k

nj

.

In the M-step with proportional hazards constraint the maximisation step is changed

only for the hazard rates λjk. Substituting λjk = φjλ1k in lC(θ) given by (4), we obtain

the following set of score equations:

n∑

i=1

J∑

j=1

δij1k(ti)

λ1k

= ek

J∑

j=1

φj, for all k ∈ {1, . . . , K},

where ek =
∑n

i=1

∫ ti
0 1k(u)du = 0, and

n∑

i=1

δij/φj =
K∑

h=1

λ1heh, for all j ∈ {1, . . . , J}. (A3)
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If uk =
∑n

i=1

∑J
j=1 δij1k(ti), vj =

∑n
i=1 δij and xh = λ1heh, for all h ∈ {1, . . . , K}, then

∑J
j=1 vj =

∑K
k=1 uk = N and

xk

uk

=
1

1 +
∑J

j=2 φj

, for all k ∈ {1, . . . , K} ⇒
∑K

k=1 xk∑K
k=1 uk

=
1

1 +
∑J

j=2 φj

. (A4)

Equations (A3) and (A4) yield

vj

N
=

φj

1 +
∑J

j=1 φj

, for all j ∈ {2, . . . , J} ⇒ N − v1

N
=

∑J
j=1 φj

1 +
∑J

j=1 φj

⇒ 1−v1

N
= 1−x1

u1

.

Therefore,

λ̂1k =
v1uk

ek

=

∑N
i=1 δi1

N

∑n
i=1

∑J
j=1 δij1k(ti)

ek

, for all k ∈ {1, . . . , K},

φ̂j =
vj∑K

k=1 xk

=

∑N
i=1 δij∑N
i=1 δi1

, for all j ∈ {1, . . . , J}.
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Table 1: Number of rejections, out of 100 samples, of ASYM and APH at the 5%

level for data generated under models Mi,Wi, with cut-points defined through PCF1 or

PCF2, i = 1, . . . , 4, using the likelihood ratio tests of § 4·1.

Model APH ASYM Model APH ASYM

M1\W1 True False M3\W3 False True

PCF1 6\2 100\100 PCF1 100\100 3\8
PCF2 7\7 100\100 PCF2 100\100 2\8
M2\W2 True True M4\W4 False False

PCF1 8\3 6\9 PCF1 100\100 100\100

PCF2 7\5 6\10 PCF2 100\100 100\100
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Table 2: Mean estimates and standard errors of the masking probability P{1,2,3}|1 when

data were generated using models Mi, Wi, i = 1, . . . , 4 and for choices of cut-points

specified by PCF1, PCF2 and WEIF1, WEIF2, respectively.

Model Monte Carlo average (SESEM) True value (SEMC)

PCF1 PCF2

M1 0· 200 (0· 031) 0· 200 (0· 031) 0· 200 (0· 030)

M2 0· 195 (0· 031) 0· 195 (0· 033) 0· 200 (0· 028)

M3 0· 196 (0· 034) 0· 199 (0· 031) 0· 200 (0· 031)

M4 0· 201 (0· 035) 0· 201 (0· 035) 0· 200 (0· 032)

WEIF1 WEIF2

W1 0· 195 (0· 042) 0· 195 (0· 040) 0· 200 (0· 046)

W2 0· 196 (0· 048) 0· 196 (0· 044) 0· 200 (0· 050)

W3 0· 200 (0· 033) 0· 201 (0· 033) 0· 200 (0· 038)

W4 0· 196 (0· 031) 0· 196 (0· 031) 0· 200 (0· 031)

The SESEM is the average of the standard error estimates obtained via the SEM

algorithm and SEMC is the Monte Carlo standard error of P̂{1,2,3}|1 obtained from

1000 replicates of the data.
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Table 3: Hard-drive data. Cause-specific hazard estimates for causes j = 1, 2, 3.

Interval j = 1 j = 2 j = 3

(0, 1] 0· 00204 (0· 0005) 0· 00095 (0· 0003) 0· 00032 (0· 0002)

(1, 2] 0· 0012 (0· 0004) 0· 00026 (0· 0002) 0· 0021(0· 0005)

(2, 3] 0· 00083 (0· 0004) 0· 00053 (0· 0003) 0· 0033 (0· 0006)

(3, 4] 0· 0013 (0· 0004) 0· 00067 (0· 0003) 0· 0039 (0· 0007)
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Figure 1: Plot of the true curve of π1|{1,2,3}(t) for models (a) W1, (b) W3, and (c) W2,

(d) W4, along with the estimates from WEIF1 and, respectively, WEIF2; the dotted

lines represent the 5th and 95th Monte Carlo percentiles.
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(b) Survival functions for the three causes
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Figure 2: Hard-drive data. (a) Cause 1 hazard rate estimate based on Weibull model,

dashed line, piecewise constant model, solid line, along with 95% confidence intervals,

dotted lines, (b) estimates of cause-specific survival functions.
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