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Part 1

Introduction

The ultimate goal of fisheries assessment is to estimate exploitation quotas which maximize
the production and minimize the impact on fish population. Unfortunately, modeling and
estimating this kind of population is a complex task and cannot include everything that may
have an influence on them such as unusual environment perturbations or species competition.
However, some basic factors such as catches can be considered in modeling. A simple way to

model fish stock was developed by Russell (1931). Let B; be the stock biomass at time ¢,

where R is the weight of the new individuals in the population (recruits), G is the total growth
of the individuals already in the population, F' is the weight of the catches and M is the
weight of the fish that die from natural causes. Note that in a more general model, these four
parameters may change in time and hence be indexed by ¢. The main interest of the fisheries
sciences is to determine whether a certain catch level is sustainable or not.

Our main objective is to investigate the Surplus Production Model (SPM), one of the many
methods of stock assessment available in the litterature. We will examine various aspects of the
SPM such as the possible sources of error (the difference between the model and the reality) and

their effect on exploitation parameter estimates, like the maximum sustainable yield (MSY).
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1.1 The Surplus Production Model

The SPM is one of the simplest analytical methods that can be used to assess fish stock. Its
simplicity arises from the fact that it is parsimonious (many parameters of the model are pooled)
and that it requires only a minimum amount of data. Actually, SPM needs only a series of
catches and abundance index. The SPM models only the stock dynamics and does not take
into account the age structure of the stock population, as some other models, such as VPA, do.
The SPM is used to study how a fish population is responding to harvesting. Because SPMs
are often used with few years of observations (usually 20 to 30), a good estimation is hard to
obtain if catch data are too stable. This means that a good dataset should indicate various
catch intensities relatively to the stock population size (which is unfortunately unknown before
the analysis). Such a variability helps the model in its evaluation of the stock response to high
and low catch levels (is the population able to recover rapidly or slowly?). For example, if a
population is very large and harvesting is very low relatively to stock size during all the periods
of interest, there will not be enough contrast in the perturbations made to the population to
estimate the SPM parameters. As will be described later, it is important to have good data
because at least four parameters need to be estimated in the SPM.

Actually, there are several mathematical forms for the SPM, but if we relate to the Russell’s

formulation of stock dynamic, the SPM can generally be written as
Bt+1 :Bt_l_f(Bt) —Ct,t:(),l,..., (12)

where B, is the stock biomass at the beginning of year ¢, f(B;) is the production function of
the biomass in year ¢, and C} is the catches in year t. f(B;) is a function which describes the
population dynamic; it can be seen as the agglomeration of the R, G and M parameters in
equation (1.1). The name production function comes from the idea that a population reacts
to harvesting by producing new biomass. As we will describe later, the production function
is usually parameterized by at least two parameters. Of course, stock biomass is impossible
to measure, so we need a second equation to relate the population biomass to an abundance
index,

[t = th (13)
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where I; is the abundance index and ¢ is a scaling parameter. Catch-Per-Unit-of-Effort (CPUE)
are often used as abundance index. The CPUE is measured by fisheries scientists using surveys.
The Unit of Effort is referring to a standardized way to measure the effort made to catch the
fish. It may take into account the number of boats as well as the type of boats used or the
number of hooks. Not every series of CPUE refer to the same definition of Unit of Effort.
However, within a dataset for a specific species, it has to be the same standardization. When
a CPUE series is used, ¢ may refer to the fish catchability.

The production function in (1.2), f(B;), may take different forms. The most popular are
perhaps

B
f(B) = rB, (1—?) , Schaefer (1954); (1.4)
r B\" . .
f(B) = -By|1- 74 , modified by Pella and Tomlinson (1969). (1.5)
p

In these two formulations, the r parameter stands for the growth rate of the population, K for
the virgin biommass size and p is an asymmetry parameter. Note that Schaefer’s formulation
is the same as Pella and Tomlinson with p = 1 and it will be the model used from now on.

There are many ways to define By. In this manuscript, we will use B; = K, unless a specific
mention is made. This assumption means that population is unexploited before the first year of
the series. Although this is rarely a true assumption, it is often seen in scientific publications.
Also, because our studies of the SPM model are based on simulations, it does not have much
impact and simplifies greatly our calculations.

The production function is probably the best way to understand the origin of the name
Surplus Production for this model. Basically, the population’s production is the population’s
growth (if there is no harvesting), or in terms of the biomass, B;;1 — B;. Thus, if our interest
is to calculate MSY, we need to know what stock biomass provides the largest production.
By maximizing (1.4) in terms of B, this population size is B, = K/2 (see figure 1.1). The
maximum sustainable yield (the maximum catch that would leave the stock size intact) is then
MSY = rK/4. Note that if the stock size is already bellow B,,,, allowing a catch as large a

MSY over the years will lead fish stock to collapse.
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Figure 1.1: These three plots compare different scenarios for p values in equation (1.5). The
vertical line is the B,,s,. The oblique doted line represents a model where B, = B;. Note

that the middle panel represents the model used for all of the following analysis

1.1.1 In practice

When using the SPM, observed data cannot be fit perfectly. For this reason, hypotheses have to
be made on the source of discordance between the model and the observations. In the following,

we will study three of these sources :
1. the observation error;
2. the process error;
3. the censored catches, i.e. when only a lower bound is observed for catches C; in a year.

In this document, parts 2 and 3 will treat observation and process error, respectively, and
part 4 will treat censored catches. These three parts are indeed the three reports made within
the framework of my work in collaboration with the Department of Fisheries and Oceans (DFO)

of Canada .

Observation error
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Observation error occurs when the abundance index is not observed exactly. We will make
the assumption that these error terms (e**) are independent and log-normally distributed with
i = 0 so that (1.3) becomes

I; = qBye, (1.6)

where g; ~ N(0, 72). If there is only observation error in the SPM, it means that the populations
dynamics from (1.2) and (1.4) are assumed to be exact.
Process error
Process error occurs when the dynamic equation (1.2) is not exactly modeling the reality.
We will also make the assumption that process error is log-normally distributed with p = 0, so
that (1.2) becomes
Bip1 = {Bi — f(By) — Ci}ein, (L.7)

where €}, ~ N(0,0?).
Censored catches

Censoring is a concept often observed in survival analysis and must not be confused with
truncation. When dealing with censored data, we have a set of observation intervals {(z11, z1v),
(o, Tov)s- - -, (Tnr, Tpp) Hrin which the exact observations {1, Ts, . .., x, } lie. This often occurs
because we cannot observe exactly the random variable of interest. In the case of the SPM, we
will assume that the true catches lie in (C't, 00), where C; are the observed/reported catches at
time t.

It is important to make the distinction between censored and truncated data. Truncation
happens when a random variable can only be observed in an observation window (Y7, Yy). An
occurrence of this random variable that is not in this observation window will not be observed
and no information will be available (as if it did not exist). Under censoring however, we have

at least partial information on every occurrence of the random variable.

La;p or z; (but not both) may be respectively —co or co. This occurs when we have only an upper or lower

bound for the observation.



PART 1. INTRODUCTION

1.2 Inference

This section is presenting how we can make statistical inference about the SPM parameters
for a population. We will describe two approaches to inference : maximum likelihood and

Bayesian.

1.2.1 Maximum Likelihood Estimation

In a frequentist point of view, the parameters of a model (here the SPM) are considered as
fixed but unknown constants. One of the key methods used in frequentist inference is based on
the likelihood principle, which states that information in a sample is contained in the likelihood
function. To define this function, let us say that we have a sample of observations x1, zo, ..., x,.
Then, the likelihood function is the joint probability of observing 2 X,=x, Xo=25, ..., X, =,

conditionally on the parameter(s) 6,
L(Q|ZE) = P(X1 = l’l,XQ = To,... ,Xn = xnlé’)

Thus, if we suppose that the X; are independent and identically distributed with probability
density function (pdf) f(z;6), the likelihood function may be written as

n

L)) = [ ] f(x:;0).

i=1
To obtain a point estimate é, we need to maximize the likelihood function in term of 6 so
that we have L(0|z) > L(0]z) for every # in ©.3 These estimates are known as the maximum
likelihood estimates (MLE), and can be thought of as the value of 6 that makes the observed
data most probable. Note that the maximization process is often done on the log-likelihood
function 1(6|z) = In{L(f|x)}, and this often cannot be done analytically.

When using the MLE method for finding parameter estimates in a SPM, we need to make

some assumptions. In our work we investigated three cases :

e SPM with observation error only (MLEO);

2Here X; refers to random a variable and z; stands for its observed value.
30 is the space of all possible values for 6.
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e SPM with process error only (MLEP);

e SPM with both types of errors (MLEPO).

MLEO

When we consider the SPM with observation error only, its formulation becomes

B,
Bt+1 = Bt‘l—’r‘Bt 1—E —Ct,t:1,2,...,N; (19)
I, = B, t=1,2,... N; (1.10)

where £, ¢ N(0,72).
From this, we can see that, given r and K, the series of biomasses is known for all years
in the data, and we denote these biomasses By(r, K) to highlight this fact. Thus, considering

these two parameters as fixed, we can write the likelihood function as

N
1 —[log I, — log{qBy(r K)}]2>
L(g, 72,7, KT, Cy) = T ——— ex ( : :
(q I, Ce) tl:[l sl p 972

(1.11)

Maximizing this function in terms of ¢ and 72 for fixed values of r and K may be done explicitly,

with MLEs given by

2 log{li/Bi(r, K)} 5 _ 2llog I — log{4(r, K) By(r, K)}J?
N 1 and 7°(r, K) = N :

When substituting these values for ¢ and 72 in (1.11), the likelihood function still has to be

4(r,K) = eXp[

maximized in terms of the parameters r and K, which cannot be done analytically. In such a
case, we can use a numerical optimization method such as the Nelder-Mead algorithm (Nelder

& Mead 1965).

MLEP

When we consider the SPM with process error only, its formulation becomes :

B, = Keo; (1.12)
B /

By = {BH—TBt (1—#) —Ct;}eet,tzl,Z,...,N; (1.13)

It = th,tzl,Z,...,N, (114)

10
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where £ % N (0, 52).
To write down the likelihood function under this SPM specification, we use the fact that (1.3)

contains no error term, so that B; = I;/q, and then substitute this expression into equations

(1.12) and (1.13) to obtain
I = qKey,
,
[t+1 = {[t(l + 7') - q_K[E - th} Et41,t = 1, 2, . ,N.

The likelihood function becomes

1 exp —{log I, —log I} (r, K, q) }?
V2ro?l, 202 ’

where [} (r,K,q) = L,(1 + 1) — qLKIf — qCy. In this case, for fixed values of r, K and ¢, the

N
L(T7K7Q702’It7ct) :H (115>
t=1

likelihood function may be explicitly maximized in terms of o2, with

&2(7,’ K, q) — Zt{log It - 1?\% [t*(rﬁ K7 Q)}2

Again, after substituting 62(r, K, ¢) for o2 in (1.15), maximization of (1.15) with respect to the

other three parameters must be done numerically.

MLEPO

When we consider the SPM with observation and process errors, its formulation becomes

B = Keo; (1.16)
B, /

Bt+1 = Bt + TBt 1-— ? — Ct, 65’5; (117)

[t == theat, (118)

iid iid :
where g, ~ N(0,72), e, ~ N(0,0?) and ¢; and ¢, are independent.

In this case, we cannot express the B; as a deterministic function of the observations or
the SPM parameters. For this reason, the maximization of the likelihood is more difficult. At
this moment, we have not used this model with a frequentist method. However, investigating
whether algorithms such as the Monte Carlo EM-algorithm or the Gibbs sampler (Robert and
Casella, 2004) may be implemented in order to estimate the parameters of a SPM with both

process and observation errors by maximum likelihood.

11
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1.2.2 Bayes Estimators

Unlike maximum likelihood estimators, the Bayesian estimators do not rely only on the sample.
Actually Bayesian analysis is a method use to combine the information contained in the data
and some external intuition, or ezpertise which will be called uncertainty. Basically, Bayesian
analysis relies on Bayes’ rule which states that for two events A and B

P(B|A)P(A
P = 2B,
where P(A|B) refers to the probability of the event A to happen knowing that event B occurred
and P(A) is the marginal probability of the event A to occur. This rules applies also to
probability density functions, so if X and Y are two random variables with joint density fxy,

then

_ Iyix[fx
fX|Y - fY )

where fx|y is the conditional pdf of X knowing ¥ and fx the marginal pdf of X.

When applying Bayesian analysis to a model, the Bayesian analysis differs drastically from
the maximum likelihood in the fact that model parameters are now considered as random vari-
ables (in maximum likelihood estimation, the parameters are considered as fixed but unknown
values). This lets us presume a certain amount of uncertainty to the model parameters, prior
to the analysis, and combine it to our data to calculate our estimates. Let f(x|0) be a model
of interest. Then to use Bayesian analysis we need prior distributions, 7(6), for all your param-
eters (#). These priors have to reflect our uncertainty in the parameters before observing the
data; Then we calculate the posterior distribution of the parameter, 7(6|z), by using Bayes’

rule, i.e.,
f(@|0)m(0)
flx) 7

where f(x) is the marginal distribution of the data. Usually, we set the mean of the posterior

w(0|z) = (1.19)

distribution (1.19) as the Bayes estimates of the parameters. The marginal distribution of the
data f(x) can be obtained by integrating the joint distribution of the data and parameter,
f(z|@)7(0), relatively to 6. However, because f(zx) is not a function of 6, in some cases it is
easier to find the constant o that makes the function a.f (z|0)7(6) a probability density function

(i.e. continuous on the domain and integrating to 1). In some more complicated cases, it is

12
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not possible to calculate this constant because of the complex form of f(z|0)w(0). To avoid
this calculation, algorithms such as Gibbs sampler may be used to sample from the posterior
densities.

When Bayesian analysis is applied to the SPM, we are in the kind of situation where
computational methods like the Gibbs sampler are needed. First, let us recall our goal : we

need to calculate the posterior mean of the SPM parameters, which is the mean of
7(0z) = 7(r,K,q,0°, 7%, By ... By|I1 ... Iy),

see equation (1.19). As the maximum likelihood method, the Bayesian analysis depends on the
sources of error included in the model. In this particular Bayesian analysis study of the SPM,
we have investigated only the case with both process and observation errors (see equations 1.17,

1.18 and 1.18). In this case, the density
f(x|0) = f(I,...In|r,K,q,0%, 7%, By ... By)
can be defined recursively using conditional probability proprieties:
f(I ... IN|0) = f(IN|IN-1,0) X f(IN_1|IN_2,0) X ... X f(Is|I1,0) x f(1,]6).
The prior distribution can be define using the same recursive scheme :

w(0) = 7 (r, K,q,0% 7%, B ... By)

71—(9) - W(BN|BN—1aT7 K?QaO—QaTz) X 7T(lgN—1|BN—2a7ﬂ7 KﬂQaO—QaTz) X

x7(By|r, K,q,0% 1) x 7(r)m(K)n(q)n(c*)m(7?)

Note that in the Bayesian analysis of the SPM, the B,’s are now considered as parameters
of the models, like r, K, ..., contrary to MLE analysis where we can’t maximize the likelihood
function in terms of random variables.

Now, because of the complex formulation of f(xz|0)m(6), the marginal distribution f(I; ... Iy)
cannot be calculated analytically. For this reason, the Gibbs sampler is used to sample from
the explicitly unknown distribution 7(|z). The parameter estimations will then be obtained

from the sample means of the r, K, ¢, 0% and 72 generated by the Gibbs sampler.

13
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Application of the MLEO and MLEP
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2.1 Introduction

The Surplus Production Model (SPM) is a widely used fish stock population assessment model.
To apply SPM, all that is required is a series of abundance indices (CPUEs are often used), and
the series of catches related to the years to be assessed. In our previous work (Lemay et al, 2006),
we looked at the reliability of Bayesian estimators in a SPM context and also investigated the
application of the Hammond an Trenkel (2005) method for mis-reported (censored) catches.
Though Bayesian methods may be easily adapted to include many sources of errors in the
data, the results in Lemay et al (2006) suggest that a frequentist (non Bayesian) approach to
SPM fitting may be interesting to investigate because it is not subject to prior distribution
specification that can have unduly affect the inferences. Indeed, the simulation study reported
in Lemay et al (2006) showed that some parameters in the SPM are difficult to identify from
the data alone and that inferences about these parameters are highly dependent on the prior
distributions used in the Bayesian inferences. Therefore, our ultimate objective is to study
the use of frequentist censored method(s) applied to SPM. To achieve this goal, we must first
examine how maximum likelihood may be utilized with SPM when catches are considered as
exact (i.e., non censored, without misreporting). Because in practice a frequentist approach to
SPM fitting often only assumes observation error, we investigate if considering one or both types
between observation and process errors really matters when it comes to parameter estimation.
Actually, because process error and observation error may be hard to distinguish, a model with
only one type of error might exhibit good properties when it comes to estimating, for example,
the maximum sustainable yield (MSY) of a fish population, even if both types of error are
present. A study of this problem had been done by Polacheck et al (1993), but it was based
only on three series of data. Since we want to test a wider variety of population biomass, we
designed a much broader simulation study; this design will be described in Section 2.3.1.

This manuscript is divided as follows. We introduce the SPM and briefly explain how to
estimate its parameters by maximum likelihood in Section 2.2. We describe the design of the
simulation study and give a detailed account and interpretation of the simulation results in

Section 2.3. We give our main conclusions and discuss ideas for further research in Section 2.4.

15
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2.2 Preliminaries

2.2.1 Surplus Production Model

The model we investigate is the Scheafer annual SPM :

B,

Bt+1 = Bt ‘I— TBt (]_ - E) - Ct, (21)

where B; represents the biomass (e.g. 1,000 tons) in year ¢, r is the intrinsic population growth
rate parameter, K is the virgin population biomass (or the biomass when the population is in
equilibrium) and C} represents the catches in year ¢ (1,000 tons).

Stock biomass usually cannot be measured directly to estimate the » and K parameters in
(4.1) and additional information is required to estimate these parameters. Often, a CPUE time
series is used, but a research survey biomass index is also commonly used. We need a second

equation to include the information provided by the survey index,
It = QSBt7 (22)

where [; is the survey index at time t and g, represents the fish catchability in the survey.
The parameters to estimate are r, K and ¢;. Note that equation (2.3) implies that we are
assuming that the biomass in the first year of data is the virgin biomass, i.e., there were no
fisheries before this first year. This hypothesis might not be verified, but it will simplify the
optimization process needed by the maximum likelihood estimation by removing one parameter
(B1) in the log-likelihood functions.

In our study, we considered a SPM with two kinds of errors : process error (related to
equation (4.1)) and observation error (related to the equation (4.2)); we assumed a log-normal

distribution for both process and observation error. Including both types of errors, the model

becomes
Bl = K{Sl (23)
By
Bt+1 = Bt + TBt(l — E) — Ot Et—i—l; (24)
]t = QSBt€Z7 (25)

where log(g;) ~ N(0,0?) and log(e}) ~ N(0,7%), and where all €} and ¢; are assumed indepen-

dent.

16
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2.2.2 Maximum Likelihood Estimation

The maximum likelihood method consists of estimating the parameters of a model by choosing,
as the parameter estimates, the value of the parameters that makes the observed data most
probable. Mathematically, suppose that we observe data x1,...,x, and that under the model,
the joint probability/density of the data is f(zy,...,2,;0), where 6 denotes the unknown
parameters to be estimated. Then the maximum likelihood estimator of # is the value 0 such
that f(z1,...,zp; é) > f(xy,...,x,;0) for any value of 0, i.e., the value of 6 that maximizes
f(x1, ..., x,;0).

In the case of the SPM, we observe a sample of observations of the form (I;,C}), ...,
(In,Cy) and on the basis of this sample, we want to estimate the parameters ¢, 7 and K, as

well as the error variances 72 and o2.

Maximum likelihood estimators for a SPM with observation errors only (MLEO)

When accounting for observation error only, the SPM may be written as

B = K (2.6)
By

Bt+1 = Bt + TBt(l — E) — Ct7 (27)

It = qutﬁ':. (28)

From this, we can see that, given r and K, the series of biomasses is known for all years in the
data, and we denote these biomasses By(r, K) to highlight this fact. Thus, considering these

two parameters as fixed, we can write the likelihood function as

N

1 —[log I; — log{qsB(r K)}P)
L(ge, 7,7, KT, o) = [ == ex < ! |
(q ’t t) 11 o2l p 972

Maximizing this function in terms of ¢, and 72 may be done explicitely, with MLEs given by

2. log {1/ Bi(r, K) } 5 _ 2yllog I — log{qs(r, K) Bi(r, K) }]*
N } and 7°(r, K) = ~ :

Gs(r, K) = exp {

But the likelihood function still has to be maximized in terms of the parameters » and K, which
cannot be done analytically. In such a case, we can use a numerical optimization method; for

all results reported in this manuscript, we performed the numerical optimization using the

17
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Nelder-Mead algorithm (Nelder and Mead, 1965) implemented in the optim( ) function of the

package R.

Maximum likelihood estimators for a SPM with process errors only (MLEP)

When accounting for process error only, the SPM may be written as

By = Keg (2.9)
B

By = {Bt—i-rBt(l—Et)—C’t}atH; (2.10)

Iy = ¢,B:. (2.11)

To write down the likelihood function under this SPM specification, we use the fact that
equation (2.11) contains no error term, so that B, = I;/qs, and then substitute this expression

into equations (2.9) and (2.10) to obtain

L = ¢Ke

]t+1 = {It(l—l—r) —

r
KIE — qSC’t} Ett1-

ds

The likelihood function becomes

L(T7 K7 q8)0-2|]:t7 Ct

N
1 —{log I, — log I (r, K, q,) }*
= T] exp{{gt g;( Q)}}7
=1 V 27TU2It 20

where If(r,K,q,) = L(1+71) — %

I? — q,C;. In this case, the likelihood function may be

explicitly maximized in terms of o2,

Zt{log ]t - 1Og I:(Tu Ku qs)}2

6-2 (T7 K? QS) - N 7

but maximization with respect to the other three parameters must be done numerically.

Maximum likelihood estimators for a SPM with process and observation errors

(MLEPO)

When both types of errors are present, we cannot express B; as a deterministic function of
the observed data or the model parameters. In this case, the likelihood function can only be

written in terms of a high dimensional integral with respect to the error terms. Nonetheless,
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methods to find maximum likelihood estimators that do not require calculation of this likelihood
function do exist. We are currently investigating whether algorithms such as the Monte Carlo
EM-algorithm or the Gibbs sampler (Robert and Casella, 2004) can be implemented in order
to estimate the parameters of a SPM with both process and observation errors by maximum

likelihood.

2.3 Simulation study

The purpose of this simulation study is to assess the performance of the maximum likelihood
estimators of the SPM parameters under various simulation and model fitting scenarios. Our

specific objectives are to

1. study the properties of the maximum likelihood estimators when fitting a SPM with
observation error only (MLEO) to data generated from (i) a SPM with observation error
only; (ii) a SPM with process error only; (iii) a SPM with both process and observation

error;

2. study the properties of the maximum likelihood estimators when fitting a SPM with
process error only (MLEP) to data generated from (i) a SPM with observation error only;

(ii) a SPM with process error only; (iii) a SPM with both process and observation error.

We have designed a simulation study that has allowed us to study the impact of all the important
model parameters (r, K, 72 and ¢?). The details of the study design are given in Section 2.3.1.

The results are summarized in Section 2.3.2 and these results are analyzed in Section 2.3.3.

2.3.1 Simulation Design

In order to study the effect of each of the parameter of interest, we used a complete factorial

design for both MLEO and MLEP. We included three factors in our design :

The combination of (r, K) parameters: We simulated at two levels of this factor, (r, K) =
(0.16, 4000) (giving an almost linearly decreasing biomass series) and (r, K') = (0.4, 3500)

(giving a convex biomass series, i.e., a two-way trip).
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PART 2. APPLICATION OF THE MLEO AND MLEP

The observation error 72: We simulated at three levels of this factor, 72 = 0 (no observation

error), 72 = 0.04 (mild observation error), 7> = 0.09 (strong observation error).

The process error o*: We simulated at three levels of this factor, 02 = 0 (no process error),

0% = 0.04 (mild process error), 02 = 0.09 (strong process error).

Our design thus has 2 x 3 x 3 = 18 “treatment” levels, and for each treatment level, we simulate
1,000 series of CPUEs to which we fit 1,000 SPMs. The series of catches was fixed for all 18,000
datasets; we used the series of catches related to Northern Namibian hake during years 1965 to
1988 (Polacheck et al, 1993). We also held the value of ¢ fixed at ¢, = 0.2 for each of the 18
treatments, as this parameter is a scale parameter linking the indices and biomasses and thus
has no impact on the population dynamics. The levels of the parameters used for each of the

18 treatments are summarized in Table 2.1.
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Table 2.1: This table shows the 18 combinations of SPM parameter values used in the simulation
study. Note that for every simulation, ¢, = 0.2 and the catch series is that on Namibian hake

given by Polacheck et al (1993).

Treatment | (r, K) 72 (obs. err. variance) | o2 (proc. err. variance)
1 (r = 0.16, K = 4000) | 0 0

2 (r = 0.16, K = 4000) | 0 0.04
3 (r = 0.16, K = 4000) | 0 0.09
4 (r =0.16, K = 4000) | 0.04 0

5 (r = 0.16, K = 4000) | 0.04 0.04
6 (r = 0.16, K = 4000) | 0.04 0.09
7 (r = 0.16, K = 4000) | 0.09 0

8 (r = 0.16, K = 4000) | 0.09 0.04
9 (r =0.16, K = 4000) | 0.09 0.09
10 (r = 0.40, K = 3500) | 0 0
1 (r = 0.40, K = 3500) | 0 0.04
12 (r =0.40, K = 3500) | 0 0.09
13 (r = 0.40, K = 3500) | 0.04 0

14 (r =0.40, K = 3500) | 0.04 0.04
15 (r =0.40, K = 3500) | 0.04 0.09
16 (r = 0.40, K = 3500) | 0.09 0

17 (r =0.40, K = 3500) | 0.09 0.04
18 (r =0.40, K = 3500) | 0.09 0.09

The simulation of each series of CPUE indices was done according to this algorithm:

1. Given the 7, K and o? parameter values, simulate a series of biomasses using equation

(4.4);

2. Given the biomass series, ¢, and 72, simulate the CPUE indices using equation (4.3).
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During the first step, we had to be careful not to simulate negative biomasses, which could
happen when process error was present (o2 # 0), because the catch series was fixed and did
not depend on the simulated biomass series. To account for this, we adjusted our simulations

in the presence of process error in this way :

e Given the biomass and catches in year ¢, if biomass in year ¢ + 1 is lower than 400,

resimulate the biomass for year ¢ + 1;

e If after 5 attempts, a biomass greater than 400 is not simulated, resimulate the whole

series of biomasses.

Of course, this adjustment should influence the estimation results, as we are then not exactly
simulating from the SPM model. For instance, the process error variance should be underesti-
mated as extreme values of the errors will be rejected and resimulated. Note that Punt (2003)
also used the Namibian hake catches in his simulation study, but in his simulations he held
the biomasses at times 1 and N fixed to avoid negative biomasses. We elected not to use a
similar correction, as we feel that this would remove too much of the variability in the model

and hence make the estimators a lot less volatile than they really should be under the SPM.

2.3.2 Results

This sections gives a detailed account of the outcome of the simulations. For both MLEO and
MLEP, we present graphics and tables summarizing the results obtained under all 18 treatment
levels; we defer the analysis and interpretation of these results to Section 2.3.3.

Because maximum likelihood estimation is computed using an iterative numerical algo-
rithms, an assessment of the convergence of this algorithm is given. To be sure that maximum
likelihood estimates were not dependent on the starting point of the algorithms, we ran the
optimization process using the same 4 different starting values in each of the 18,000 simulations
and we kept the best estimation in terms of the likelihood function evaluation. Because it was
not possible to monitor the progress of all 18,000 simulations and make adjustments to the

iterative scheme “manually”, we compiled results only for datasets giving “valid” final results:
e K estimate needs to be smaller than 8,000;
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e 1 estimate needs to be between 0 and 1;
e ¢, estimate needs to be between 0 and 1;
e the numerical optimization algorithm must have converged according to the software.

For each of MLEO and MLEP, the presentation of the results is done in this order. First,
we give the proportion of valid samples for each treatment. Then for all treatment levels except
1 and 10 (these treatments have neither observation nor process error), we give plots of density

estimates of the distribution of
e the maximum likelihood estimators of r, K, g, and 72 or ¢?;

e the “prediction error”, defined as B ~N+1/Bn+1, the ratio of the estimated biomass at time

N + 1 to the simulated biomass at time N + 1;
e the maximum sustainable yield, MSY= rK /4.
Tables presenting the mean values of the maximum likelihood estimators as well as their bias,
variance and root mean squared error are also given.

Results for the MLEO method

Because this method is accounting only for observation error, we expect it to perform much
better with datasets simulated without process error. We thus expect to get more valid samples
and better parameter estimates for treatment levels 1,4,7,10,13 and 16. Indeed, Figure 2.1 shows
that for these treatments, the proportion of valid samples is always above 80% and stands much

higher than the proportion of valid samples under treatments with process error.
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Figure 2.1: This plots presents the proportion of valid estimations out of 1000 replicates when

using the MLEO method. The validity of an estimation is detailed in the beginning of this
section.
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Figure 2.2: These plots represents the kernel density estimation of the parameters estimates for
the treatment 2 using MLEO method. The solid vertical line is the mean value of the estimator
while the dotted vertical line is the true parameter value. In this case there is no observation

error and process error variance is small (0.04)
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Figure 2.3: These plots represents the kernel density estimation of the parameters estimates for
the treatment 3 using MLEO method. The solid vertical line is the mean value of the estimator
while the dotted vertical line is the true parameter value. In this case there is no observation

error and process error variance is high(0.09)
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Figure 2.4: These plots represents the kernel density estimation of the parameters estimates for
the treatment 4 using MLEO method. The solid vertical line is the mean value of the estimator
while the dotted vertical line is the true parameter value. In this case there is no process error

and observation error variance is small (0.04)
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Figure 2.5: These plots represents the kernel density estimation of the parameters estimates for
the treatment 5 using MLEO method. The solid vertical line is the mean value of the estimator
while the dotted vertical line is the true parameter value. In this case observation error variance

is small (0.04) and process error variance is small (0.04)
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Figure 2.6: These plots represents the kernel density estimation of the parameters estimates for
the treatment 6 using MLEO method. The solid vertical line is the mean value of the estimator
while the dotted vertical line is the true parameter value. In this case observation error variance

is small (0.04) and process error variance had is high (0.09)
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Figure 2.7: These plots represents the kernel density estimation of the parameters estimates for

the treatment 7 using MLEO method. The solid vertical line is the mean value of the estimator

while the dotted vertical line is the true parameter value. In this case observation error variance

is high (0.09) and there is no process error
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Figure 2.8: These plots represents the kernel density estimation of the parameters estimates for
the treatment 8 using MLEO method. The solid vertical line is the mean value of the estimator
while the dotted vertical line is the true parameter value. In this case observation error variance

is high (0.09) and process error variance is small (0.04)
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Figure 2.9: These plots represents the kernel density estimation of the parameters estimates for
the treatment 9 using MLEO method. The solid vertical line is the mean value of the estimator
while the dotted vertical line is the true parameter value. In this case observation error variance

is high (0.09) and process error variance is high (0.09)
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Figure 2.10: These plots represents the kernel density estimation of the parameters estimates
for the treatment 11 using MLEO method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case there is no

observation error and process error variance is small (0.04)
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Figure 2.11: These plots represents the kernel density estimation of the parameters estimates

for the treatment 12 using MLEO method. In this case there is no observation error and process

error variance is high(0.09)
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Figure 2.12: These plots represents the kernel density estimation of the parameters estimates
for the treatment 13 using MLEO method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case there is no

process error and observation error variance is small (0.04)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.13: These plots represents the kernel density estimation of the parameters estimates
for the treatment 14 using MLEO method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is small (0.04) and process error variance is small (0.04)

Density of r parameter Density of K parameter
7
o | @ 1
— \ < !
] . ]
o | T :
2 2 S
[7) ! 7] T {
c 1 c [} 1
[ [
[a] 0 | [a] o~ |
o ] a ]
] ]
| o |
| Q |
24 - . . 5 - . -
e T T T T T T T o T T T T
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 2000 4000 6000 8000
Var=0.0578 Bias= 0.081 RMSQ= 0.254 Var= 2054353 Bias=-360 RMSQ= 1478
Density of q parameter Density of tau2 parameter
o
g T T N 1
] ]
n 1 0w 1
o _| ] ]
> N I > I
D ! % o | !
c 1 | c —
[ [
[a] o | | [a] |
— I I
| v |
N | |
o ] ]
> | _ o 4 — _
e T f T T T — T T
0.0 0.2 0.4 0.6 0.8 0.05 0.10 0.15
Var=0.0146 Bias=0.084 RMSQ=0.147 Var= 0.000496 Bias=0.0299 RMSQ= 0.0373
Density of MSY parameter Density of Prediction error (multiplicative)
© N
Q 1 — 1
S
I} 1 _ 1
— | ]
3 2 - '
2 S 2 ° !
‘B o I ‘B .
c - | c |
[ [
(&) 8 | (&) < | |
o 1 o 1
o ] I
-1 | N |
S | _ ! R — o | _ ! N
P T T T T T T T e T f T T T
0 200 400 600 800 1000 1200 0 1 2 3 4
Var= 12389 Bias=-39.8 RMSQ=118 Var=0.265 Bias=-0.103 RMSQ=0.525

36



PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.14: These plots represents the kernel density estimation of the parameters estimates
for the treatment 15 using MLEO method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is small (0.04) and process error variance had is high (0.09)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.15: These plots represents the kernel density estimation of the parameters estimates

for the treatment 16 using MLEO method. The solid vertical line is the mean value of the

estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is high (0.09) and there is no process
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.16: These plots represents the kernel density estimation of the parameters estimates
for the treatment 17 using MLEO method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is high (0.09) and process error variance is small (0.04)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.17: These plots represents the kernel density estimation of the parameters estimates

for the treatment 18 using MLEO method. The solid vertical line is the mean value of the

estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is high (0.09) and process error variance is high (0.09)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.18: Correlation between r and K estimates using the MLEO method. The dependency

is pretty impressive
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PART 2. APPLICATION OF THE MLEO AND MLEP

Table 2.2: Estimates means for the MLEO methods

treatment | r K q sigma2 | Prediction error
2 0.29 | 4113.53 | 0.27 | 0.04 0.96
3 0.36 | 3703.85 | 0.34 | 0.08 0.91
4 0.17 | 4134.48 | 0.21 | 0.04 1.10
5 0.31 | 3939.05 | 0.29 | 0.07 0.95
6 0.36 | 3738.76 | 0.33 | 0.11 0.90
7 0.19 | 4066.85 | 0.22 | 0.08 1.12
8 0.30 | 3986.27 | 0.29 | 0.11 0.97
9 0.35 | 3676.40 | 0.34 | 0.15 0.88
11 0.49 | 3223.64 | 0.28 | 0.04 0.92
12 0.50 | 3110.38 | 0.30 | 0.08 0.93
13 0.43 | 3593.64 | 0.22 | 0.03 1.01
14 0.48 | 3140.09 | 0.28 | 0.07 0.90
15 0.48 | 3112.70 | 0.30 | 0.11 0.92
16 0.45 | 3491.06 | 0.24 | 0.08 0.96
17 0.50 | 3075.04 | 0.29 | 0.12 0.87
18 0.49 | 3114.41 | 0.31 | 0.16 0.92
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PART 2. APPLICATION OF THE MLEO AND MLEP

Table 2.3: Estimates variance for the MLEO methods

treatment | r K q sigma2 | Prediction error
2 0.0443 | 2591744.6095 | 0.0179 | 0.0003 | 0.3493
3 0.0583 | 2806530.5922 | 0.0357 | 0.0016 | 0.6765
4 0.0072 | 796285.7613 | 0.0033 | 0.0001 | 0.2733
5 0.0466 | 2715450.5854 | 0.0220 | 0.0007 | 0.4152
6 0.0667 | 2920186.2495 | 0.0300 | 0.0018 | 0.5760
7 0.0147 | 1306945.4846 | 0.0068 | 0.0006 | 0.5309
8 0.0496 | 2692869.9543 | 0.0244 | 0.0013 | 0.4520
9 0.0572 | 2671454.3744 | 0.0351 | 0.0025 | 0.6130
11 0.0589 | 2439794.1369 | 0.0149 | 0.0003 | 0.2933
12 0.0724 | 2647964.7690 | 0.0220 | 0.0013 | 0.4952
13 0.0233 | 1206780.4138 | 0.0047 | 0.0001 | 0.0900
14 0.0578 | 2054352.5647 | 0.0146 | 0.0005 | 0.2649
15 0.0632 | 2321994.2625 | 0.0206 | 0.0018 | 0.4778
16 0.0332 | 1667821.3749 | 0.0078 | 0.0005 | 0.1211
17 0.0591 | 2027425.7936 | 0.0171 | 0.0014 | 0.2803
18 0.0677 | 2382310.3002 | 0.0217 | 0.0029 | 0.4559
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PART 2. APPLICATION OF THE MLEO AND MLEP

Table 2.4: Estimates bias for the MLEO methods

treatment | r K q sigma2 | Prediction error
2 0.129 | 113.531 | 0.073 | 0.036 | 0.956
3 0.203 | -296.145 | 0.144 | 0.079 | 0.906
4 0.006 | 134.481 | 0.005 | -0.005 | 0.082
5 0.153 | -60.948 | 0.090 | 0.030 | 0.950
6 0.205 | -261.242 | 0.128 | 0.069 | 0.902
7 0.029 | 66.848 0.019 | -0.011 | 0.072
8 0.144 | -13.731 | 0.093 | 0.024 | 0.969
9 0.185 | -323.603 | 0.145 | 0.059 | 0.876
11 0.086 | -276.364 | 0.077 | 0.036 | 0.920
12 0.103 | -389.615 | 0.102 | 0.078 | 0.928
13 0.034 | 93.641 0.016 | -0.005 | -0.008
14 0.081 | -359.913 | 0.084 | 0.030 | 0.897
15 0.078 | -387.303 | 0.101 | 0.074 | 0.921
16 0.050 | -8.938 0.038 | -0.013 | -0.088
17 0.096 | -424.962 | 0.093 | 0.025 | 0.867
18 0.088 | -385.591 | 0.107 | 0.068 | 0.925
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PART 2. APPLICATION OF THE MLEO AND MLEP

Table 2.5: Estimates root mean square error for the MLEO methods

treatment | r K q sigma2 | Prediction error
2 0.25 | 1613.89 | 0.15 | 0.04 1.12
3 0.32 | 1701.24 | 0.24 | 0.09 1.22
4 0.09 | 902.43 | 0.06 | 0.01 0.53
5 0.26 | 1648.99 | 0.17 | 0.04 1.15
6 0.33 | 1728.71 | 0.22 | 0.08 1.18
7 0.12 | 1145.17 | 0.08 | 0.03 0.73
8 0.27 | 1641.05 | 0.18 | 0.04 1.18
9 0.30 | 1666.19 | 0.24 | 0.08 1.18
10 0.40 | 3500.00 | 0.20 | 0.00 1.00
11 0.26 | 1586.24 | 0.14 | 0.04 1.07
12 0.29 | 1673.25 | 0.18 | 0.09 1.16
13 0.16 | 1102.52 | 0.07 | 0.01 0.30
14 0.25 | 1477.80 | 0.15 | 0.04 1.03
15 0.26 | 1572.26 | 0.18 | 0.09 1.15
16 0.19 | 1291.47 | 0.10 | 0.03 0.36
17 0.26 | 1485.94 | 0.16 | 0.04 1.02
18 0.27 | 1590.91 | 0.18 | 0.09 1.15
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PART 2. APPLICATION OF THE MLEO AND MLEP

Results for the MLEP method

Because this method is accounting only for process error, datasets simulated without observa-
tion error are expected to be more efficient. For this reason, we expected more datasets to be

valid in the treatments 1,2, 3,10, 11and12 (see figure (2.19)).

Figure 2.19: This plots presents the proportion of valid estimations out of 1000 replicates when

using the MLEP method. The validity of an estimation is detailed in the beginning of this

section.
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.20: These plots represents the kernel density estimation of the parameters estimates
for the treatment 2 using MLEP method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case there is no

observation error and process error variance is small (0.04)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.21: These plots represents the kernel density estimation of the parameters estimates

for the treatment 3 using MLEP method. The solid vertical line is the mean value of the

estimator while the dotted vertical line is the true parameter value. In this case there is no

observation error and process error variance is high(0.09)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.22: These plots represents the kernel density estimation of the parameters estimates
for the treatment 4 using MLEP method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case there is no

process error and observation error variance is small (0.04)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.23: These plots represents the kernel density estimation of the parameters estimates

for the treatment 5 using MLEP method. The solid vertical line is the mean value of the

estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is small (0.04) and process error variance is small (0.04)
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Figure 2.24: These plots represents the kernel density estimation of the parameters estimates
for the treatment 6 using MLEP method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is small (0.04) and process error variance had is high (0.09)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.25: These plots represents the kernel density estimation of the parameters estimates
for the treatment 7 using MLEP method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is high (0.09) and there is no process error
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.26: These plots represents the kernel density estimation of the parameters estimates
for the treatment 8 using MLEP method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is high (0.09) and process error variance is small (0.04)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.27: These plots represents the kernel density estimation of the parameters estimates
for the treatment 9 using MLEP method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is high (0.09) and process error variance is high (0.09)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.28: These plots represents the kernel density estimation of the parameters estimates
for the treatment 11 using MLEP method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case there is no

observation error and process error variance is small (0.04)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.29: These plots represents the kernel density estimation of the parameters estimates

for the treatment 12 using MLEP method. The solid vertical line is the mean value of the

estimator while the dotted vertical line is the true parameter value. In this case there is no

observation error and process error variance is high(0.09)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.30: These plots represents the kernel density estimation of the parameters estimates
for the treatment 13 using MLEP method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case there is no

process error and observation error variance is small (0.04)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.31: These plots represents the kernel density estimation of the parameters estimates
for the treatment 14 using MLEP method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is small (0.04) and process error variance is small (0.04)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.32: These plots represents the kernel density estimation of the parameters estimates
for the treatment 15 using MLEP method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is small (0.04) and process error variance had is high (0.09)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.33: These plots represents the kernel density estimation of the parameters estimates

for the treatment 16 using MLEP method. The solid vertical line is the mean value of the

estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is high (0.09) and there is no process
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.34: These plots represents the kernel density estimation of the parameters estimates
for the treatment 17 using MLEP method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is high (0.09) and process error variance is small (0.04)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.35: These plots represents the kernel density estimation of the parameters estimates
for the treatment 18 using MLEP method. The solid vertical line is the mean value of the
estimator while the dotted vertical line is the true parameter value. In this case observation

error variance is high (0.09) and process error variance is high (0.09)
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PART 2. APPLICATION OF THE MLEO AND MLEP

Figure 2.36: Correlation between r and K estimates using the MLEP method. We see that

there is less dependency between these parameters comparing with the MLEO method
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PART 2. APPLICATION OF THE MLEO AND MLEP

Table 2.6: Estimates means for the MLEP methods

treatment | r K q sigma2 | Prediction error
2 0.30 | 4476.86 | 0.21 | 0.03 1.20
3 0.38 | 4327.50 | 0.22 | 0.07 1.26
4 0.25 | 3856.85 | 0.20 | 0.09 1.45
5 0.44 | 4279.05 | 0.20 | 0.09 1.38
6 0.45 | 4434.40 | 0.21 | 0.13 1.42
7 0.33 | 4020.72 | 0.17 | 0.18 2.19
8 0.48 | 4312.76 | 0.20 | 0.16 1.55
9 0.49 | 4588.37 | 0.20 | 0.18 1.61
11 0.54 | 3446.75 | 0.23 | 0.03 1.05
12 0.56 | 3570.62 | 0.23 | 0.07 1.12
13 0.81 | 3121.20 | 0.24 | 0.05 0.95
14 0.63 | 3631.42 | 0.22 | 0.09 1.17
15 0.58 | 3987.89 | 0.20 | 0.16 1.34
16 0.79 | 3744.59 | 0.22 | 0.10 1.11
17 0.67 | 3975.13 | 0.19 | 0.17 1.28
18 0.59 | 4635.25 | 0.17 | 0.22 1.60
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PART 2. APPLICATION OF THE MLEO AND MLEP

Table 2.7: Estimates variance for the MLEP methods

treatment | r K q sigma2 | Prediction error
2 0.0383 | 2426363.2572 | 0.0084 | 0.0001 | 0.3296
3 0.0441 | 2304495.2527 | 0.0130 | 0.0006 | 0.4885
4 0.0162 | 1617430.1399 | 0.0054 | 0.0317 | 0.8571
5 0.0430 | 2358062.3854 | 0.0085 | 0.0010 | 0.6836
6 0.0446 | 2705827.5925 | 0.0138 | 0.0250 | 1.0523
7 0.0155 | 1880244.8342 | 0.0058 | 0.0419 | 2.9020
8 0.0406 | 2386795.6493 | 0.0103 | 0.0958 | 1.1479
9 0.0364 | 2768492.0569 | 0.0162 | 0.0034 | 1.4142
11 0.0356 | 1914535.9965 | 0.0086 | 0.0001 | 0.2867
12 0.0392 | 2073786.2460 | 0.0109 | 0.0005 | 0.3583
13 0.0147 | 1515705.0257 | 0.0080 | 0.0003 | 0.1769
14 0.0379 | 2241706.9237 | 0.0099 | 0.0008 | 0.4039
15 0.0355 | 2485580.0988 | 0.0087 | 0.2081 | 0.6744
16 0.0180 | 2544945.5865 | 0.0086 | 0.0011 | 0.2870
17 0.0325 | 2246966.3699 | 0.0089 | 0.1714 | 0.5663
18 0.0330 | 2771472.2824 | 0.0086 | 0.2102 | 1.1358
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PART 2. APPLICATION OF THE MLEO AND MLEP

Table 2.8: Estimates bias for the MLEP methods

treatment | r K q sigma2 | Prediction error
2 0.141 | 476.860 | 0.009 | -0.008 | 0.181
3 0.215 | 327.502 | 0.018 | -0.020 | 0.215
4 0.091 | -143.151 | -0.002 | 0.093 | 1.454
5 0.276 | 279.047 | 0.001 | 0.050 | 1.378
6 0.286 | 434.400 | 0.006 | 0.041 1.415
7 0.167 | 20.716 -0.033 | 0.178 | 2.187
8 0.324 | 312.762 | -0.003 | 0.123 | 1.547
9 0.325 | 588.367 | 0.004 | 0.086 | 1.609
11 0.139 | -53.250 | 0.030 | -0.008 | 0.033
12 0.157 | 70.616 0.026 | -0.018 | 0.072
13 0.412 | -378.805 | 0.040 | 0.046 | 0.949
14 0.229 | 131.418 | 0.017 | 0.046 | 1.170
15 0.181 | 487.889 | -0.003 | 0.070 | 1.343
16 0.390 | 244.589 | 0.015 | 0.101 1.105
17 0.268 | 475.129 | -0.005 | 0.131 1.284
18 0.186 | 1135.252 | -0.027 | 0.126 | 1.598
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Table 2.9: Estimates root mean square error for the MLEP methods

treatment | r K q sigma2 | Prediction error
2 0.24 | 1629.04 | 0.09 | 0.01 0.60
3 0.30 | 1552.98 | 0.12 | 0.03 0.73
4 0.16 | 1279.81 | 0.07 | 0.20 1.72
b} 0.35 | 1560.75 | 0.09 | 0.06 1.61
6 0.36 | 1701.33 | 0.12 | 0.16 1.75
7 0.21 | 1371.38 | 0.08 | 0.27 277
8 0.38 | 1576.27 | 0.10 | 0.33 1.88
9 0.38 | 1764.84 | 0.13 | 0.10 2.00
11 0.23 | 1384.69 | 0.10 | 0.01 0.54
12 0.25 | 1441.79 | 0.11 | 0.03 0.60
13 0.43 | 1288.10 | 0.10 | 0.05 1.04
14 0.30 | 1502.99 | 0.10 | 0.05 1.33
15 0.26 | 1650.34 | 0.09 | 0.46 1.57
16 0.41 | 1613.93 | 0.09 | 0.11 1.23
17 0.32 | 1572.49 | 0.09 | 0.43 1.49
18 0.26 | 2015.01 | 0.10 | 0.48 1.92
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PART 2. APPLICATION OF THE MLEO AND MLEP

2.3.3 Interpretation of results
MLEO

Of course, we expect this model to perform better when o2 = 0 as in that case, the true model
is fitted by maximum likelihood, which should yield consistent and efficient estimators of the
parameters. Without any surprises, the simulation study does confirm this. For treatment

levels 4, 7, 13 and 16 (no process error):

e The proportion of valid samples when % = 0 is always clearly above 80% (in comparison,
it only exceeds 60% for treatments 11 and 14 when o2 > 0). Hence the numerical

optimization of the likelihood function is stable when there is no process error.

e Parameter estimates are, on average, close to their true theoretical values. Moreover,
their root mean squared error (RMSE) are much weaker than at the other treatment

levels.

e The effect of increasing the observation error variance does not have much of an impact

on the bias of the estimators, but it does increase their variability (and thus their RMSE).

e The effect of going from a linearly decreasing to a two-way trip biomass series decreases

the bias, but does not have a systematic effect on the variance.

Though inferences seem to be reasonable for most parameters when there is only process error,
an analysis of the correlations between the maximum likelihood estimators of some pairs of
parameters raises some interesting questions. As shown on Figure 2.37, the r and K parame-
ters are virtually deterministic functions of each other when the CPUE series is nearly linear
(treatments 4 and 7), while they remain very highly correlated, but not as close to perfect
dependency, when the series has a two-way trip (treatments 13 and 16). Actually what we
can conclude from figures 2.37 to 2.39 is that the three parameters r, K and ¢s are barely
distinguishable, but MSY and ¢, are distinguishable when the biomass series has a two-way
trip.

It is difficult to make a good assessment of the effect of the process error in this study because

of the modification to the simulation algorithm that had to be used to prevent the occurrence
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Figure 2.37: This figure shows a scatter plot of the (7, K ) pairs for each of the treatments 4, 7,

13 and 16.
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Figure 2.38: This figure shows a scatter plot of the (7, ¢;) pairs for each of the treatments 4, 7,
13 and 16.
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Figure 2.39: This figure shows a scatter plot of the (m , gs) pairs for each of the treatments
4,7, 13 and 16.
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of negative biomasses. Indeed, it is very difficult to distinguish between bias in parameter
estimates induced by the fact that we are not exactly simulating from the exact SPM anymore
and a real bias of the estimator. Nevertheless, we can see that there is a positive bias for r, a
negative bias for K, a positive bias for ¢; and a positive bias for MSY, and that all these biases
worsen as o2 increases. As for the prediction error, it generally worsens with increasing values

of 02, but this tendency is not systematic. We discuss this problem of simulating with process

error further in Section 2.4.

MLEP

Fitting a SPM with process error by maximum likelihood, though similar in essence to fitting
a SPM with observation error by maximum likelihood, is much more difficult numerically
because of the need to take the natural logarithm of I;(r, K,qs) given by (??). Though in
practice this is not much of a problem because one can “manually guide” the maximization
procedure, for a simulation study of this magnitude, an automatic fix to keep the maximization
going when I} (r, K, qs) takes on a negative value must be programmed. In our case, we used
I*(r, K, qs) = max{0.0001, I;(r, K, qs)} in our implementation. Unfortunately, this fix leads
the Nelder-Mead algorithm to stop at local maxima that do not give the exact maximum
likelihood estimators. Unfortunately, the algorithm does not tell whether the maximum found
is a global or local maximum. Hence, we suspect that the estimates from Section ?? are in
fact a mixture of global and local maximizers of the likelihood function, and hence interpreting
these results would make little sense at this time. Note that our suspicions are reinforced by the
fact that the proportion of samples that yielded valid (i.e., reasonable) values for the estimators

was rather small in the MLEP study.

2.4 Conclusion

What can be concluded from this simulation experiment? The most important conclusion that
we have reached is that the SPM model as parameterized is highly volatile and can, even with

very mild process error, generate biomass series that are completely unrealistic. Figure 2.40
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Figure 2.40: This figure shows simulated biomass series with and without process errors.
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shows typical realizations of biomass series with and without process error. As we can see, the
latter is extremely volatile and some trajectories are unlikely to be observed in practice. Some
authors have circumvented this problem by simulating series with fixed values of the biomasses
at the beginning and at the end of the series (e.g., Punt 2003). Though this allows one to
simulate biomass series that are stable even in the presence of process error, it underestimates
the true variability that underlies the SPM and, hence, variances of estimators or prediction
errors obtained in such simulation studies are seriously underestimated. Our attempt to put a
“floor” on the values that could be taken by the biomasses was not successful, as it biased the
inferences in numerous ways: (i) by forcing the biomass series to go up when it is low, we inflated
the growth rate and this was reflected by strong positive bias in r estimates in the simulations
with process error; (ii) by restraining the possible values of the biomasses, we restrict the
values of the error terms and hence diminish their variance, which implies that the variances
and prediction errors that we have obtained are also underestimated; (iii) discontinuities were
introduced in the likelihood surface, which means that iterative procedures get stuck in local
maxima and cannot find the global maximum.

Nevertheless, in the cases were there was no process error we were able to reach some
interesting conclusions. First of all, a SPM with process error can be fitted, but the observation
error means that the I} (r, K, q;) evaluated at some parameter values can be negative, and hence

traditional optimization methods such as quasi-Newton or Nelder-Mead are not appropriate for
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MLEP. But when the SPM with observation error is fitted to data generated from an SPM
with observation error only, inferences are good. As expected, bias and estimation/prediction
error increase when the biomass series does not have a two-way trip and when the variance of
the observation error increases. We also have that MSY is well estimated and that prediction
of a future value of biomass is not systematically bias, in the sense that the average ratio of
predicted biomass over simulated biomass was not systematically above or below 1. However,
a correlation analysis revealed that the parameters r and K are strongly correlated (virtually
deterministic functions of each other when the there is no two-way trip in the CPUE series) and,
thus, considering a reparameterization of the SPM that would replace the three parameters r,
K and ¢ by two parameters (e.g., in terms of MSY and ¢;) might be relevant.

The previous discussion suggests several avenues for future work. First and foremost, an
algorithm to simulate data from the SPM with process error without needing to put a floor
on the value of the biomasses or without tying the biomass series at times 1 and N must be
derived if we really want to assess if MLEO will still give decent predictions or inferences about

MSY in this case. We can think of a few options to achieve this:

1. Use a fixed series of catches, but replace C; with a random C} between 0 and B;+ B;r(1—
Bt/K) when Ot Z Bt + Bﬂ"(]. - Bt/K)

2. Simulate all catch series from a model where C; would depend on C; 1, B, 1 and/or B;.
3. Use normal rather than lognormal process errors.

Though option 2 seems to be the most natural (the quantity of fish caught in year ¢ is probably
a function of the fish caught in previous years as well as the biomass available to be fished
during these years). However, properties of SPM in the literature have always been studied
based on realized CPUE series. Because of this, option 1 seems to be a promising compromise:
mostly rely on a realized CPUE series, but correct the CPUEs of these years where there are
more fish caught than available. Though option 3 would solve most numerical issues, it would
allow for negative biomasses, which is not realistic. We are currently trying to implement a

suitable version of option 1.
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Second, the numerical aspect of MLEP should be fixed. Indeed, standard numerical maxi-
mization of the log-likelihood function with Nelder-Mead or quasi-Newton methods could not
find the global maximum when fitting the SPM with process error even when the data were
generated according to a SPM without process error. Once again, there are potential solutions

to this problem:

1. Perform a constrained maximization that will only consider values of the parameters for

which I} (r, K,qs) > 0 for all t.
2. Use normal rather than lognormal errors.
3. Reparameterize the model.
4. Use a different type of maximization algorithm.

Option 1 seems to be a difficult task, as the constraint I;(r, K,qs) > 0 for all ¢ is quite
complex. Once again, option 2 might be a good numerical solution, but allowing for normal
errors implies that some I; or B; could be negative, which is not practically possible. We have
already mentioned option 3 in other parts of this report and it should certainly be seriously
considered. Finally, option 4 is an interesting possibility. Indeed, algorithms such as the EM-
algorithm or Gibbs sampling may be adapted to the problem at hand. Though these algorithms
tend to be much slower than Nelder-Mead or quasi-Newton type methods, they have good
robustness properties. Moreover, because they are often used to perform parameter estimation
in contexts where some random variables are not observed, they could be useful here since the
By’s are indeed unobserved random variables. We are currently working on the implementation
maximum likelihood estimation via the EM-algorithm for both MLEP and MLEPO.

In closing, this study shows that the SPM with process error gives highly volatile CPUE
series. This means that without restraining the biomasses, it is very difficult to fit any version
of the SPM to a large proportion of simulated CPUE series that all use a same series of
catches. However if one wants to assess the robustness of the SPM to misspecification of the
error structure, one must be able to simulate valid data with process error and fit the SPM to

these simulated data. Perhaps the model needs to be reparametrized, or perhaps better fitting
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techniques can solve the problems. We are hoping to shed some lights on those issues in a near

future.
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3.1 Introduction

The Surplus Production Model (SPM) is a widely used fish stock population assessment model.
To apply the SPM, all that is required is a series of abundance indices (CPUEs are often used),
and the series of catches related to the years to be assessed. In the report that we submitted
in December 2006 (included as Part ?? of this document), our interests were centered on the
properties of inferences made on SPM parameters by the method of maximum likelihood (we
refer the reader who is not familiar with SPM and/or maximum likelihood estimation for SPM
to Section 2.2). Our objectives were to investigate the bias and variability of the estimators
when SPM with observation error only or process error only were fitted to data simulated
from SPM with observation error and/or process error. Because of technical difficulties arising
when simulating data from SPM with process error (the main difficulty being the generation of
negative biomasses), the properties of estimators were only interpretable when data were sim-
ulated from SPM with observation error only. In that latter case, fitting the SPM model with
observation error only by maximum likelihood generally led to valid inferences on the model
parameters (see Section 2.4 for a detailed interpretation of the simulation results). However,
when fitting SPM with process error only to data simulated from SPM with observation error
only produced numerical problems that invalidated the simulation results: basically, the nu-
merical procedure used to maximize the likelihood function could only find a global maximum
in a limited number of the simulated samples. Hence, the conclusions that could be drawn from
the Fall 2006 simulation study were somewhat limited.

Obviously, our main objectives this winter were to solve the problems that we had stum-
bled upon during the Fall study. More precisely, our objectives were (i) to find a simulation
method that can generate biomass series that remain positive without having to simulate new
series of catches and that keep the exploitation rate stable and (ii) to improve the stability
of the procedure that we use for the numerical maximization of the likelihood function. To
tackle objective (i), we propose to simulate the biomasses from a lognormal distribution that is
conditional on both the previous and next catch, while our approach to objective (ii) is to use
a reparameterization of the SPM parameters. We present these methods as well as the results

obtained in the remainder of Part ??. More precisely, we describe the conditional simulation
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model in Section 3.2.1, while we consider maximization of the likelihood function in Section
3.2.2. We present the simulation results and interpretations in Section 3.3 and give our main

conclusions and research priorities for the April-June period in Section 3.4.

3.2 Preliminaries

3.2.1 New SPM simulation method

The usual SPM is based on two equations, one for the biomass (B;) dynamic, one for the

observations (I;):

B
Bt+1 = Bt + TBt (1 — ?) — Ct7 (31)

Note that even if this model is using two series of data (the abundance indices I;, and the
catches Cy), only the [; are explicitely modeled (eq. (3.2)); the C; are considered a sequence of
fixed constants.

In practice, the relationships given by (3.1) and (3.2) are not exact. Hence, random noise
can be added to make the model closer to reality. Noise that is added to (3.1) is referred to
as process error while noise added to (3.2) is referred to as observation error or measurement
error. One common means of including process and observation error is to add a multiplicative
lognormal error term to each of (3.1) and (3.2). Let g1 and &, t = 1,2,... be independent

zero mean normal random variables with Var[e;] = 02 and Var[g] = 72.

B
BtJr]_ = {Bt + ?"Bt <1 — ?t) — Ct} esttt (33)

and with observation error (3.2) is

Then with process

error (3.1) becomes

It = theét. (34)
Note that when there is no observation error (i.e., 72 = 0 and we observe [; without error), we

can replace By by I;/q in (3.3) to get

r Et+1
It-‘,—l = {]t(1+7”) — q—KItQ—qct}G +1
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When simulating from a SPM with process error using a fixed series of catches C}, a problem
may arise: extinction of the simulated population (more precisely, negative values for the
biomasses can be simulated). Indeed, consider the standard way to simulate from a SPM with

process error only:

1. For fixed r, K and o2, simulate
Bl = Ke®!

B = {Bt,1 +rB_q (1 — %) — Ct} eat, t>1

2. Multiply the B; series by the fixed ¢ parameter to obtain the simulated series of abundance

indices I;.

Because the simulated biomass at time ¢ depends only on the catch at time ¢ — 1, it is possible
to simulate a biomass at time ¢ that is small in comparison to the catch at time ¢ (recall that
catches are fixed and only biomasses are simulated), thereby producing a negative biomass at
time ¢ + 1.

One obvious means of solving this problem would be to use simulated catches, with the
distribution of C; depending on the value of B;. However this would require a model for the
catch as a function of the biomass. Furthermore, the observed series of catches give information
about the type of biomass trajectory that is realistic and thus biomass series simulated should
be such that an actually observed series of catches is possible. For these reasons, we prefer to
keep the catches fixed and to include information about the catches at times ¢t — 1 and ¢t when
simulating the biomass value at time t. In order to achieve this, we slightly modify the SPM
by modeling the exploitation rate (the ratio Cy/B;) of the population over time. We suppose
that the exploitation rates have the same mean in all years, but we let them be random. To do

so, we first rewrite (3.3) as

B;_
log(B)|Cy—1,B;-1 ~ N {bg {Bt—l +1rBi_4 <1 — ;{1) — Ct_l} , 02] , (3.5)

where “X ~ N(u,0?)” means that X follows a normal distribution with mean p and variance

o2. Then, we assume lognormal exploitation rates, C;/B; = ¢et with &f ~ N(0,0*?), to obtain
log(Cy)|B; ~ N {log(¢) + log(B,), o**}. (3.6)
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We can then get the joint distribution of log(B;),log(C})|Bi—1, Ci—1 from (3.5) and (3.6):

log By log () o? o2
Ot—h Bt—l ~ N2 ) 9 ) (37)
log C, log(é) + log(u)  \ o® o
where u; = B;_1 + 1By (1 — B};I) — (;_1. Now because the C; are fixed, we are interested

in the distribution of By given Cy, C;_1, B;_1, which we get from (3.7):
o? o?
08(5)|Ct, Corr, Bt~ ¥ 1) + 5 (0g(C3) ~ log(e) — ostu)}. o* (1= 57—

(3.8)
Note that if we let p = ;—,?2, the weight given to constant exploitation rate is p/(1 + p). This
means that for a small p (exploitation rate variance is large compared to process error variance),
the model is less driven by the constant exploitation rate hypothesis.

Once the biomass series has been simulated, then we can easily generate the series of abun-
dance indices by setting I, = ¢B; when there is no observation error and by simulating the &;
from the N(0,7?%) distribution and setting I; = qBye® when there is observation error.

Using (3.8) with a fixed series of C; does not guarantee that a series of biomasses will
never dip below zero. However, the probability of generating negative biomasses is greatly
diminished in comparison to simulation from (3.3). The mean biomass trajectories based on
1,000 simulations from model (3.8) with various values of p = ;’—22 are given in Figure 3.1. The
“%ext” values represent the proportion of trajectories that dip below 0. The corresponding
mean exploitation rates, Cy/B;, are depicted in Figure 3.1. As we can see, the greater rho,
the more constant the exploitation rate. However, with a larger rho, the shape of the biomass
series will mimic that of the C, while a smaller rho allows the simulated biomass series to have

a shape closer to that prescribed by the SPM (3.1). We also get very few negative biomasses;

in the cases shown in the figure, only 1 trajectory out of 1,000 when rho took on smaller value.
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Figure 3.1: These plots show the mean of 1,000 simulated biomass trajectories from model (3.8)
for various values of o and with the fixed series of Cy on Namibian Hake from Punt (2003),

K =3500,r=0,4,q=1, 0 = 0.01, ¢ = 0.15 and different values of p = ® . The values of r

o*2

and K parameters were chosen to give the data a two-way trip shape although it doesn’t seem
so. The reason why the biomass series seems linear is that the two way-trip relies more on the
catches series than the parameters. Note that as p increases, the mean biomass tend to follow
the series of C;/¢ and the mean exploitation rates tend to stabilize around ¢. However, when

p is too large, we are not simulating from an SPM but from eq(3.6).
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We think that this simulation method gives a better idea of the variability in the biomass
trajectories under the SPM than the method used by Punt (2003). Indeed, the latter assumes
fixed values for the biomasses at the first and last times of the biomass trajectory. While this
has the advantage of keeping the biomasses positive, it has the disadvantage of simulating highly
similar biomass trajectories, which is not consistent with a SPM with lognormal process error.
Hence, a simulation study that uses the strategy of Punt (2003) may seriously underestimate

the variability in the parameter estimators.

3.2.2 Maximization of the likelihood function

The main objective of our statistical analyses is to make inferences on the parameters of the
SPM, more precisely the parameters r, K, g, MSY = rK/4 and the prediction of the biomass
in the year following the last data point. Several methods are available to carry out those
inferences, but here we are interested in maximum likelihood based approaches (see rationale
in Section 2.1). In this study, we investigate the quality of maximum likelihood estimation
when fitting a SPM with observation error only (MLEO) and when fitting a SPM with process
error only (MLEP). We will not give a detailed account of these procedures in this section, as
they are already described in detail in Section 2.2.2.

When performing maximum likelihood estimation, we must find the values of the model
parameters that maximize the likelihood function. In the case of the SPM, in both MLEO and
MLEP, the likelihood function is relatively complex and its maximization cannot be done in
closed form; we must resort to numerical optimization. In the Fall, we had encountered nu-
merous problem with the numerical optimization, which we did using the Nelder-Mead simplex
algorithm as implemented in the optim() function of R (R Development Core Team, 2006).
We had chosen the simplex algorithm because it is not based on the derivatives of the ob-
jective function with respect to its parameters and, hence, is more robust in cases where the
objective function may not be smooth in all parameters. In our optimization in the Fall, we
did not restrict the search for the maximum over the possible parameter values, but rather let
the algorithm scan the entire (—oo, 00) range for all parameters. This winter, we modified the

parametrization of the SPM so that the simplex algorithm would only search for a maximum
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over the proper parametric space. More precisely, we rewrote (3.1) and (3.2) as

1+er
I, = e'B, (3.10)

e B
By = B+ B, (1 — 6%) —Cy; (3.9)

and then maximized the likelihood function, with this new parametrization, using the Nelder-
Mead algorithm (Nelder and Mead, 1965) implemented in the optim( ) function of the pack-
age R. The maximum likelihood estimators under the original parametrization are easily re-
trieved by computing r = exp(r’)/(1 + exp(r’)), ¢ = exp(¢’) and K = exp(K’). These
transformations guarantee that » € (0,1) and ¢, K > 0, their range of possible values. An-
other option that we considered to solve the optimization problem was to use the Newton-
Raphson algorithm with the gradient of the log-likelihood function provided. Finally, we
have also redefined what we term a “valid optimization”. In the Fall, it was defined as an
optimization yielding parameter estimates in a certain range. This time, a “valid optimiza-
tion” is an optimization which gives the same parameter estimates when starting from four
different starting vector points, regardless of the values obtained for the estimates. The
four starting vector points were chosen relatively to the r and K parameters, with com-
binations of values that are greater or smaller than the true values used for simulation :
{(smaller,smaller),(smaller,greater),(greater,smaller),(greater,greater) }. With this new defini-
tion of a valid sample, a few simulation runs suggested that the reparameterized simplex gives a
higher proportion of valid estimators than Newton-Raphson, so the former is the method used

in the simulation study described in Section 3.3.

3.3 Simulation study

3.3.1 Study design

This simulation study has two objectives: (i) to determine if one of MLEO and MLEP is better
than the other for making inferences about SPM parameters when data are generated with
process error only and with both process and observation error; (ii) to assess the impact of the

level of variability in the process error, the exploitation rate and the observation error on the
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various parameter estimates. To do so, we have run a complete 23 factorial experiment: 1,000
simulations run at each of 8 combinations of high and low values of the variance parameters of
the three sources of variability. More precisely, we have run the SPM given by equations (3.8)
and (3.4), with » = 0.4, K = 3,500, ¢ = 1, ¢ = 0.15 and the first 23 years of observation of the
Namibian Hake catch series in all simulations, and with the values specified in Table 3.1 for o2,
o*? and 72. Note that the values chosen for the parameters were obtained by looking at what
would reasonable values be by fitting the MLEO to the Namibian Hake data. Also, because
only a small amount of observation error is enough to make MLEP estimates completely wrong

(see Chapter III), we used a small variance (72).

Table 3.1: This table shows the 8 combinations of SPM variability parameters.

Treatment | o2 o | p 72
1 0.01 | 0.30 | 0.033 | 0.00
2 0.01 | 0.30 | 0.033 | 0.01
3 0.04 | 0.30 | 0.133 | 0.00
4 0.04 | 0.30 | 0.133 | 0.01
5 0.01 | 0.50 | 0.020 | 0.00
6 0.01 | 0.50 | 0.020 | 0.01
7 0.04 | 0.50 | 0.100 | 0.00
8 0.04 | 0.50 | 0.100 | 0.01
9 0.01 | 0.15 | 0.067 | 0.00
10 0.01 | 0.15 | 0.067 | 0.01
11 0.04 | 0.15 | 0.267 | 0.00
12 0.04 | 0.15 | 0.267 | 0.01

We start by giving the raw simulation results in Subsection 3.3.2 in the form of plots and

tables, and defer their interpretation to Subsection 3.3.3.

IRefer to Part ?? for results about SPM without process error (02 = 0).
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PART 3. MORE ANALYSIS ABOUT MLEO AND MLEP

3.3.2 Results

We first give a series of plots that show overlays of density estimates of the maximum likelihood
estimators of some SPM parameters of interest when fitting MLEO and MLEP to the same
simulated samples. Additional information is provided in the legends given in some of the plots:
proportion of valid optimizations for each of MLEO and MLEP, coverage proportion of nominal
approximate 95% likelihood ratio intervals and correlation between a predicted and simulated
terminal biomass. For comparability purposes, the plots are based on the samples for which
both MLEO and MLEP gave valid estimators. Note that the prediction error refers to the
difference between the simulated terminal biomass and the estimated terminal biomass. What
we are searching for is the nearest mean to zero and the smaller variance around that mean.

Finally, the last figure of this section is presenting a comparison of the correlation between r

and K for the MLEO and MLEP.
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Figure 3.2: These plots show kernel density estimates of the parameter estimates for treatment
1(r=04, K=23,500,¢g=1,7*=0, 02 =0.01 and 0* = 0.3) using the MLEO and MLEP
methods. “Pct valid” gives the proportion of valid optimizations, “% cov” gives the coverage
proportion of 95% likelihood ratio intervals and “cor” is the correlation between the predicted
and simulated values of a terminal biomass. The solid blue lines and dotted red lines correspond

to MLEP and MLEO means, respectively, while the black vertical lines are the true parameter

values.
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Figure 3.3: These plots show kernel density estimates of the parameter estimates for treatment
2 (r =04, K = 3,500, ¢ = 1, 72 = 0.01, 0> = 0.01 and ¢** = 0.3) using the MLEO and
MLEP methods. “Pct valid” gives the proportion of valid optimizations, “% cov” gives the
coverage proportion of 95% likelihood ratio intervals and “cor” is the correlation between the
predicted and simulated values of a terminal biomass. The solid blue lines and dotted red lines
correspond to MLEP and MLEO means, respectively, while the black vertical lines are the true

parameter values.
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Figure 3.4: These plots show kernel density estimates of the parameter estimates for treatment
3(r=04, K=23,500,¢q=1,7>=0, 0 = 0.04 and 0*? = 0.3) using the MLEO and MLEP
methods. “Pct valid” gives the proportion of valid optimizations, “% cov” gives the coverage
proportion of 95% likelihood ratio intervals and “cor” is the correlation between the predicted
and simulated values of a terminal biomass. The solid blue lines and dotted red lines correspond

to MLEP and MLEO means, respectively, while the black vertical lines are the true parameter

values.
Density of r estimates Density of K estimates
using MLEO and MLEP using MLEO and MLEP
e 4
o I ]
] ]
n N 1 — 1
o | RN ' | - - MLEO; Pct valid= 0.651
z o { z 3 . | = MLEP; Pctvalid= 0.828
% _ % o , — True
o o | [a] M |
- ! a [
| T o
4 . . i
o | ! =g ! ———— - S
© M — T T T g T T
0.0 0.2 0.4 0.6 0.8 1.0 10000 15000
r K
NOTE: there is some estimates > 15000
Density of g estimates Density of sigmaSq estimates
using MLEO and MLEP using MLEO and MLEP
]
[ 1
8 4
— ]
|
o |
g g2 8- .
c c |
[ [
[a] [a) |
o _| I
0 1
- R S
- - ! oo —
o E— L
T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06
q sigmaSq
Density of MSY=rK/4 estimates Density of Prediction errors
using MLEO and MLEP using MLEO and MLEP
4 < - .
© - - MLEO; MSY % cov=0.31 |
8 - —— MLEP; MSY % cov= 0.47 1
=) ™ |
| - - MLEO; cor=0.55
%. _ %‘ | —— MLEP; cor=0.72
g & g ™7 "
o 9o [a] d
o I
_ = |
I
8 B ?_\ |
S —- e ———— o - A —
o T T T T T T T T T T
0 600 800 1000 1200 -1.0 -0.5 0.0 0.5 1.0 15
MSY Prediction error

89



PART 3. MORE ANALYSIS ABOUT MLEO AND MLEP

Figure 3.5: These plots show kernel density estimates of the parameter estimates for treatment
4 (r =04, K =3,500, ¢ =1, 7> = 0.01, 0% = 0.04 and ¢*? = 0.3) using the MLEO and
MLEP methods. “Pct valid” gives the proportion of valid optimizations, “% cov” gives the
coverage proportion of 95% likelihood ratio intervals and “cor” is the correlation between the
predicted and simulated values of a terminal biomass. The solid blue lines and dotted red lines
correspond to MLEP and MLEO means, respectively, while the black vertical lines are the true

parameter values.
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Figure 3.6: These plots show kernel density estimates of the parameter estimates for treatment
5(r =04, K=23,500,¢q=1,7>=0, 0 =0.01 and 0*? = 0.5) using the MLEO and MLEP
methods. “Pct valid” gives the proportion of valid optimizations, “% cov” gives the coverage
proportion of 95% likelihood ratio intervals and “cor” is the correlation between the predicted
and simulated values of a terminal biomass. The solid blue lines and dotted red lines correspond

to MLEP and MLEO means, respectively, while the black vertical lines are the true parameter

values.
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Figure 3.7: These plots show kernel density estimates of the parameter estimates for treatment
6 (r =04, K = 3,500, ¢ =1, 72 = 0.01, 0> = 0.01 and ¢** = 0.5) using the MLEO and
MLEP methods. “Pct valid” gives the proportion of valid optimizations, “% cov” gives the
coverage proportion of 95% likelihood ratio intervals and “cor” is the correlation between the
predicted and simulated values of a terminal biomass. The solid blue lines and dotted red lines
correspond to MLEP and MLEO means, respectively, while the black vertical lines are the true

parameter values.
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Figure 3.8: These plots show kernel density estimates of the parameter estimates for treatment
7(r=04, K=3,500,¢q=1,72=0, 0> =0.04 and 0** = 0.5) using the MLEO and MLEP
methods. “Pct valid” gives the proportion of valid optimizations, “% cov” gives the coverage
proportion of 95% likelihood ratio intervals and “cor” is the correlation between the predicted
and simulated values of a terminal biomass. The solid blue lines and dotted red lines correspond

to MLEP and MLEO means, respectively, while the black vertical lines are the true parameter

values.
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Figure 3.9: These plots show kernel density estimates of the parameter estimates for treatment
8 (r =04, K = 3,500, ¢ = 1, 72 = 0.01, 0> = 0.04 and ¢** = 0.5) using the MLEO and
MLEP methods. “Pct valid” gives the proportion of valid optimizations, “% cov” gives the
coverage proportion of 95% likelihood ratio intervals and “cor” is the correlation between the
predicted and simulated values of a terminal biomass. The solid blue lines and dotted red lines
correspond to MLEP and MLEO means, respectively, while the black vertical lines are the true

parameter values.
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Figure 3.10: These plots show kernel density estimates of the parameter estimates for treatment
9 (r=04, K=3,500,¢g=1,72=0, 02 =0.01 and 0** = 0.15) using the MLEO and MLEP
methods. “Pct valid” gives the proportion of valid optimizations, “% cov” gives the coverage
proportion of 95% likelihood ratio intervals and “cor” is the correlation between the predicted
and simulated values of a terminal biomass. The solid blue lines and dotted red lines correspond

to MLEP and MLEO means, respectively, while the black vertical lines are the true parameter

values.
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Figure 3.11: These plots show kernel density estimates of the parameter estimates for treatment
10 (r =04, K = 3,500, ¢ = 1, 72 = 0.01, 0? = 0.01 and ¢** = 0.15) using the MLEO and
MLEP methods. “Pct valid” gives the proportion of valid optimizations, “% cov” gives the
coverage proportion of 95% likelihood ratio intervals and “cor” is the correlation between the
predicted and simulated values of a terminal biomass. The solid blue lines and dotted red lines
correspond to MLEP and MLEO means, respectively, while the black vertical lines are the true

parameter values.
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Figure 3.12: These plots show kernel density estimates of the parameter estimates for treatment
11 (r=04, K =3,500, ¢=1, 7> =0, 0> = 0.04 and ¢*? = 0.15) using the MLEO and MLEP
methods. “Pct valid” gives the proportion of valid optimizations, “% cov” gives the coverage
proportion of 95% likelihood ratio intervals and “cor” is the correlation between the predicted
and simulated values of a terminal biomass. The solid blue lines and dotted red lines correspond

to MLEP and MLEO means, respectively, while the black vertical lines are the true parameter

values.
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Figure 3.13: These plots show kernel density estimates of the parameter estimates for treatment
12 (r =04, K = 3,500, ¢ = 1, 72 = 0.01, 0? = 0.04 and ¢** = 0.15) using the MLEO and
MLEP methods. “Pct valid” gives the proportion of valid optimizations, “% cov” gives the
coverage proportion of 95% likelihood ratio intervals and “cor” is the correlation between the
predicted and simulated values of a terminal biomass. The solid blue lines and dotted red lines
correspond to MLEP and MLEO means, respectively, while the black vertical lines are the true

parameter values.
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Table 3.2: This table presents the mean (standard error) of the valid estimates from the MLEO
and MLEP methods. The values in square brackets next to the parameter names are the

true/target values.

Tr. | Method | r [0.4] K [3500] q [1] o2 (or 72) MSY [350] | Pred Err [0]
MLEP | 0.45(0.2) | 3936(2225) | 1(0.3) | 0.0087(0.003) | 394(200) | -0.0087(0.1)
" MLeO 0.36(0.2) | 4727(2807) | 0.91(0.4) | 0.0088(0.004) | 329( 97) | -0.0084(0.1)
MLEP | 0.58(0.2) | 3881(3147) | 1.0(0.4) | 0.023(0.007) | 524(304) | -0.039(0.2)
® | MLEO 0.35(0.2) | 4923(3089) | 0.9(0.4) | 0.017(0.006) | 325(120) | -0.020(0.2)
MLEP | 0.47(0.2) | 4644(3505) | 0.87(0.4) | 0.034(0.01) | 494(404) | -0.053(0.2)
? MLEO 0.28(0.2) | 5299(3054) | 0.82(0.5) | 0.033(0.01) | 265(127) | -0.039(0.3)
L | MLEP | 053(02) | 4389(3203) | 0.9(0.4) | 0.049(0.02) | 527(375) | -0.049(0.2)
MLEO | 0.30(0.2) | 5172(3013) | 0.83(0.5) | 0.043(0.02) | 275(151) | -0.0037(0.3)
MLEP | 0.47(0.2) | 3804(2426) | 1.0(0.4) | 0.0087(0.003) | 401(188) | -0.0084(0.1)
? | MLEO 0.38(0.2) | 4627(3167) | 0.97(0.4) | 0.0089(0.004) | 334(102) | -0.00015(0.1)
MLEP | 0.6(0.2) | 3485(2135) | 1.1(0.4) | 0.023(0.007) | 489(302) | -0.036(0.2)
* | MLEO 0.39(0.2) | 4331(2641) | 1.0(0.4) | 0.018(0.006) | 327( 91) | -0.024(0.2)
MLEP | 0.5(0.2) | 4527(5610) | 0.95(0.4) | 0.034(0.01) | 491(489) | -0.031(0.2)
" | MLEO 0.34(0.2) | 4635(2818) | 0.96(0.5) | 0.033(0.01) | 280(101) | -0.025(0.3)
MLEP | 0.53(0.2) | 4409(3156) | 0.94(0.4) | 0.048(0.02) | 528(384) | -0.041(0.2)
® | MLEO 0.33(0.2) | 4790(2976) | 0.94(0.5) | 0.042(0.02) | 274(118) | 0.011(0.3)
MLEP | 0.39(0.2) | 4347(1953) | 0.87(0.3) | 0.009(0.003) | 366(150) | -0.013(0.1)
Y MLEO 0.27(0.2) | 5888(3475) | 0.72(0.4) | 0.009(0.004) | 294( 96) | -0.0018(0.1)
MLEP | 0.54(0.2) | 4219(3135) | 0.93(0.4) | 0.024(0.008) | 538(468) | -0.039(0.2)
Y \LEo 0.27(0.2) | 5852(3421) | 0.72(0.3) | 0.018(0.007) | 298(106) | -0.011(0.2)
MLEP | 0.41(0.2) | 5507(4001) | 0.71(0.4) | 0.038(0.01) | 494(396) | -0.046(0.2)
" iLeo 0.18(0.2) | 6554(3317) | 0.59(0.3) | 0.037(0.02) | 221(129) | 0.008(0.2)
MLEP | 0.46(0.2) | 5219(4259) | 0.72(0.4) | 0.053(0.02) | 552(511) | -0.078(0.3)
2 MLEo 0.18(0.1) | 6462(2971) | 0.58(0.3) | 0.046(0.02) | 213(100) | 0.009(0.3)
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Table 3.3: These tables represent summary statistics for the 6 parameters. MSE stands for
standardized Mean Square error which is E(f — 0)2/62 while MAE stands for standardized
Mean Absolute Error which is E| — 0|/0. For the Prediction error, we have not used the
standardization because § = 0. In this particular case M SE = E(é —0)?

and MAE = E| — 0|

r o? (or 72) MSY Err Pred
Tr. | Method

MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE
MLEP | 0.21 | 036 |0.42 | 035 |0.12 |0.28 |0.088 |0.25 | 0.34 | 0.25 | 0.011 | 0.085

! MLEO |0.24 |04 0.77 1054 |0.18 | 035 |0.17 |034 |0.08 |02 0.019 | 0.11

MLEP | 0.37 | 0.5 0.82 | 0.41 0.17 | 0.33 2.2 1.3 1.5 0.53 | 0.031 | 0.14

? MLEO |0.24 (041 |[094 |0.59 |0.19 |036 |092 |0.77 |0.12 |0.21 |0.033|0.14

MLEP | 0.25 | 04 1.1 0.55 | 0.18 | 035 |0.091]025 |15 0.56 | 0.047 | 0.17

’ MLEO |0.35 | 0.51 | 1.0 0.68 |0.25 | 042 |0.16 |0.34 |0.19 |0.34 |0.08 | 0.22

MLEP |0.32 | 045 |0.9 0.52 | 019 | 035 |0.2 0.35 |14 0.58 | 0.056 | 0.19

! MLEO |0.34 | 051 |097 |0.66 |0.25 |0.42 |O0.2 033 023 | 034 |0.074|0.21
MLEP |0.21 | 036 |0.49 |034 |0.13 |0.29 |0.092]0.25 |031 |0.26 |0.011 | 0.084

° MLEO |0.24 | 039 |[092 |054 |0.19 |[035 |0.16 |0.33 |0.087|0.2 0.019 | 0.11

MLEP | 0.44 | 054 |0.37 | 035 |0.19 | 035 |22 1.3 0.9 0.44 | 0.030 | 0.13

‘ MLEO |0.24 |04 0.63 | 048 | 0.2 036 |1 0.8 0.073 | 0.19 | 0.032 | 0.14

MLEP | 0.30 | 0.44 | 2.7 0.56 | 0.19 | 035 |0.096 | 0.26 2.1 0.52 0.044 | 0.16

! MLEO | 0.35 | 0.5 0.75 | 058 |0.26 |042 |0.16 |0.34 |0.12 | 0.28 | 0.081 | 0.22

MLEP |0.33 | 047 |0.88 | 0.53 |0.20 | 037 |0.2 0.33 | 1.5 0.58 | 0.063 | 0.19

i MLEO | 0.35 | 0.5 0.86 | 061 |0.25 |042 |0.17 |0.32 |0.16 | 0.30 | 0.076 | 0.22
MLEP |0.19 | 035 |0.37 | 038 |0.11 |0.27 | 0.087 | 0.24 | 0.19 | 0.25 | 0.011 | 0.083

! MLEO |0.30 | 047 | 1.5 0.78 | 0.2 0.38 | 016 |0.33 |O0.1 0.25 | 0.019 | 0.11

MLEP | 0.34 | 047 | 0.84 | 0.45 0.15 | 0.31 2.5 14 2.1 0.6 0.029 | 0.13

0 MLEO | 0.28 | 0.45 1.4 0.76 | 0.2 0.38 1.1 0.81 0.11 |0.26 | 0.031 | 0.14

MLEP | 0.20 | 0.37 1.6 0.71 0.21 | 0.39 | 0.093 | 0.24 1.4 0.58 | 0.042 | 0.16

H MLEO | 043 | 0.6 1.7 093 |0.28 |047 |0.17 |0.33 |0.27 |044 | 0.061 | 0.19

MLEP | 0.22 | 037 | 1.7 0.64 | 021 |0.38 |027 |041 |25 0.67 | 0.071 | 0.20

= MLEO | 043 | 0.6 1.4 0.9 0.27 | 046 |0.23 |036 |024 | 043 |0.082 | 0.22
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PART 3. MORE ANALYSIS ABOUT MLEO AND MLEP

Figure 3.14: This plot shows the correlation between r and K for the estimates in treatment 3.
We do not present results for other treatments because they are very similar. The black solid

line represents the relation MSY = rK /4 or more precisely K = 4 % 350/r.
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3.3.3 Interpretation of results

We can first try to compare the performance of MLEO and MLEP by interpreting Figures
3.2-3.13. Clearly, when 0*? = 0.15 (Figures 3.10-3.13) (and hence the shape of the biomass
trajectory is close to that of the catch series), MLEO is way off the mark and MLEP is a clear
winner. This is probably due to the fact that the MLEP is based on the simulation model.

Facts that are common to all other cases (Figures 3.2-3.13) include
e Estimates of K are better with MLEP than with MLEO.
e Estimates of r are better in terms of bias with MLEO than with MLEP.

e The terminal biomass predicted by MLEP is more correlated with the biomass simulated

from the model than the terminal biomass predicted by MLEO.

e Estimates of r and K are still highly correlated (see Part ?7). The correlation pattern is

also stronger with the MLEQO.
Then there are conclusions that can be drawn in most, but not all, of the first 12 figures:
e The proportion of valid estimates is greater with MLEP than MLEO.
e Estimates of ¢ are better with MLEP than with MLEO.

e MLEO is better at giving a point estimate of MSY but likelihood ratio intervals have
slightly better coverage with MLEP (though neither method yields coverage that is any-

where near the 95% nominal level).
Finally, some other remarks inspired by Figures 3.2-3.9:

e MLEP is very close to the true model when 72 = 0. Not surprisingly, in those cases

MLEP seems to get better than MLEO as 02 increases.

e As we add observation error, estimators of r under MLEP deteriorate. Estimators of the
other parameters are also affected, but not as badly. Note that when 72 > 0, MLEP’s
estimate of 02 is actually an estimate of roughly o2 + 72, which is what transpires from

Figures 3.3, 3.5, 3.7 and 3.9.
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Now we can assess the effect of the three variability parameters from the tables.

e Effect of 02: When the variability in process error increases, the bias in the parameter
estimates generally increases except for parameter r in the case of MLEP and r and M SY
in the case of MLEO. The MSE/MAE of all parameter estimates tend to dramatically

increase for MLEP and moderately increase for MLEO.

e Effect of 02 Going from 0*? = 0.3 to 0*?> = 0.5 did not have much of an impact on

any parameter estimate. However going 0*? = 0.3 to 0*? = 0.15 induced serious bias in

MLEO.

e Effect of 72: When we go from no observation error to small observation error, there is a
small increase in the bias of the r and M SY estimates under MLEP and a major increase
in the MSE/MAE of all estimates under MLEP; bias and MSE/MAE of parameters under
MLEO barely change.

3.4 Discussion

The main conclusions that can be drawn from this report are that

1. Restricting the parameters to the proper parameter space when maximizing the likelihood
function greatly helps in getting valid estimators under both MLEO and MLEP. It is
worth noting that the number of valid estimations was almost always slightly greater
with MLEP than with MLEO, which is not surprising as MLEP was closer to the true
model from which the data were simulated than MLEO.

2. Conditioning on the subsequent catch greatly limits the number of biomass trajectories

that dip below zero during simulations.

3. The impact of conditioning on the subsequent catch by fixing the exploitation rates de-
pends on the variability allowed in the exploitation rates. If the variability is very small,
then the simulated biomass series follow the catch series more closely than the SPM model

and the parameter estimates exhibit more bias. This seems to be more of a problem with

MLEO than with MLEP.
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. Except in the case 0*? = 0.15, MLEO was surprisingly robust to process error, especially

in point estimation of r and MSY.

. Coverage of likelihood ratio intervals under both MLEO and MLEP was always well below
the nominal 95% level, and was usually slightly better with MLEP than with MLEO. Is
this due to the fact that the chi-square with one degree of freedom approximation to
the distribution of the likelihood ratio statistic was used despite the small sample of 23

observations?

. Comparison of the performance of MLEO and MLEP on the basis of the correlation
between simulated and predicted biomasses is of little value, as the model from which
biomasses are simulated is almost the model on which MLEP is based. But one could
argue that with process error, MLEP seems to be slightly better at predicting the next

biomass than MLEO in most of the cases considered.

. The correlation between r and K seems to still be a problem. The results suggest that

the data are more informative in terms of the MSY than r and K.

These conclusions raise a few questions, such as why is MLEO so good at estimating r and

MSY , or can fitting a model with two errors (observation and process) help in getting better

confidence interval coverage? Thus, as future work, our first priority will be on implementing

maximum likelihood estimation of SPM with both process and observation error. Perhaps this

will enable us to take advantage of the good properties of both models, as well as to get better

coverage of the confidence intervals. Then, the next step will consist in modifying the methods

such that they can handle misreported catches.
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4.1 Introduction

The purpose of this report is to present the results of simulation studies that were conducted to
validate the approach proposed by Hammond and Trenkle (2005) (henceforth referred to as HT)
to estimate the parameters of the surplus production model (SPM). These authors propose a
method that takes into account the fact that reported landings are usually a lower bound to the
true size of the catches. To make inferences about the model and population parameters under
this censored-catch! approach, they rely on Bayesian inference methods. Our main objective is
to investigate the overall validity of this approach by simulation; proceeding in this manner is
appropriate since (i) theoretical properties of estimators in this context are difficult to derive
and, at best, will be based on asymptotic results (i.e., assuming very large samples) and (ii)
by simulating the model, we know the true parameter values and we are thus able to directly

assess the accuracy of the inferences.

4.1.1 Specific objectives

We divide our investigation of the HT approach into two main objectives:
1. To assess whether the censored-catch approach is efficient.
2. To validate the use of a Bayesian approach.

In order to achieve objective 1, we simulated data under three setups: (i) SPM with no misre-
porting (i.e., catches and landings equal); (ii) very volatile misreporting (i.e., landings represent
a proportion of catches, with this proportion varying between 40% and 100%, as in HT); (iii)
volatile misreporting (i.e., landings represent a proportion of catches, with this proportion
varying between 62.5% and 70%). Three different models were fitted to the simulated datasets
by Bayesian inference: (a) a regular SPM that does not take misreporting into account; (b)
the SPM proposed by HT, which assumes that catches are a function of fishing effort and are

censored between landings and twice the landings; (c) same as HT, but without taking fishing

'In statistics, “censoring” refers to the fact that only partial information on the value of an observation is
available, not its actual exact value. In the catch vs landings example, the true catch might not be known, but

the reported landings certainly give a lower bound to the value of the true catch.
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effort into account. All the simulation details (models, results) as well as our analysis of these
results are given in Chapter 3. Though no general conclusion can be drawn, it looks as though
the HT method works best if the catches are indeed misreported, while both the HT method
and the standard SPM work well when there is no misreporting.

To tackle objective 2, we studied the sensitivity of the inferences to the choice of prior
distributions. The rationale behind this idea is that if parameter estimators are highly sensitive
to changes in prior distributions, this implies that the data do not contain enough information to
conduct precise inferences about these parameters. If this is the case, then frequentist inference
methods (such as maximum likelihood) or Bayesian inference based only on uninformative priors
might be more appropriate. In order to do so, we fitted a standard SPM to the dataset on
South Atlantic albacore tuna (1967-1989) presented by Meyer and Millar (1999) using several
combinations of prior distributions for the various parameters of the model; these priors were
derived by modifying the mean and variance of the prior distributions used in the Meyer and
Millar (1999) analysis. The main conclusion of this part of the study is that some of the SPM
parameters are indeed sensitive to the specification of the prior distributions.

The remainder of this report is organized as follows. Background information on SPM and
Bayesian inference are given in Chapter 2. A simulation study carried out to compare the effect
of correction for misreporting in SPMs is described and analyzed in Chapter 3. The assessment
of the sensitivity of inferences to prior distributions is done in Chapter 4. A discussion of the

results as well as ideas for future investigations conclude the report in Chapter 5.

4.2 Surplus production model and Bayesian estimation

In this chapter we give background information on the SPM and Bayesian estimation methods

that will be used in the two studies of chapters 3 and 4.

4.2.1 The Surplus Production Model (SPM)

We investigate the Schaefer annual SPM,
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B
Bt+1 = Bt —|— /r‘Bt (1 - Et) - Ct, (41)

where By represents the biomass (e.g. 1000 tons) in year ¢, r is the intrinsic population growth
rate parameter, K is the virgin population biomass (or the biomass when the population is in
equilibrium) and C; represents the catches in year ¢ (1000 tons).

Stock biomass usually cannot be measured explicitly to estimate the r and K parameters
n (4.1). Additional information is required to estimate these parameters. Often a CPUE time
series is used, but a research survey biomass index is also commonly used. We need a second

equation to include the information provided by a survey index,

It = qut, (42)

where [; corresponds to the survey index at time ¢, and ¢, represents the fish catchability in
the survey. The parameters to estimate are r, K and gs.
The above model is deterministic; that is, it does not include any error. However, we

consider at least to kinds of error:

1. observation errors (within the CPUE equation (4.2)),

2. process errors (within the dynamic equation (4.1)).

The observation errors imply that the surveys are not perfect while the process errors imply
that the SPM cannot exactly reflect the reality.

We consider the same setting as HT; that is, an SPM model with lognormally distributed
observation errors and normally distributed process errors. Including the error terms and using

a little modification, the model can be written as

Py = P+rP(1—P)—C/K+ e (4.3)

Iy = qKPge, (4.4)

where P, = B;/K, g, ~ N(0,0?) and log(e}) ~ N(0, 72).
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Another interesting aspect of the SPM is how easy it is to obtain some management pa-
rameters. For example, the mazimum sustainable yield (MSY) is easily derived from the model
and is equal to rK /4. This parameter will be used later in a comparison between estimation
methods.

The SPM is based on some important assumptions. For example, the population intrinsic
growth rate (r) and the fish catchability (¢s) do not depend on time. Finally, it is important to
note that this model does not include any information on age, but some others, such as virtual

population analysis (VPA) models can (see, e.g., Cadigan and Farrell, 2005).

4.2.2 Bayesian inference and SPM

Bayesian inference is a statistical way of thinking that often appears in problems with few
observations. Bayesian analysis relies on Bayes’ rule, which states that for two events A and

B,
P(B|A)P(A)
P(B)

In a Bayesian analysis, parameters to be estimated in a model are considered as random vari-

P(A|B) =

ables. Information about the distribution of these random variables that is available before
data collection is quantified in the prior distribution of the parameters. When data are col-
lected, Bayes’ rule is used to get the distribution of the parameters given the observed data,
the so-called posterior distribution. In the Bayesian paradigm, all inferences are based on the
posterior distribution of the parameters. Mathematically, if the data are distributed as f(x|6),
where 6 represents the model parameters, and m(#) is the prior distribution, then the posterior
distribution of 6 given the data is
f(|0)m(6)
flx) 7

with f(x) = [ f(x|@)7(8)df . Point estimates of the parameters are usually taken as the

9(0lx) = (4.5)

mean value of these parameters under the posterior distribution, while confidence intervals are
given by percentiles (e.g., 2.5th and 97.5th percentiles) of the posterior distribution. Bayesian

analysis is often used when few data are available; in these cases, information additional to that
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provided by the data is useful and should be included in the analysis, which is done through
prior distributions in that case.

In the case of the SPM of Section 2.1, the unknown parameters are § = (K, r, qs, 72, 0%, Py,
..., Py), the data are x = {(I;,C}),t = 1,...,N} and f(x|#) is the joint distribution of the
data given the parameter values (Meyer and Millar, 1999, eq. (9)):

f(x18) = {H fp(P|Pi, Co K, 02>} {H fI(It|Pt,qs,r2>} : (4.6)

t=2
Now if we substitute f(x|#) given by (4.6) into (4.5), then no matter what we choose as the prior
distribution for the parameters, the evaluation of f(x) = [ f(x|@)7(8)d@ will not be feasible in
closed form. In this type of situation, Markov Chain Monte Carlo (MCMC) algorithms, such
as the Gibbs sampler (Robert and Casella, 2004, Chapter 9), are used to simulate observations
from the posterior distribution, from which we can derive values for the posterior mean and
percentiles; Meyer and Millar (1999) discuss how Bayesian SPMs can be fitted with the Gibbs

sampler using the BUGS software.

4.3 Comparison of methods to account for misreported

catches

4.3.1 Introduction

Assessments of international (i.e. straddling) stocks are often complicated by incomplete in-
formation on fishery catches, more so than for purely domestic stocks. This is because of the
difficulties in monitoring and accessing information about catches taken by some foreign fleets.
Also, when fishing quotas are restrictive and market conditions are good then there may be
economic incentives to misreport catches. Often reported catches are considered to be under-
estimates of the actual catches, but over-reporting of catches occasionally occurs for some fleet
sectors.

Information on commercial catches is usually a fundamental component in a stock assess-

ment. Tracking how changes in catches affect a stock size index, such as a research survey
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index of relative abundance or catch per unit of effort (CPUE), is the basis of most stock
assessments. FExamples of analytic assessment models are age-aggregated surplus production
models (SPM’s), and age disaggregated virtual population analysis (VPA). A SPM is a simple
description of how stock biomass responds to harvesting. It does not explicitly account for stock
reproduction, growth, age-structure, or natural mortality. In VPA, information on fishing and
natural mortality are used to quantify the size of historic cohorts. If a stock size index that
covers the historic and current periods is also available then the index to stock size ratio for the
historic period can be estimated and used to convert the current stock size index to absolute
stock size. VPA provides of estimates of stock recruitment rates which can be used to forecast
future stock size and evaluate stock productivity characteristics.

It is well known that SPM’s and VPA’s are sensitive to errors in reported catches. Exam-
ples of simulation and sensitivity studies are given by Lapointe, Peterman, and MacCall (1989),
Megrey (1989), Rivard (1989), Mohn (1999), and Cadigan and Farrell (2005). These studies in-
volve examining the impact of errors in reported catches in stock assessment models that assume
catches are known without error. They do not propose methods to accommodate erroneous
catches. Some stock assessment models explicitly incorporate errors in landings or catch-at-age
(e.g. ICA, Stock-Synthesis); however, the errors are assumed to be of a measurement-type in
which reported catches, while uncertain, are unbiased. This measurement-error approach is not
appropriate for dealing with misreported catches.

Catch-free stock assessment models (e.g. SURBA; Beare et. al. 2005) have been used to deal
with misreported landings. These methods appear to sensitive to some modelling assumptions,
and their accuracy is poor in some situations. We suggest that ignoring reported landings and
catch sampling information is too drastic in some situations.

Recently, Hammond and Trenkel (2005) used the theory of Bayesian censored estimation
methods with a simple formulation of an SPM to address misreported catches. In this context
censored is taken to mean truncated, and in the SPM application the catches were assumed to
be under-reported. The method may offer a very reasonable way to address uncertainties in
reported catches and may be a good compromise between assuming landings are uninformative

(e.g. SURBA) and assuming landings are exact (e.g. VPA); however, further studies are
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required.

4.3.2 Censored data

In some situations, especially in human clinical studies, the variable of interest is not observed
exactly, but is represented as an interval. This is often the case when our interest is time-to-
event data. Sometimes, the time-to-event cannot be observed due to financial restrictions or
mortality. In these cases, the observations are intervals (e.g., [t,00), (00, t], or [t1,t2]).

The use of censored data methods can also be applied to fisheries (see HT). The catch
data may be greater than reported for various reasons (discards, misreporting, black market,
etc). In these situations we can consider that the true-catch is in the interval [L;, 2L;], where
L; represents the landings in year ¢t. This indicates that the real catch lies between the total
landings and twice the total landings, but we don’t know exactly where. The upper bound of
2L; is rather arbitrarily chosen and may not be appropriate in all cases. It will be important

to examine the sensitivity of our results to this arbitrary value.

4.3.3 Objectives

The objectives are:

1. Graphically compare the use of 3 different methods (described below) to fit a SPM when

the catch data are misreported;

2. Graphically compare the same 3 methods when the catch data are not misreported;

3. Graphically compare the 3 methods when the catch data are misreported, but less than

we assulne.
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Methods to be compared

The first method we will use is the true-catch method (TCM) in which we assume the catch is
equal to landings (C; = L;). This method is the standard method used to fit SPM’s when we
do not consider misreporting (see Meyer and Millar, 1999).

The second method is the censored method described in HT which uses effort data. We
denote this method as CCME (censored catch method with effort). Effort data are a time
series that represents the effort applied by fishermen to produce their catch. The reason why
HT used these effort data is because catch is supposed to be proportional to biomass times

effort. In this sense, they modeled the catches as
Ci = q.E1Bi&y

where ¢. is the catchability of the commercial fishing (a different quantity than ¢s), E; is the
effort applied in year ¢, and & is a random error term, were log(&;) is iid N(0,6?). Note that
censoring has been taken into account in the estimation process only. In fact, instead having
an exact observations for the Cy, we consider the intervals C; as lying in (L, 2L;).

The last method is also a kind of censored method but does not require effort data. We
explore this because effort data in some situations may not be available or is poorly estimated.

In this sense, we model the catches as

Ot ~ U’I’LZf(Lt, 2Lt)

We denote this method as UCCM (uniform censored catch method).

4.3.4 Methodology

We examined each objective using six simulations with different parameter values. For each
simulated data set we applied the three methods (TCM, CCME, and UCCM), and then plotted
the simulated biomass series, the estimated biomass series (mean posterior density - MPD)
along with its 95% credible interval (CI). We also compared the MSY MPD estimate to its

"true” simulation value. However, the preliminary number of simulations is clearly insufficient
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to conclude much about the MSY estimations. As typical in a Bayesian simulation design, we

have simulated both data and parameters. Our simulation design is exactly the same as HT.

Simulation Design

In each of the six simulations, there were eight steps:
1. Simulate a 20 year series of effort (F;) using the following method:

i. Simulated 5 numbers from a Unif(0.2,1.2). These 5 numbers represent the effort data
for the 1t 6" 10", 15" and 20" years.

ii. All the other effort data were linearly interpolated between the step i. values.

2. Draw a set of parameters from their priors (see Table 4.1).

3. Create an initial proportion (F) of virgin biomass (this assumes that the population was

already depleted before the first year). This was done by drawing P, from a beta(20, 6).

4. Prior to the simulation of the biomass and catch series, simulate the proportion of the

biomass for the first year: P, ~ N(F, 0?).

5. In order to add some hyper-depletion (see next step), 0 is drawn from a Unif(0.7,1.3).

This is not considered in the estimation process.

6. Create the C; and P, series.

i. C; ~logN {log(q.E:P}K),0%}

1i. Pt+1 ~ N[{Pt +TPt(1 - Pt) - Ct/K},O'2]
7. Simulate landings. Choose one of the following three options for each objective.

i. Misreporting (objective 1): simulate a mean landing rate, pr, from a Unif(0.5,0.9)

and then draw a series of pr(t) ~ Unif(py —0.1,p, +0.1), iid for t =1,....

ii. No misreporting (objective 2): pp(t) = 1 for all ¢.
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iii. Less misreporting than assumed (objective 3): pp(t) ~ Unif(0.625,0.7), iid for ¢t =

1,.... The mean landing rates were constant in all 6 simulations.

8. Finally, generate a series of I; from a lognormal distribution :

I; ~ logN{log(qs K P,), 72}

Table 4.1: Description of the parameters priors. Note the log normal distribution is described by
the mean and variance of its corresponding normal distribution. Also, The gamma distribution

has a mean equal to its first parameter divided by its second.

Parameter Description Prior BUGS alias
r Intrinsic growth rate logN(-1.4,0.25) r

K Virgin Biomass logN(log(700),0.25) K

Py Initial P, beta(20,6) Pinit

o2 Process error Precision gamma(100,0.05) isigma2
772 Survey Precision gamma(44,2) itau2

62 Catch model precision ~ Gamma(70,1) itheta2

e Fleet catchability beta(5.5,44.5) qc

qs Survey catchability beta(4,8) gs

The R code for our simulation design can be found in appendix.

Estimation

Our estimation method is roughly the same as HT. We used a Bayesian approach to estimate
parameters. We evaluated the mean of the posterior density of each parameter using the Gibbs
sampler within the OpenBugs software. Basically, Openbugs enables us to sample from the
posterior density without having any idea of its form; then we can approximate the posterior
mean of each parameter by the sample mean of its posterior sample. Additional information

on the Bayesian approach and/or the Gibbs sampler is given in, for example, Robert & Casella

(2004).
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Note that we used the same OpenBugs code as in HT but we randomly generated our initial
values from the priors instead of specifying them. We used 20 years time series of landings and
survey indices. This is a fairly common amount of catch information. We have obviously
adapted the HT code for the third objective.

The OpenBugs code for our estimation can be found in appendix. A good way to understand

the differences between the 3 models is to examine this code.

4.3.5 Results

The results are decribed as follows:

Objective 1: (with misreporting), figures 3.1 and 3.2;
Objective 2: (without misreporting), figures 3.3 and 3.4;

Objective 3: (less misreporting), figures 3.4 and 3.5.

In each plot, the dashed line represents the MPD estimate, the solid line represents the
simulated true value and the dotted lines represent 95% credible intervals. Plots on the same
row are based on the same simulated data set, which is why they have the same MSY value

and solid line.
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Figure 4.1: Objective 1: Data with misreporting. Each plot on a row represents the same
simulated set of parameters and data (first 3 of 6) and each column represents an estimation
method, identified in the title. The dash line is the estimation result, the solid line represents
the simulated value and the dotted lines are for the 95% credible intervals. MSY est is the
MSY estimate.
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Figure 4.2: Objective 1: Data with misreporting. Each plot on a row represents the same
simulated set of parameters and data (last 3 of 6) and each column represents an estimation
method, identified in the title. The dash line is the estimation result, the solid line represents
the simulated value and the dotted lines are for the 95% credible intervals. MSY est is the
MSY estimate.
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Figure 4.3: Objective 2: Data without misreporting. Each plot on a row represents
the same simulated set of parameters and data (first 3 of 6) and each column represents an
estimation method, identified in the title. The dash line is the estimation result, the solid line
represents the simulated value and the dotted lines are for the 95% credible intervals. MSY
est is the MSY estimate.
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Figure 4.4: Objective 2: Data without misreporting. Each plot on a row represents
the same simulated set of parameters and data (last 3 of 6) and each column represents an
estimation method, identified in the title. The dash line is the estimation result, the solid line
represents the simulated value and the dotted lines are for the 95% credible intervals. MSY
est is the MSY estimate.
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Figure 4.5: Objective 3: Data with less misreporting. Each plot on a row represents
the same simulated set of parameters and data (first 3 of 6) and each column represents an
estimation method, identified in the title. The dash line is the estimation result, the solid line
represents the simulated value and the dotted lines are for the 95% credible intervals. MSY
est is the MSY estimate.
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Figure 4.6: Objective 3: Data with less misreporting. Each plot on a row represents
the same simulated set of parameters and data (last 3 of 6) and each column represents an
estimation method, identified in the title. The dash line is the estimation result, the solid line
represents the simulated value and the dotted lines are for the 95% credible intervals. MSY
est is the MSY estimate.
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4.3.6 Discussion
General

For an obscure reason, we have encountered some problem with the third estimation method
(UCCM). Actually, we can’t run two different chains at the same time in OpenBugs and we
can’t figure why!

Also, we have noticed that the biomass estimation for the uniform method often looked like
the estimation from the true catch method, even if the MSY estimates were far from each other.
Thus, if a method has the best MSY estimate for a simulation set, the estimated biomass series

with this method is not necessarily the best.

Objective 1

For the first objective, out of six simulations, for four of them, the MSY was better estimated
by the censored method (CCME), for two of them by the true-catch (TCM) method while the
uniform (UCCM) method was always the worst.

Finally, we were not able to generate 50000 samples from the posteriors in the third param-
eter sets of objective 1. For an unknown reason, the Gibbs sampler got stuck on the 21000
sample.

Another interesting thing is that, in the sixth simulation (Figure 3.2, row third row), the

only method which was able to detect the population decline was the censored method.

Objective 2

For the second objective, out of six simulation, the best MSY estimate was found with the
censored method (CCME) 3 times, the true-catch method (TCM) 2 times and the uniform
method (UCCM) 1 time. Note that the only time the UCCM was better than then CCME, it
was not really significative (see Figure 3.3, row 1).

Also, the estimated biomass series seems to be worst than in the first objective. We mean

that the real biomass series is often out of the 95% credible interval produced by each method.
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Objective 3

This time, we observed that the CCME and UCCM have obtained the best MSY estimate 3
times each. However, there was still a uniform (UCCM) estimate that was only slightly better

the censored CCME one (see Figure 3.5 third row).

Conclusion

The rationale for the UCCM approach to deal with misreported catches without effort data
was that usually in cases where catches are misreported there will also not be reliable effort
data available. In fact, the HT model seems somewhat unrealistic for this reason. Good effort
data acts like a surrogate measure of catch when CPUE is constant, and this may be part of
the reason why these authors found that their censored approach produced better results than
the alternative methods they examined. At least the performance of their method needs to be
investigated when effort data are measured with error, which is the reality in most cases.
Another problem was the simulation design used by HT, which was also used in our pre-
liminary analyses. It is well known that considerable contrast in a stock size time series (i.e.
a 2-way trip) is required to reliably estimate the parameters of a surplus production model.
HT studied simulated populations with relatively short time-series (i.e. only 10 years) that did
not guarantee in all simulations sufficient contrast in stock size to estimate surplus production
models. It is commonly understood that in cases where low data contrast occurs the likelihood
surface for the parameters tends to be flat. This can have two consequences. First, differences
between methods observed by HT may not be significant. Indeed, the variability from sim-
ulation to simulation under their design is very large and it looks as though the differences
between estimators are well within the range of the random variation observed from simulation
to simulation and can therefore not be attributed to one method being superior to the other.
Second, Bayesian HT’s estimates and credibility intervals may be heavily influenced by the as-
sumed priors. In such case, the results would be essentially pre-determined by the priors, and
a more appropriate simulation design to generate data is required to compare the performance
of the different methods. This issue of sensitivity to prior distributions is investigated in the

next chapter.
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4.4 Sensitivity of parameter estimates to the specifica-
tion of prior distributions

As we have explained in Section 2.2, Bayesian methods are often used in situations where few
data are available, as they allow for the incorporation of prior knowledge about the model
parameters to be included in the inferences, thereby making them more precise. However, in
situations where no prior information is available, one has to make sure that the inferences are
not wrongly influenced by the specification of prior distributions. This last situation seems to
be specifically relevant to SPMs, as the series of catch and survey index data usually only span
a few years (10 to 20), and with both process and observation errors, these are very few data
points to infer about 5 model parameters.

Though many simulation studies of SPMs have been published (see introduction of Chapter
3), there seems to be little knowledge about the sensitivity of SPM parameter estimates to
the specification of prior distributions. We investigate this sensitivity by looking at how the
posterior densities vary for different choices of prior distributions for the parameters in Section
4.1. An analysis of the correlation between the parameters is given in Section 4.2. We assess the
informativeness of the data themselves about the model parameters by looking at log-likelihood

profiles in Section 4.3. A discussion of the results wraps up this chapter in Section 4.4.

4.4.1 Sensitivity to the choice of prior
Scenarios

To test the sensitivity of the Bayes estimators, we have used the dataset on South Atlantic
albacore tuna from 1967 to 1989 given by Meyer and Millar (1999). For each of the four
parameters 7, K, 02 and 72, we have tried to assess the sensitivity to the choice of different
priors. This assessment is made at two levels. The first level is an analysis of the change in the
posterior distributions under mild modification of the prior distributions. The second level is
an analysis of the posterior correlation between the parameters under vague priors.

We have studied the impact of changes in the priors on posterior distributions by modifying

the prior of one parameter at a time and by looking at summary statistics and plots of the
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posterior distributions of every parameter. For example, for the r parameter, we have used four
different priors (four “scenarios”), so we have plotted the four posterior densities associated
with them for the six parameters r, K, 0%, 72, ¢ and MSY (6 plots which contain overlays of 4
posterior densities each).

For each of the 4 parameters, our first scenario was the prior used by Meyer and Millar
(1999). The second scenario was the same prior, but wider and flatter (slightly less informative).
Our third scenario was the same as Scenario 1, but with a change on the mean of the prior.
Finally, our last scenario was as vague as the second scenario and with the same mean as the
third scenario. This means that, in each of the four figures representing the posterior densities
for each scenario (figures 4.2 to 4.5), we have the set of priors used by Meyer and Millar (1999)
as a reference (Scenario 1). These prior distributions are shown in Figure 4.1 and described in

tables 4.1 to 4.4.
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Figure 4.7: These plots represent the priors used in each scenario. Clearly, we can see that
there is a change in scale between Scenario 1 (original) and Scenario 2, a change of location
between scenarios 1 and 3, and finally a change in scale and location between scenarios 1 and
4. For more details on these priors, please refer to tables 4.1 to 4.4. Note that each plot on
this page corresponds to a figure in the results section. For example, the first plot, “r priors”,

corresponds to the scenarios used to obtain the results in Figure 4.2.
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Table 4.2: Scenarios for r parameter

Scenario | Prior Description

Original | Inorm(p = —1.387,0 = 0.509) | .10 quantile=0.13 ; .90 quantile=0.48

2 Inorm(p = —1.387,0 = 0.968) | .25 quantile=0.13 ; .75 quantile=0.48

3 Inorm(pu = —.9915, 0 = 0.308) | .10 quantile=0.25 ; .90 quantile=0.55

4 Inorm(p = —.9915, 0 = 0.585) | .25 quantile=0.25 ; .75 quantile=0.55
Table 4.3: Scenarios for K parameter (priors are in terms of 1/K)

Scenario | Prior Description

Original | Inorm(pu = —5.043,0 = 0.516) | .10 quantile=1/300 ; .90 quantile=1/80

2 Inorm(u = —5.043,0 = 0.980) | .25 quantile=1/300 ; .75 quantile=1/80

3 Inorm(pu = —5.363,0 = 0.301) | .10 quantile=1/350 ; .90 quantile=1/130

4 Inorm(p = —5.363,0 = 0.734) | .25 quantile=1/350 ; .75 quantile=1/130
Table 4.4: Scenarios for 72 parameter (priors are in terms of 1/72%)

Scenario | Prior Description

Original | Gamma(a = 1.709, A = 0.009) | E(1/7%)=170.9, VAR(1/72?)=17090

2 Gamma(a = 0.171, A = .0009) | E(1/7%)=170.9 VAR(1/7%)=1709000

3 Gamma(a = 2.5, A = 0.01) E(1/7%)=250 VAR(1/7?)=25000

4 Gamma(a = 0.25, A = 0.001) | E(1/7%)=250 VAR(1/72)=2500000
Table 4.5: Scenarios for o parameter (priors are in terms of 1/0?)

Scenario | Prior Description

Original | Gamma(a = 3.786, A = 0.010) | E(1/0?)=378.6, VAR(1/0%)=37860

2 Gamma(a = .3786, A = 0.0010) | E(1/0%)=378.6 VAR(1/0?)=3786000

3 Gamma(a = 5.0, A = 0.010) E(1/0?)=500 VAR(1/0?)=50000

4 Gamma(a = 0.5, A = 0.001) E(1/0?)=500 VAR(1/0?)=5000000
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Results

Let us now look at the posterior distributions obtained under the various scenarios detailed

in Section 4.1.1. Note that we look at the effect of changing the prior distribution of one

parameter on the posterior distributions of all SPM parameters. Therefore, each of the figures

4.2 to 4.5 presented below shows the posterior distribution of all parameters of interest when

the prior distribution of one parameter varies according to the four scenarios, and the priors of

all other parameters are fixed at the Meyer and Millar (1999) values.

Table 4.6: This table shows the mean posterior density of each parameter along with its 95%

CIL. Each column represents a different scenario for the r parameter (see table 4.2)

Original

Scenario 2

Scenario 3

Scenario 4

0.3(0.15,0.48)
277(182,423)
0.3(0.15,0.48)
0.0031(0.0011,0.0083)
0.012(0.0057,0.023)
19.4(14.2,23.9)

0.30(0.13,0.52)
276(172,456)
0.25(0.13,0.39)
0.0031(0.0011,0.0083)
0.012(0.0058,0.023)
19.4(13.2,23.9)

0.32(0.12,0.54)
270(168,450)
0.25(0.14,0.39)
0.0032(0.0011,0.0082)
0.012(0.0058,0.023)
19.6(13.2,24.2)

0.32(0.13,0.54)
268(168,446)
0.25(0.14,0.39)
0.0032(0.0011,0.0086)
0.012(0.0057,0.024)
19.6(13.1,24.2)
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Figure 4.8: These plots show the posterior densities obtained from a change in the r prior only.
Differences between posterior densities for parameters other than r are all due to the changes

in the r prior and nothing else.
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Table 4.7: This table shows the mean posterior density estimates of each parameter along with

its 95% CI. Each column represents a different scenario for the K parameter (see table 4.3)

Original

Scenario 2

Scenario 3

Scenario 4

0.3(0.15,0.48)
277(182,423)
0.3(0.15,0.48)
0.0031(0.0011,0.0083)
0.012(0.0057,0.023)
19.4(14.2,23.9)

0.27(0.12,0.46)
300(189,485)
0.22(0.13,0.35)
0.0031(0.0011,0.0081)
0.012(0.0057,0.023)
19.0(13.5,23.6)

0.30(0.17,0.47)
268(186,383)
0.25(0.16,0.36)
0.0031(0.0011,0.008)
0.012(0.0058,0.023)
19.5(14.9,23.8)

0.27(0.12,0.45)
304(192,485)
0.22(0.13,0.35)
0.0031(0.0011,0.008)
0.012(0.0058,0.024)
18.9(13.2,23.6)
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Figure 4.9: These plots show the posterior densities obtained from a change in the K prior

only. Differences between posterior densities for parameters other than K are all due to the

changes in the K prior, and nothing else.
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Table 4.8: This table shows the mean posterior density estimates of each parameter along with

its 95% CI. Each column represents a different scenario for the 72 parameter (see table 4.4)

Original

Scenario 2

Scenario 3

Scenario 4

0.3(0.15,0.48)
277(182,423)
0.3(0.15,0.48)
0.0031(0.0011,0.0083)
0.012(0.0057,0.023)
19.4(14.2,23.9)

0.3(0.15,0.5)
273(175,422)
0.25(0.14,0.38)
0.003(0.0011,0.0076)
0.014(0.0062,0.028)
19.4(14.2,23.6)

0.3(0.15,0.48)
277(181,422)
0.24(0.14,0.36)
0.0032(0.0011,0.0086)
0.011(0.0053,0.021)
19.4(14.2,23.8)

0.3(0.15,0.49)
276(177,426)
0.24(0.14,0.37)
0.0030(0.0011,0.0077)
0.014(0.0061,0.027)
19.4(14.2,23.8)

Table 4.9: This table shows the mean posterior density estimates of each parameter along with

its 95% CI. Each column represents a different scenario for the o2 parameter (see table 4.5)

Original

Scenario 2

Scenario 3

Scenario 4

0.3(0.15,0.48)
277(182,423)
0.3(0.15,0.48)
0.0031(0.0011,0.0083)
0.012(0.0057,0.023)
19.4(14.2,23.9)

0.30(0.15,0.49)
271(179,412)
0.25(0.15,0.37)
0.0036(0.00035,0.018)
0.012(0.0045,0.023)
19.5(14.4,24.4)

0.3(0.15,0.48)
272(180,409)
0.25(0.15,0.37)
0.0022(0.00095,0.0052)
0.013(0.0062,0.024)
19.4(14.8,23.1)

0.3(0.15,0.48)
273(182,421)
0.25(0.14,0.36)
0.0031(0.00031,0.016)
0.012(0.0048,0.023)
19.4(14.5,24.0)
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Figure 4.10: These plots show the posterior densities obtained from a change in the 72 prior

2

only. Differences between posterior densities for parameters other than 7 are all due to the

changes in the 72 prior and nothing else.
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Figure 4.11: These plots show the posterior densities obtained from a change in the o2 prior

only. Differences between posterior densities for parameters other than o

2 are all due to the

changes in the 2 prior and nothing else.
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Some interesting conclusions can be drawn from figures 4.2 to 4.5. First of all, the parameters

K, r and g seem to be correlated together as a change in the prior of one of these parameters
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has an impact on the posterior distribution of all three parameters. Though this impact is not
major (see tables 4.6-4.9), the posterior densities for these parameters all change when the prior

2 and 0% do not move. Second, we see

on one parameter is modified while the posteriors of 7
that the posterior distributions of the two error variances (02 and 72) are also dependent on the
specification of the prior distribution used for these parameters. To further illustrate this fact
for 02, we have plotted each of its prior with its corresponding posterior in Figure 4.6. Since

all four plots use the same scales, it is easy to see that the posterior densities are influenced by

the choice of the prior distribution.
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Figure 4.12: These four plots represent the four different scenarios for o2. The dashed line

shows the prior on ¢2? and the solid line, the posterior. For each scenario, we remark that the

posterior “follows” the prior.
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Interestingly enough, though the posteriors of K and r are sensitive to the choice of priors,

the posterior of MSY is quite robust to prior specification.
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4.4.2 Correlations

The results from the previous section suggest that estimators of K, ¢ and » might be correlated,
which would imply that the data might not contain enough information to “tell them apart”. In
this section, we present an analysis of the correlation between these parameters. Though there
did not seem to be as much correlation between the two variance estimators, we include this
pair of parameters in our analysis nonetheless, as one might wonder if it is possible to correctly
assign the variability observed in the data to its two sources (process error and measurement
error). For each pair of parameters of interest, we used the Meyer and Millar (1999) model, but
with vague priors to remove the effect of the prior distributions in the correlations, to simulate
900 observations from the joint posterior distribution of the pair of parameters. We then used

these 900 pairs of values to estimate the posterior correlation between the parameters.
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Figure 4.13: These plots show scatter plots of 900 pairs of parameters simulated from their joint

posterior distribution and give the corresponding estimate of the posterior (Kendall) correlation

between the two parameters.
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Table 4.10: Posterior correlations between some pairs of parameters.)

Parameters | Kendall’s correlation | Pearson’s correlation (95% c.i.)
(02, 7%) -0.25 -0.39 (-0.41, -0.37)

(r, K) -0.76 -0.86 (-0.87, -0.85)

(r,q) 0.69 0.87 (0.86, 0.88)

(q, K) -0.80 -0.90 (-0.91, -0.89)

(MSY,q) 0.31 0.34 (0.32, 0.36)

Figure 4.13 shows scatter plots of pairs of values of the parameters simulated from their joint
posterior distribution, while Table 4.10 gives the values of the Kendall and Pearson correlations
between the pairs of parameters of interest (to give an idea of the precision in these correlation
estimates, confidence intervals for the Pearson correlations are also provided). Since the rela-
tionship between the parameters is not linear, the Kendall correlations are more appropriate.
They indicate that there two variance parameters are only mildly correlated (-0.25) and, thus,
seem to be identifiable from the data. On the other hand, the K, r and ¢ parameters are all
strongly correlated (correlations in the 0.7-0.8 range in absolute value), which suggests that
the data do not allow a complete identification of each one of them. Although r and K are
correlated together and with ¢, the correlation between MSY= rK/4 and ¢ is mild (0.31) and
suggests that a reparameterization of the model that would replace (r, K, q) by (MSY,q) could
possibly lead to a model that is less sensitive to prior specification. It would be interesting
to include the vague priors used in this section in the sensitivity analysis of Section 4.1 to see

whether the posterior distributions would be more severely impacted.

4.4.3 Log-likelihood profiles

In order to have an idea of the amount of information about the parameters contained in the
data, we can look at the log-likelihood profiles of each parameter. To do this, we fit the SPM
using maximum likelihood estimation. For the moment, we can only fit SPMs that only account
for observation error with this method, but this should give a first rough idea of how informative

the data are.
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Figure 4.14: These five plots show the profile log-Likelihoods for the five parameters of the
SPM with observation error only fitted to the Meyer and Millar (1999) data. Vertical lines are

drawn at the maximum likelihood estimates.
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Since 95% likelihood ratio intervals are given by all parameter values that give a profile
log-likelihood value greater than or equal to the maximum profile log-likelihood minus roughly
2, a simple way to interpret the plots in Figure 4.14 is to look at all the values of the parameters
that satisfy this rule; the flatter the profile log-likelihood, then the wider is the interval and
the less informative the data are about the parameter. Using this rules, we see that the

data are informative about 72, with a quite concave profile log-likelihood yielding a confidence
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interval of about (0.01, 0.023), and relatively informative about r, with a curved profile log-
likelihood giving a confidence interval of about (0.1,0.47). However, the data seem to contain
no information about ¢ and K, for which the profile log-likelihoods are nearly flat and give
confidence intervals that almost exceed the range of parameter values used in the plots. On
the other hand, the data do contain information about MSY, as its log-likelihood profile is
quite concave (especially to the right of the maximum) and a confidence interval for it of

approximately (15,21).

4.4.4 Discussion

Our intuition before doing the analysis presented in this chapter was that the data would not
be able to clearly identify the two error variance parameters and, thus, inferences about these
parameters would rely heavily on the choice of prior distributions. We did observe this phe-
nomenon, but to a lesser extent than anticipated. Though Figure 4.6 shows that the posterior
of o2 follows closely the prior, the plots if figures 4.2-4.5 as well as the correlation analysis
show that these two parameters are not overly correlated or sensitive to the choice of prior, and
hence are identifiable from data. However our simulation design is similar to what is used in
typical robustness studies and used prior distributions that were not too drastically different.
In retrospect, it seems clear that adding more simulations with priors that are much flatter
and/or shifted further away from the Meyer and Millar (1999) priors could help in giving a
more definite answer to the question of parameter identifiability from data.

On the other hand, the parameters K, ¢ and r proved to be more difficult to identify, espe-
cially in the correlation analysis. Furthermore, the profile log-likelihoods for these parameters
were very flat, indicating lack of information about these parameters in the data. In spite of
these problems with the identifiability of K and r, there seems to be no problem with inferences
about MSY. This could be due to the dataset used by Meyer and Millar (1999) for which there
is no 2-way trip and/or to an inadequate parameterization of the model; this point should be

further investigated.
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4.5 Conclusion

The objectives of this report were to assess whether the censored-catch approach to fitting a
SPM proposed by HT is efficient, and to see if Bayesian inference within the SPM framework
is sensible. As seen in Chapter 3, we can conclude that when landings are truly a lower bound
for the true catches, then correcting the inferences according to the HT method improved
the inferences in the majority of cases. When there was no misreporting, then correcting for
censored catches did not seem to do worse than not correcting. This suggests that safe inferences
should consider the possibility of misreported catches. But HT’s study as well as that presented
in Chapter 3 have two major problems that render them inconclusive: first and foremost, the
amount of variability in SPMs with process error is so important that the number of simulations
used makes observed differences not statistically significant. Second, all simulations were done
with the same priors, which means that differences between methods could be due to inferences
being driven by these priors. Hence, to be conclusive an HT-type of study should use many
more replications and different sets of prior distributions.

As for the the sensibility of Bayesian inferences, we have seen in Chapter 4 that the SPM
might be overparameterized, as the three parameters K, ¢ and r are not identifiable from the
data. This suggests that the choice of prior distributions for these parameters may have an
influence on their posterior distribution and on the ensuing inferences. But since the initial
study presented in this report only considers mild changes in prior distributions, this depen-
dency of inferences on prior specification was rather mild. A follow up study with priors that
vary more widely is needed to quantify the implications of the high correlation between model
parameters in terms of changes in the posterior distribution. Nonetheless, priors should be
chosen carefully; for instance, one should not use identical priors for two series of catches and
CPUEs from different species, areas and/or times.

These findings suggest possible avenues for further investigations. Firstly, the studies of
Chapter 3 and of Section 4.1 should be expanded so that more definite conclusions can be
reached. Secondly, inferences based on maximum likelihood would circumvent the problem of
finding appropriate prior distributions. However, maximum likelihood inference for the SPM

with both process and measurement error is numerically challenging. It should be investigated
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whether inferences by maximum likelihood are robust to misspecification of the error structure
(e.g., fit with only observation error when both sources of error are present) and if not, efficient
numerical algorithms to fit the SPM with both process and measurement errors should be
derived. Thirdly, it would be useful to study possible reparameterizations of the SPM that
could help in solving the identifiability issue with the r, ¢ and K parameters. Perhaps there are
ways to reduce these parameters from three to two without changing the shape of the biomass
time series. For instance, we may be able to take advantage of the fact that MSY= Kr/4
is identifiable. Finally, means of incorporating corrections for censored catches in maximum
likelihood estimation should be investigated and compared through a well designed simulation

study.
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Part 5

Application to St. Lawrence Gulf
Turbot data

In this section we will present the results of fitting an SPM to a real dataset using MLEO and
MLEP. The observations used here are those of the St. Lawrence Gulf Turbot from 1984 to
2004 (N=21). In this case, the abundance index is a combined (and standardized) index that
is expressed as the quantity (in kg) of Turbot per haul in surveys. Finally, the catches used are

the landings reported in tonnes (1000 kg). The data are presented in table 5.1
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Table 5.1: This table shows the St-Lawrence Gulf Turbot data used in this section.

Index Catches
Year
(Kg per haul) | (tonnes)

1984 32.883 2126
1985 31.288 2349
1986 49.325 6537
1987 31.399 11069
1988 33.576 7585
1989 16.72 5049
1990 10.69 2448
1991 17.323 2264
1992 21.358 3417
1993 9.686 2445
1994 12.703 3695
1995 16.767 2426
1996 23.122 1945
1997 21.815 2459
1998 26.591 3945
1999 31.627 3638
2000 54.59 2105
2001 53.688 1280
2002 46.671 1730
2003 100.367 3565
2004 56.058 3950
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We can observe in table (5.1) a great curve in the abundance index, indicating a two-way
trip in the population biomass, and hence some hope that at least the SPM with observation
error only can be fitted to these data with reasonable accuracy in the inferences. Also, we can
note the large catches made during years 1986 to 1989 leading to a significant decrease in the
population abundance index for the corresponding years. Finally, we can see on the index plot
that the population seems to have been harvested before 1984 since the abundance index is

higher for the years 2000 to 2004 than it was in 1984.

5.1 Results

This section section only presents tables and plots related to the data analysis of the St.

Lawrence Gulf Turbot, the discussion can be read in section 5.2.
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Table 5.2: This plot shows the results from fitting the SPM using the MLEO and MLEP. The
dashed line represents the Index data and the red and blue lines are for the MLEO and MLEP
index estimates, respectively. We can see that the MLEO is a lot smoother than the MLEP.

This arises from the fact that the MLEO’s biomass estimates are based only on the r and K

estimates, whereas the MLEP used the [;_; value to predict I; for every t.
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Table 5.3: This table presents the parameter estimates for the two methods. We can notice

that although r and K estimates are quite different, the MSY estimates are similar. Standard

errors are between parenthesis. They are obtained from the observed information matrix.

Method P K g &2 72 MSY
MLEO | 0.849(0.044) | 22722(636) | 0.00270(2.9¢-4) - 0.103(0.032) | 4821(109)
MLEP | 0.392(0.27) | 55084(4.9e4) | 0.000842(9.7¢-4) | 0.144(0.044) — 5305(2637)

Table 5.4: These two plots present the estimated biomasses and the exploitation rates (C;/B;)

under the two models, MLEO and MLEP. Although the two series of estimated I; were very

similar, the estimated biomass trajectories are very different. The principal reason for this

difference comes from the distance between the MLEO and MLEP estimates.
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Table 5.5: These plots verify the normality assumption for the error terms. For both MLEO

and MLEP, normality seems reasonable.
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Table 5.6: These four plots show the likelihood profiles for r, K, ¢ and M SY . In each case, the

data seems more informative for the MLEO than MLEP. The vertical dashed lines represent

the 2 estimates (the maximum of the function) while the horizontal doted lines are used to get

the likelihood ratio confidence intervals.
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PART 5. APPLICATION TO ST. LAWRENCE GULF TURBOT DATA

Table 5.7: This contour plot presents the MLEO and MLEP for » and K with their respective
likelihood profile confidence intervals. Clearly, the joint confidence interval for the MLEP is a
lot wider than for MLEQO. This suggests that MLEO is more informative than MLEP.
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5.2 Discussion

The results from this application of the SPM to real data suggests that a lot of improvement
can be done. The difference from this part and the previous ones is that the results are now
based on a real life situation and reveal problems that simulation studies cannot detect. In the
following paragraphs, we will try to outline some of the more important conclusions that can
be made from this study of the SPM applied to the St. Lawrence Gulf Turbot.

The first observation made is that the assumption of normality, which is easy to forget, is
clearly verified with both MLEO and MLEP methods. This means that our simulations were
made from a reasonable pattern since at least one species verifies the normality assumption.
However, even if the MLEP normality assumption is verified, the MLEO seems to have better
results for the tail of the normal distribution (see table 5.5).

Another conclusion that can be drawn is that the MLEO and MLEP estimations of the
I’s are really similar, except for the fact that the MLEO series is a lot smoother than MLEP
(see table 5.2) . At first, this seems a good property from the SPM : whatever source of error
you use, you will get approximately the same I;’s estimations. However, it is clearly not the
case. In fact, MLEO and MLEP produce very different estimations of r and K (see table 5.3).
This is then clearly reflected in the By estimates (see table 5.4). The source of this discordance
between the two models is probably the difficulty of the model to find the right scale for the
data. Because the data are basically the I; (the B;’s aren’t observed), both models estimate
the same shape (or pattern) for the biomass dynamic (which are the predicted I;’s), but cannot
precisely estimate the scale of the B;’s (which are predicted by the K and ¢ parameters). This
is an example of what has not been observed from the simulations studies, because our interest
then was primarily the parameters estimates.

When we have a look at the standard error estimates for MLEO and MLEP, we also find
an interesting problem. Actually, the estimates from MLEP are very imprecise. The standard
error estimates are sometimes as big as the parameter estimate value (see K and ¢ estimates in
table 5.3). This suggest that MLEP estimates, as they are defined, should be used with caution.
However, even if the MLEO produces more precise estimates, the associated standard errors are

clearly too small, which means that confidence intervals under MLEO should be used with care.
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Nevertheless, we may have found a source for the imprecision problem of the MLEP method.
Let us suppose for a moment that the normal distribution is used for process error instead of
the log-normal distribution that we used. In this case, the maximum likelihood estimates of r,
K and ¢ would rely on the multidimensionality of the I;, I? and C; series. Unfortunately, these
variables are suffering from a multicollinearity problem when we consider the St. Lawrence
Gulf data. It is well known that multicollinearity is often associated with a precision problem,
which would explain the results obtained.

An encouraging observation is that the M SY estimates seem to be quite similar with values
of 4821 tonnes for MLEO and 5395 tonnes for MLEP, respectively. Although the MLEP
estimate for M SY is not included in the confidence interval obtained using MLEO (this may
be caused by the impressive and improbable precision of the MLEO method), the two methods
lead to reasonable MSY estimates. This fact puts forward the idea that the SPM may be
overparameterized. Actually, the simulation study was leading in the same direction : there is
a high correlation between r and K, which in turn implies that they may not be distinguishable.
This conclusion leads unfortunately to a problem at another level : is the SPM a good model
for data analysis to begin with?

A last conclusion that can be drawn from this analysis is that the assumption made about
the virginity of the population (By = K) is clearly not reasonable for the St. Lawrence Gulf
data. Actually, since the I;’s are supposed to be proportional to the B;’s, the assumption that
By = K means that the first year of data is the greatest observation. However, this is clearly not
verified in our case. This particular dataset would request the introduction of a new parameter
(Byp), but the addition of a new parameter is anything but encouraging since the model seems
to suffer from overparametrisation.

Finally, this analysis of the St. Lawrence Gulf Turbot data is revealing some more interesting
facts that should be taken into account in further studies of the SPM, such as the use of censored

data for catches and the MLEPO implementation.
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Conclusion

The results reported in this work are all pointing in the same direction : the process error,
as defined, may not be the appropriate way to express the fact that SPM dynamic is not
deterministic (non random). Actually, it is a common assumption that there is both observation
and process errors in reality. However, modeling the process error is delicate because some
parameter estimates are biased and imprecise even when there is no observation error. Our last
study about the MLEP has shown that even in the rare cases where MLEP does good (always
in cases with no observation errors), the introduction of a small amount of observation error is
leading to large bias and larger variance. As we noted in part 5, the imprecision of the MLEP
parameter and scale estimates are also an issue . Our analysis of the St. Lawrence Gulf Turbot
data brought to our mind the idea that it is probably related to a multicollinearity problem
in the data or to catch and index data being not sufficiently informative to support MLEP
estimation.

Our simulation studies and observation study about the MLEO and MLEP have pointed
out that process error is a key problem to be solved before considering the MLEPO method.
Actually, the solution may reside in the definition of the process error itself. It could be
interesting to see the effect of applying the process error to the production function only instead
of the biomass dynamic function (see equation 1.2). Another idea may be to introduce the
process error on the r parameter only. These ideas are coming from the fact that the form

Bi1 = By + f(B;) — Cy is intuitively reasonable so that the errors are more probably in the
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f(B;) function itself. It may also be interesting to investigate wether or not the process error
is coherent with the model, that is to study the stochastic proprieties of the model in presence
of process error.

Also, a common conclusion to both Bayesian and maximum likelihood analysis is the cor-
relation between the parameter estimates. For example, in the Bayesian study, although we
were starting with independent priors for the model parameters, we obtained highly correlated
posterior densities. This correlation, which is significantly high even when we are estimating
exactly from the simulation model, is indicating the incapacity of the model to distinguish
the parameters. One of the interesting correlation patterns was between r and K because its
shape is really similar to the MSY = rK/4 relation. This may mean that the data are only
informative about combinations of parameters, such as the MSY, instead of individual param-
eters. This phenomenon suggests to investigate a possible reparametrization of the model, a
task that may not be easy because the SPM is already a parsimonious model if we think of the
complexity of the fish population dynamic.

To continue this analysis of the SPM, these two problems have to be solved. If they cannot
be, another model should be investigated if we wish to apply the idea of reported catches vs
true catches. A kind of model that could be used is Virtual Population Analysis (VPA). One
interesting thing with VPA is that it clusters fish in age classes and estimates the number of fish
in these classes instead of the global biomass of the stock. An advantage of using an age-based
approach is that it can take advantage of richer, more informative database with catch-at-age

data.
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