
Modelling Catastrophes and their Impact on Insurance Portfolios

Abstract

In this paper we propose a general individual catastrophe risk model that allows damage

ratios to be random functions of the catastrophe intensity. We derive some distributional

properties of the insured risks and of the aggregate catastrophic loss under this model.

Through the model and ruin probability calculations, we give a formal illustration of the

well known fact that the catastrophe risk cannot be diversified through premium collection

alone, as is the case with the usual “day-to-day” risk, even for an arbitrary large portfolio.

We also derive some risk orderings between different catastrophe portfolios, and show that

the risk level of a realistic portfolio falls between that of a portfolio of comonotonic risks and

that of a portfolio of independent risks. Finally, we illustrate our findings with a numerical

example inspired from earthquake insurance.
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1 Introduction

Earthquakes, droughts, floods, hurricanes, winter storms and tornado outbreaks are among

the natural catastrophes that can produce large amounts of losses. For instance

“The U.S. has sustained 49 weather-related disasters over the past 22 years in

which overall damages/costs reached or exceeded $1 billion. 42 of these disasters

occurred during the 1988-2001 period with total damages/costs exceeding $185

billion.”1

An important proportion of these losses are insured losses, and this tendency should

persist as there are more items at risk in the catastrophe-prone areas, a larger proportion

of these risks are getting insured and the value of the items insured increases. In health

insurance, the rise of health care related costs and of the density of populations in urban

areas increase the potential for a costly epidemic.

Unfortunately, the evaluation of the probability distribution of the losses following from

such disasters can be quite difficult, and simple actuarial models and methods are usually not

appropriate for such calculations. One key element missing in the more traditional models is

the intrinsic dependency between the risks exposed. For example, one hurricane will cause

several correlated claims at the same time, and risks that are geographically close to each

other are likely to produce highly correlated claim amounts.

In this paper we aim to fulfil several objectives. Our first goal is to propose individ-

ual catastrophe risk models that will be general and realistic, yet tractable. We do so by

generalizing the classical individual risk model through a mathematical formalization of the

catastrophe computer simulation models that can be found in the actuarial literature. We

1National Climatic Data Center, NOAA, “Billion Dollar U.S. Weather Disasters 1980-2001”, June 27,

2001.
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proceed in three steps: (i) we add catastrophic loss random variables to the individual risk

model (ii) we add dependence between the catastrophic claim amounts by making them

deterministic functions of the catastrophe intensity (iii) we make the model more realistic

by letting the catastrophic loss amounts be random functions of the catastrophe intensity.

Our second objective is to examine the behavior of the aggregate catastrophic loss for a

portfolio under these three individual catastrophe models, and to model the impact of the

presence of catastrophes on an insurance portfolio. We tackle this problem by calculating

ruin probabilities and by deriving stochastic orderings under the three catastrophe models.

Interesting consequences of these calculations are that the usual methods of evaluation of

the distribution of the aggregate claim amounts used in risk theory still apply in the context

of catastrophe models, and we are able to illustrate in a formal manner the well known fact

that the catastrophic risk cannot be diversified through premium collection alone, as is the

case with a portfolio of independent risks.

The paper is organized as follows. Section 2 presents a review of the current developments

in the research areas related to catastrophe insurance. The three sections that follow Section

2 contain the main contributions of the paper. We construct a general and realistic individual

catastrophe risk model in three steps in Section 3. Ruin probability calculations and results

on the non diversifiability of the catastrophe risk are obtained in Section 4. Section 5

compares the risk portfolios from Section 3 through risk measures and stochastic ordering.

In Section 6, a numerical example based on earthquake insurance is given to illustrate the

models, methods and results presented in sections 3 to 5. We conclude with a discussion in

Section 7.
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2 Review of the current developments in the area

Since the 1990’s, various papers have considered dependency between risks. Among them,

Dhaene and Goovaerts (1996) and Bäuerle and Müller (1998) study different orderings be-

tween two portfolios of dependent risks in the individual risk model. Based on the concept of

comonotonicity (Dhaene et al, 2002ab), Wang and Dhaene (1998) find the riskiest stop-loss

premiums. Denuit et al. (1999) construct stochastic bounds on sums of dependent risks.

Wang (1998) (see also the discussion by Meyers, 1999) suggests a set of tools for modelling

and combining correlated risk portfolios. Most methods proposed by Wang (1998) are also

applicable to the collective risk model.

Another approach to the impact of catastrophes on insurance business is through extreme

value theory. See Beirlant and Teugels (1992), Beirlant et al. (1996), Embrechts et al. (1997),

McNeil (1997), Rootzén and Tajvidi (1997), Reiss and Thomas (1997), Resnick (1997). Their

approach is mainly concerned with the effect of possible catastrophes on the probability

distribution of the aggregate loss random variable.

Finally, a third approach considers modelling the loss portfolio at the individual risk level.

This includes stochastic modelling, such as Brillinger (1993) who examines the development

of appropriate premium rates in the case of a natural disaster, such as an earthquake, through

temporal and spatial stochastic modelling of the frequency and intensity of earthquakes in

a given region. Modelling is also done by directly simulating the effect of catastrophes on

a portfolio with computer based models. As a matter of fact, earthquake and hurricane

simulation models have been the tools of choice for actuaries who wanted to adapt their

ratemaking methods to take the risk of catastrophes into account. Because of the importance

of losses due to natural catastrophes in the last decade (more particularly hurricanes), there

has already been a good amount of work done in the actuarial literature, and the Forums of

the Casualty Actuarial Society on ratemaking have produced some very interesting proposals
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(Clark, 1986, Burger et al., 1996, Walters and Morin, 1996, Chernick, 1998). Basically, these

papers propose methods to assess the effect of catastrophes on an insurance portfolio through

simulation methods based on recent meteorological or geological models. These methods

represent a great improvement over the more traditional methods based on short-term loss

data, as they are a better reflection of the mechanism that causes the claims and they

make better use of the recent meteorological, demographic and engineering developments

and data. Moreover, their implementation is relatively straightforward with the easy access

to computational power available today.

In this paper, we propose a mathematical formalization of the computer-based models.

We propose models that are suitable for several types of catastrophe insurance (natural

catastrophes, epidemics, etc.) and that can be interpreted under both a macro- and a micro-

perspective. (By macro-perspective we refer to approaches used in pricing catastrophe bonds,

i.e., that we have information on the number of catastrophes and the total amount of losses

by catastrophe, while the micro-perspective refers to modelling risks at the individual loss

level.) The methods proposed in this paper can thus be viewed as a “compromise” between

the stochastic approach of Brillinger (1993) and the computer-based approach from the

Forums of the Casualty Actuarial Society. While the latter two approaches use catastrophe

models especially for premium calculations, we further use catastrophe models to make

formal statements on risk diversifiability and risk ordering.

3 Modelling catastrophe risks

In this section, we consider a group of n insurance contracts in a specific geographic area. We

assume that these contracts are exposed to one specific catastrophe risk such as hurricanes,

earthquakes or floods. Our approach consists in modelling the risks individually; this can
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be related to the so-called individual risk model which is presented in Panjer and Willmot

(1992), Klugman et al. (1998) or Rolski et al. (1999), for example. We define the models

over a short period of time (say, 1, 3, 6 or 12 months). We first give a general formulation of

the portfolio of insured risks, then we consider three different models for the financial losses

caused by catastrophes. While the general portfolio representation and the first two models

for the catastrophic losses are not new, the third model for catastrophic losses is; we present

all three models to better illustrate the financial impact of the risk of catastrophes later on.

3.1 Building a portfolio of risks

The total losses over a given fixed period (e.g. 1 year) for the ith contract are represented

by the r.v. XTOT
i with

XTOT
i = XUR

i + XCAT
i , i = 1, 2, ..., n.

The r.v. XCAT
i corresponds to the losses due to the catastrophe risk and the r.v. XUR

i

represents all other losses due to “usual risks”. We define the r.v.’s XUR
i and XCAT

i as

XUR
i =





∑Mi
k=1Bi,k, Mi > 0

0, Mi = 0
, i = 1, . . . , n

and

XCAT
i =





∑M0
k=1Ci,k, M0 > 0

0, M0 = 0
, i = 1, . . . , n,

where

• Mi is the number of “usual risk” losses for the contract i over one period;

• M0 is the number of catastrophes in the specific area over one period;

• Bi,k is the kth “usual risk” claim amount for contract i;
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• Ci,k is the kth catastrophe loss amount for contract i.

We make the following assumptions:

A1 For a given contract i, XUR
i and XCAT

i are independent;

A2 For a given contract i, Bi,1,Bi,2, ... are independent and identically distributed (i.i.d.)

and independent of Mi;

A3 For a given contract i, Ci,1, Ci,2, ... are i.i.d. and independent of M0;

A4 XUR
i and XUR

i′ are independent, i 6= i′.

For the “usual risk” part of the portfolio, the model proposed above amounts to the tradi-

tional individual risk model. For the catastrophic part of the portfolio, however, we get a

more flexible model. Clearly, the r.v.’s XCAT
1 , ..., XCAT

n are not independent since they are

all a function of M0, the number of occurrences of the catastrophe over one period. More-

over, for a given catastrophe, C1k, . . . , Cnk are not necessarily independent. It follows that

XTOT
1 , ..., XTOT

n are not independent either.

We define the total (aggregate) financial losses for the whole portfolio of n contracts as

STOT
n =

n∑

i=1

XTOT
i =

n∑

i=1

XUR
i +

n∑

i=1

XCAT
i = SUR

n + SCAT
n .

In this paper, our focus will be on the aggregate amount of the catastrophic claims, SCAT
n ,

and modelling of SUR
n will not be addressed. We thus consider models for

SCAT
n = XCAT

1 + XCAT
2 + ... + XCAT

n . (1)

We can rewrite (1) as follows

SCAT
n =





CCAT
1 + ... + CCAT

n , M0 = 1

0, M0 = 0.
(2)
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An equivalent representation of SCAT
n is given by

SCAT
n =





DCAT
n , M0 = 1

0, M0 = 0,
(3)

where DCAT
n = CCAT

1 + ...+CCAT
n represents the total amount of losses due to a catastrophe.

The representation in (2) and (3) clearly shows that SCAT
n can be seen as a single risk, i.e.,

if a catastrophe occurs, then one large financial loss for the company occurs.

We therefore have two different perspectives in which to approach the modelling of SCAT
n .

The first, given by equation (1) is a “micro-perspective”. In the pricing of individual insur-

ance contracts, we need to use this “micro-perspective” approach, as we have to model the

distribution of the individual catastrophic loss r.v.’s CCAT
1 , ..., CCAT

n . This is the approach

used when one simulates the effect of catastrophes on insurance portfolios using computer

catastrophe models (e.g., Walters and Morin, 1996 or Chernick, 1998).

The second scale, given by equation (3), is a “macro-perspective” scale. When this macro-

perspective approach is used, the distribution of the r.v. DCAT
n is directly modelled. Such

an approach is taken when the data on total losses by catastrophe (such as PCS index, etc.)

are available. In the pricing of catastrophe bonds or other financial catastrophe insurance

derivatives, we are interested in directly modelling the distribution of M0 and DCAT
n (see e.g.

Schmock (1999), Harrington and Niehaus (1999), Christensen and Schmidli (2000), Cox and

Pedersen (2000)).

Basic properties of the distribution of SCAT
n can be derived. From (1), we deduce

E
[
SCAT

n

]
= E

[
XCAT

1 + XCAT
2 + ... + XCAT

n

]
=

n∑

i=1

E
[
XCAT

i

]

=
n∑

i=1

E [M0] E
[
CCAT

i

]
.

According to (2) and (3), we also have

E
[
SCAT

n

]
= EM0

[
E

[
SCAT

n

∣∣∣ M0

]]
= EM0

[
M0 × E

[
DCAT

n

]]
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= E [M0] E
[
DCAT

n

]
= E [M0] E

[
CCAT

1 + ... + CCAT
n

]

= E [M0]
n∑

i=1

E
[
CCAT

i

]
.

From (1), the variance of SCAT
n is given by

V ar
(
SCAT

n

)
=

n∑

i=1

V ar
(
XCAT

i

)

+
n∑

i=1

n∑

i′=1
i′ 6=i

Cov
(
XCAT

i , XCAT
i′

)
.

We can also deduce the variance of SCAT
n from (2) and (3)

V ar
(
SCAT

n

)
= E [M0] V ar

(
DCAT

n

)
+ V ar (M0) E

[
DCAT

n

]2

= E [M0] V ar
(
CCAT

1 + ... + CCAT
n

)

+V ar (M0) E
[
CCAT

1 + ... + CCAT
n

]2
.

The cumulative distribution function of SCAT
n is obtained from (3):

FSCAT
n

(x) = Pr (M0 = 0) + Pr (M0 = 1) FDCAT
n

(x)

= (1− q) + qFCCAT
1 +...+CCAT

n
(x) , x ≥ 0.

The stop-loss premium, which is defined as

πSCAT
n

(d) = E
[(

SCAT
n − d

)
+

]
= qE

[(
DCAT

n − d
)

+

]
,

is the pure premium for a stop-loss reinsurance contract with a given retention level d ≥ 0.

Finally, from (3), the moment generating function (m.g.f.) of SCAT
n is given by

φSCAT
n

(t) = φM0

{
ln

(
φDCAT

n
(t)

)}
= 1− q + q

{(
φDCAT

n
(t)

)}
. (4)
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3.2 Models for the individual catastrophic claims

We will consider three different models for the financial losses due a catastrophe. As we shall

see, the third approach is the more realistic one; it is a mathematical formalization of some

of the computer simulation models used for catastrophe insurance pricing (e.g., Walters and

Morin, 1996 or Chernick, 1998). The first two approaches can be considered as opposite

extremes with respect to the level of dependence between the catastrophic claim amounts:

the first approach assumes independence between these amounts, while the second approach

assumes complete dependence. In order to simplify the presentation, we assume that only

one catastrophe can occur in a specific area over a year. The models can be easily adapted

to the case where more than one catastrophe can occur but, in most practical applications,

the probability of more than one catastrophe in a region in a year is negligible.

In each model j (j = 1, 2, 3), the r.v. X
CAT (j)
i represents the costs related to the catas-

trophe protection, which is defined by

X
CAT (j)
i =





C
CAT (j)
i , M0 = 1

0, M0 = 0,

where M0 is a Bernoulli r.v. with mean q and C
CAT (j)
i represents the financial losses for the

contract i if a catastrophe occurs. We assume that the financial loss C
CAT (j)
i is expressed as

a proportion of the property value, i.e.

C
CAT (j)
i = U

CAT (j)
i × bi

where bi is the value of the property i and U
CAT (j)
i ∈ [0, 1] is called the loss proportion or

the damage ratio. (In subsections 3.2.1 to 3.2.3, we give a different formulation of U
CAT (j)
i

for each model j (j = 1, 2, 3).) We can thus write X
CAT (j)
i as X

CAT (j)
i = bi × Y

CAT (j)
i , with

Y
CAT (j)
i =





U
CAT (j)
i , M0 = 1

0, M0 = 0
.
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The expectation and the variance of X
CAT (j)
i are

E
[
X

CAT (j)
i

]
= E [M0] E

[
C

CAT (j)
i

]
= biE [M0] E

[
U

CAT (j)
i

]
,

and

V ar
(
X

CAT (j)
i

)
= E [M0] V ar

(
C

CAT (j)
i

)
+ V ar (M0) E

[
C

CAT (j)
i

]2

= b2
i ×

{
E [M0] V ar

(
U

CAT (j)
i

)
+ V ar (M0) E

[
U

CAT (j)
i

]2
}

,

for i = 1, 2, ..., n. The m.g.f of X
CAT (j)
i is given by

φ
X

CAT (j)
i

(t) = φM0

(
ln

{
φ

C
CAT (j)
i

(t)
})

,

where φM0 denotes the m.g.f. of M0. We also have that

Cov
(
X

CAT (j)
i , X

CAT (j)
i′

)
= E

[
X

CAT (j)
i X

CAT (j)
i′

]
− E

[
X

CAT (j)
i

]
E

[
X

CAT (j)
i′

]
,

for i 6= i′ ∈ {1, 2, ..., n}. First,

E
[
X

CAT (j)
i X

CAT (j)
i′

]
= EM0

[
E

[
X

CAT (j)
i X

CAT (j)
i′

∣∣∣ M0

]]

with

E
[
X

CAT (j)
i X

CAT (j)
i′

∣∣∣ M0 = 1
]

= E
[
C

CAT (j)
i C

CAT (j)
i′

]
= bibi′E

[
U

CAT (j)
i U

CAT (j)
i′

]

and

E
[
X

CAT (j)
i X

CAT (j)
i′

∣∣∣ M0 = 0
]

= 0.

Then,

E
[
X

CAT (j)
i X

CAT (j)
i′

]
= EM0

[
M0 × E

[
C

CAT (j)
i C

CAT (j)
i′

]]

= bibi′E [M0] E
[
U

CAT (j)
i U

CAT (j)
i′

]
.
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It follows that

Cov
(
X

CAT (j)
i , X

CAT (j)
i′

)
= bibi′

{
E [M0] E

[
U

CAT (j)
i U

CAT (j)
i′

]
− E [M0]

2 E
[
U

CAT (j)
i

]
E

[
U

CAT (j)
i′

]}
,

for i 6= i′ ∈ {1, 2, ..., n}.
Note that under this specification of X

CAT (j)
i , the stop-loss premium for SCAT (j)

n becomes

π
S

CAT (j)
n

(d) = qbTOT E

[(
V CAT (j)

n − d

bTOT

)

+

]
,

where bTOT = b1 + ... + bn corresponds to the total exposure in insured property value of an

insurance company in a given area and

V CAT (j)
n = U

CAT (j)
1

b1

bTOT

+ ... + UCAT (j)
n

bn

bTOT

can be seen as an aggregate measure of the damage ratio for the whole portfolio.

3.2.1 Model with independent damage ratios

In the first model (j = 1), the r.v.’s U
CAT (1)
i , i = 1, . . . , n that represent the damage ratios

are assumed independent. This implies that Cov
(
U

CAT (j)
i , U

CAT (j)
i′

)
= 0 and

Cov
(
C

CAT (j)
i , C

CAT (j)
i′

)
= bibi′Cov

(
U

CAT (j)
i , U

CAT (j)
i′

)
= 0

for i 6= i′ ∈ {1, 2, ..., n}. It follows that

E
[
X

CAT (j)
i X

CAT (j)
i′

]
= bibi′E [M0] E

[
U

CAT (j)
i

]
E

[
U

CAT (j)
i′

]

and

Cov
(
X

CAT (j)
i , X

CAT (j)
i′

)
= bibi′

{
E [M0] E

[
U

CAT (j)
i U

CAT (j)
i′

]

−E [M0]
2 E

[
U

CAT (j)
i

]
E

[
U

CAT (j)
i′

]}

= bibi′
{
E [M0] E

[
U

CAT (j)
i

]
E

[
U

CAT (j)
i′

]

−E [M0]
2 E

[
U

CAT (j)
i

]
E

[
U

CAT (j)
i′

]}

= bibi′E
[
U

CAT (j)
i

]
E

[
U

CAT (j)
i′

] {
E [M0]− E [M0]

2
}

,
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for i 6= i′ ∈ {1, 2, ..., n} . Also, DCAT (1)
n = C

CAT (1)
1 + ... + CCAT (1)

n corresponds to a sum of

independent r.v’s. Therefore, the m.g.f. of SCAT (1)
n in (4) becomes

φ
S

CAT (1)
n

(t) = φM0

{
ln

(
φ

D
CAT (1)
n

(t)
)}

= φM0

{
ln

(
n∏

i=1

φ
C

CAT (1)
i

(t)

)}

= φM0

{
n∑

i=1

ln
(
φ

C
CAT (1)
i

(t)
)}

Obviously this model is not completely realistic since by assuming that the damage ratios

are independent, they are not influenced by the intensity of a catastrophe. In the following

subsection, a first attempt is made to take the intensity of the catastrophe into account.

3.2.2 Damage ratios as deterministic functions of catastrophe intensity

In this second model (j = 2), the damage ratio U
CAT (2)
i is a deterministic function of a r.v.

I that represents the intensity of the catastrophe felt in the specific geographic area of the

n insured risks of the portfolio, i.e. U
CAT (2)
i = ψi (I), where ψi : Ω → [0, 1], with Ω being

the range of I. We suppose that the r.v. I has c.d.f. FI and is independent of M0. In

reality, the intensity may be a function of several random factors relating to a catastrophe.

The definition of ψi (·) depends on the characteristics of the covered property i (e.g. type of

the building structure), but usually ψi is a positive, increasing function of the catastrophe

intensity. This implies that if two properties i and i′ have the same characteristics, then

ψi = ψi′ and thus P [U
CAT (2)
i (x) = U

CAT (2)
i′ (x)|I = x] = 1.

We have that E
[
U

CAT (2)
i U

CAT (2)
i′

]
= EI [ψi(I)ψi′(I)] or i 6= i′ ∈ {1, 2, ..., n}. It follows

that

Cov
(
C

CAT (2)
i , C

CAT (2)
i′

)
= bibi′E[M0] {EI [ψi(I)ψi′(I)]− EI [ψi(I)]EI [ψi′(I)]} .

The c.d.f. of SCAT (2)
n is

F
S

CAT (2)
n

(x) = Pr (M0 = 0) + Pr (M0 = 1) F
D

CAT (2)
n

(x)
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= (1− q) + qFI(ψ(x)),

where ψ(x) = {y :
∑n

i=1 biψi(y) = x}. It follows that the m.g.f. of SCAT (2)
n is

φ
S

CAT (2)
n

(t) = φM0

{
ln

(
φ

D
CAT (2)
n

(t)
)}

= φM0

{
ln EI

[
et

∑n

i=1
biψi(I)

]}

= (1− q) + q
{∫

Ω

(
et

∑n

i=1
biψi(θ)

)
dFI(θ)

}
.

This model is still not quite realistic, as two properties with the same characteristics are

unlikely to incur the exact same damage ratio upon occurrence of a catastrophe.

3.2.3 Damage ratios as random functions of catastrophe intensity

For the third approach (j = 3), the proportion U
CAT (3)
i is not a deterministic function of

the catastrophe intensity anymore, but rather a r.v. whose distribution is conditional on

the intensity of the catastrophe. Of course, this conditional distribution will also depend on

the characteristics of the risk insured. For example, the ATC-13 report (Applied Technology

Council, 1985) gives probability mass functions for the damage ratios as a function of building

type and earthquake intensity on the modified Mercali scale. Mathematically, this can be

written as

P [U
CAT (3)
i = u|I = x] = piux, u ∈ {u1, . . . , uk}, x ∈ Ω,

∑
u

piux = 1.

We let piux depend on i to make explicit the fact that these probabilities will depend on

the characteristics (e.g., building type, age) of the ith risk. Note that the conditional distri-

bution of U
CAT (3)
i need not be discrete; Cossette et al. (2002) give a similar model with a

continuous conditional beta distribution for the damage ratios caused by wind. Obviously,

two properties with the same characteristics will not necessarily incur the same damage ra-

tio, i.e., P [U
CAT (3)
i (x) = U

CAT (3)
i′ (x)|I = x] is not necessarily equal to 1 for two properties i

and i′ with identical characteristics, as was the case with the second model.
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We make the assumption that conditional on I, U
CAT (3)
1 , . . . , UCAT (3)

n are independent.

We then have

E
[
U

CAT (3)
i U

CAT (3)
i′

]
= EI

[
E

[
U

CAT (3)
i U

CAT (3)
i′ |I

]]

= EI

[
E

[
U

CAT (3)
i |I

]
E

[
U

CAT (3)
i′ |I

]]

for i 6= i′ ∈ {1, 2, ..., n}. It follows that

Cov
(
C

CAT (3)
i , C

CAT (3)
i′

)
= bibi′E [M0] EI

[
E

[
U

CAT (3)
i |I

]
E

[
U

CAT (3)
i′ |I

]]

−bibi′E [M0]
2 E

[
U

CAT (3)
i

]
E

[
U

CAT (3)
i′

]
,

for i 6= i′ ∈ {1, 2, ..., n}. The c.d.f. of SCAT (3)
n is

F
S

CAT (3)
n

(x) = Pr (M0 = 0) + Pr (M0 = 1) F
D

CAT (3)
n

(x)

= (1− q) + qF
C

CAT (3)
1 +...+C

CAT (3)
n

(x)

= (1− q) + q
∫

Ω
F

C
CAT (3)
1 +...+C

CAT (3)
n |I=θ

(x) dFI(θ).

It follows that the m.g.f. of SCAT (3)
n is

φ
S

CAT (3)
n

(t) = φM0

{
ln

(
φ

D
CAT (3)
n

(t)
)}

= φM0

{
ln EI

[
n∏

i=1

φ
C

CAT (3)
i |I (t)

]}

= (1− q) + q

{
ln

∫

Ω

(
n∏

i=1

φ
C

CAT (3)
i |I (t)

)
dFI(θ)

}
.

The third model is the most realistic of the three models introduced in this section.

Under this model, the damage ratio is influenced by the intensity of the catastrophe (which

was not the case with the first model), but is still allowed to fluctuate from property to

property even if these properties share the same characteristics (which was not the case with

the second model). Now that we can model the catastrophe risk, we can evaluate its impact

on the financial risk posed by an insurance portfolio.
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4 Portfolio risk management

We consider the global risk of a portfolio of an insurance company. An approach based

on risk measures will be presented in Section 5. In this section, we first give an argument

that looking at individual premiums will not detect the risk induced by catastrophes in a

portfolio. We then examine the behavior of the aggregate financial losses as the number of

contracts within the portfolio increases, and illustrate how the catastrophic risk cannot be

diversified by increasing the size of the portfolio.

4.1 Individual premiums and ruin probability

Let π
CAT (j)
i = π

(
X

CAT (j)
i

)
denote the loaded premium associated to catastrophe coverages

of contract i under model j (j = 1, 2, 3). We exclude expenses and profit components

from the premium calculations. We assume that the π
CAT (j)
i ’s are computed under separate

premium principles. (For a survey of the premium calculation principles, see e.g. Gerber

(1979), Daykin et al. (1994) or Rolski et al. (1999).) Generally, premium calculations

are presented in the context of coverages excluding catastrophe risks (see CAS (1996) for a

survey on the computation of such premiums). In this section, we apply these principles to

the computation of π
CAT (j)
i .

The simplest principle is the pure premium principle where π
CAT (j)
i = E

[
X

CAT (j)
i

]
for

i = 1, 2, ..., n. More generally, the loaded premium is greater than the pure premium and the

difference is called the safety margin (or safety loading): γ
CAT (j)
i = π

CAT (j)
i − E

[
X

CAT (j)
i

]

where γ
CAT (j)
i are assumed positive. The relative safety margin η

CAT (j)
i is defined by

η
CAT (j)
i =

γ
CAT (j)
i

E
[
X

CAT (j)
i

] .

Among the premium calculation principles, we find
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• the expected value principle: π
CAT (j)
i =

(
1 + α

CAT (j)
i

)
E

[
X

CAT (j)
i

]
, with α

CAT (j)
i > 0;

• the variance principle: π
CAT (j)
i = E

[
X

CAT (j)
i

]
+α

CAT (j)
i V ar

[
X

CAT (j)
i

]
, with α

CAT (j)
i >

0;

• the standard deviation principle: π
CAT (j)
i = E

[
X

CAT (j)
i

]
+ α

CAT (j)
i

√
V ar

[
X

CAT (j)
i

]
,

with αc
i > 0.

It is worth pointing out that any of these premium principles will yield identical premiums

for each of the three risk models considered in Section 3. This is due to the fact that

the difference between the risk models is not in the marginal distributions of each insured

risk but in their joint distribution. Hence, the above premium principles fail to detect the

difference between the three models. We must therefore consider the stochastic behavior of

the aggregate financial losses. We do so through ruin probability calculations, which formally

illustrates the well known fact that independent risks are diversifiable, whereas catastrophic

risks are not.

In this paper, by ruin probability we mean the probability that the insurance company

does not meet its financial commitments over a fixed period of time (e.g., the next year).

Note that we do not take into account any risk reserve or special allocation from the surplus

(or capital) in our definition of the ruin probability.

One question of interest is the behavior of the ruin probability as the number of insured

contracts within the portfolio of the insurance company increases. We assume that the

first two moments of any claim amount random variables Xi are finite and strictly positive.

These assumptions are reasonable in practice since amounts insured on individual contracts

are finite. To simplify the presentation, we also assume that the relative safety margins in

the premiums are equal for all contracts of the portfolio.
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4.2 Diversification under independent risks

We show in Proposition 2 that if the relative safety loading η is positive, the probability

of not having enough money to cover the total claims tends to 0 as the number of risks

tends to infinity, whereas Proposition 1 shows that this same probability converges to 1

when the safety loading is negative. In both propositions, we consider a sequence of positive

independent individual contract loss amount random variables Y1, . . . , Yn. We assume that

the first two moments are finite and strictly positive, i.e., there exist real numbers a1, a2, b1, b2

such that 0 < a1 ≤ E [Yi] ≤ a2 and 0 < b1 ≤ V ar (Yi) ≤ b2. Let Tn be the aggregate financial

loss random variable, defined as Tn = Y1 + ... + Yn, with

E [Tn] =
n∑

i=1

E [Yi] (5)

V ar (Tn) =
n∑

i=1

V ar (Yi) . (6)

Define the ruin probability ζn for the portfolio of n contracts as

ζn = Pr

(
Tn >

n∑

i=1

πi

)
,

where π = E[(1 + η)Yi] is the premium for the ith contract.

Proposition 1 If the safety margin η > 0, then the ruin probability ζn goes to 0 when

n →∞.

Proposition 2 If the safety margin η < 0, then the ruin probability ζn goes to 1 when

n →∞.

The previous two propositions confirm the common knowledge that independent risks are

diversifiable, as long as the number of risks is large and the premium charged for each risk is

superior to its expected value. The proofs of all the propositions of Section 4 are relegated

to Appendix A.
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4.3 Diversification under catastrophic risks

In the next three propositions, we consider a sequence of positive catastrophic individual

contract loss amount random variables X
CAT (j)
1 , . . . , XCAT (j)

n , j = 1, 2, 3. We assume that

the first two moments are finite and strictly positive, i.e., there exist real numbers a1, a2, b1, b2

such that 0 < a1 ≤ E
[
X

CAT (j)
i

]
≤ a2 and 0 < b1 ≤ V ar

(
X

CAT (j)
i

)
≤ b2. Let SCAT (j)

n be the

aggregate financial loss random variable, defined as SCAT (j)
n = X

CAT (j)
1 + ... + SCAT (j)

n with

E
[
SCAT (j)

n

]
=

n∑

i=1

E
[
X

CAT (j)
i

]
.

Define the ruin probability ζCAT (j)
n for the portfolio of n contracts as

ζCAT (j)
n = Pr

(
SCAT (j)

n >
n∑

i=1

π
CAT (j)
i

)
,

where π
CAT (j)
i = (1 + η)E

[
X

CAT (j)
i

]
is the premium for the catastrophe coverage for the ith

contract. In the remainder of Section 4.3 we examine the behavior of ζCAT (j)
n for the catas-

trophe models with independent damage ratios (j = 1), with damage ratios as deterministic

functions of catastrophe intensity (j = 2) and with damage ratios as random functions of

catastrophe intensity (j = 3). This will provide a formal argument to support the fact that

catastrophe risk cannot be diversified in the same fashion as the risk of usual ”day-to-day”

business. Indeed, we will prove that an insurance or reinsurance company cannot diver-

sify the financial risk paused by catastrophes through premium income alone, even with an

arbitrary large portfolio of insured risks.

4.3.1 Independent damage ratios

In the following proposition, we demonstrate that under the model with independent damage

ratios, the ruin probability tends to q, the probability that a catastrophe occurs:
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Proposition 3 If 0 < η <


 E

[
C

CAT (1)
i

]

E

[
X

CAT (1)
i

] − 1


 = 1

q
− 1, then the ruin probability ζCAT (1)

n

tends, when n →∞, to the probability that at least one catastrophe occurs, i.e.

lim
n→∞ ζCAT (1)

n = 1− Pr (M0 = 0) = q.

Notice that the upper bound


 E

[
C

CAT (1)
i

]

E

[
X

CAT (1)
i

] − 1


 on the relative safety margin η corre-

sponds to the case where the premium π
CAT (1)
i is equal to E

[
C

CAT (1)
i

]
, the expected individ-

ual catastrophic loss given a catastrophe happens. This is a reasonable bound as it is hard

to imagine an insurance company charging a premium greater than E
[
C

CAT (1)
i

]
. Within

the context of this simple model, we have shown that the catastrophe risks cannot be fully

diversified like the non-catastrophe risks can.

4.3.2 Damage ratios as deterministic functions of catastrophe intensity

Recall that the damage ratio r.v.’s U
CAT (2)
1 , ...,UCAT (2)

n are positive increasing functions ψi of

a r.v. I, the intensity of the catastrophe. We now show in this case that the ruin probability

is greater than a strictly positive fraction of the probability that a catastrophe occurs.

Proposition 4 If 0 < η <


 E

[
C

CAT (2)
i

]

E

[
X

CAT (2)
i

] − 1


 = 1

q
− 1, there exists a strictly positive real

number c with 0 < c ≤ 1, such that

lim
n→∞ ζCAT (2)

n ≥ q × c > 0.

To illustrate the result of the previous proposition, consider a portfolio of property in-

surance where bi = b and the damage ratio r.v.’s U
CAT (2)
i are identically distributed

U
CAT (2)
i ∼ UCAT (2),
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which means that ψi (I) = ψ (I) for i = 1, 2, ..., n. Then, for any n,

ζCAT (2)
n = Pr

(
SCAT (2)

n >
n∑

i=1

π
CAT (2)
i

)
= q Pr (nbψ (I) > (1 + η)× q × nbE [ψ (I)])

= q Pr (ψ (I) > (1 + η)× q × E [ψ (I)]) .

For the positive and increasing function ψ (u), define ψ−1 () as its inverse. It leads to

ζCAT (2)
n = q Pr (ψ (I) > (1 + η)× q × E [ψ (I)]) , ∀n

= q Pr
(
I > ψ−1 ((1 + η)× q × E [ψ (I)])

)
, ∀n

where (1 + η)×q×E [ψ (I)] < E [ψ (I)] by assumption and Pr (I > ψ−1 ((1 + η)× q × E [ψ (I)]))

is strictly positive. Then, we obtain the ruin probability

ζCAT (2)
n = q Pr

(
I > ψ−1 ((1 + η)× q × E [ψ (I)])

)
, ∀n

= qc, ∀n,

where c = Pr (I > ψ−1 ((1 + η)× q × E [ψ (I)])) can be computed given the function ψ.

4.3.3 Damage ratios as random functions of catastrophe intensity

Recall that the damage ratio r.v.’s U
CAT (3)
1 , ...,UCAT (3)

n are positive random functions ψi of a

r.v. I, the intensity of the catastrophe. We now show in this case that the ruin probability

tends to a strictly positive fraction of the probability that a catastrophe occurs.

Proposition 5 If 0 < η <
E

[
C

CAT (3)
i

]

E

[
X

CAT (3)
i

]−1 = 1
q
−1, there exists a strictly positive real number

c with 0 < c ≤ 1, such that

limn→∞ζCAT (3)
n → q × c > 0.
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4.3.4 Illustration

The results of Propositions 4 and 5 may feel counterintuitive at first, since the ruin probability

under Model 2 is lower than the probability of ruin under Model 3. The following example

helps to better understand the meaning of these propositions.

For simplicity, suppose that the catastrophe intensity is a discrete random variable

that may take on one of 7 distinct values. The damage ratios are assumed discrete on

{1/5, 2/5, . . . , 5/5} (respective probabilities 0.29, . . .). Using the results from Appendix A,

we can compute the c.d.f.’s of SCAT (j)
n , j = 1, 2, 3. These c.d.f.’s are plotted for a portfolio

of 150 risks, each of insured value 10, with a probability of catastrophe in the year equal to

0.1 in Figure 1. The model is such that E[SCAT (j)
n ] = 70.6 and E[DCAT (j)

n ] = 706, j = 1, 2, 3.

[Insert Figure 1 here ...]

The most obvious characteristic of the distribution of SCAT (j)
n is that it has a probability

mass of 0.9 at 0, since the probability of no catastrophe is 0.9. In the independent damage

ratio case, we see that the distribution of SCAT (1)
n given a catastrophe occurs is concentrated

around E[SCAT (1)
n ], as the law of large numbers would suggest. In the case of deterministic

damage ratios, when a catastrophe occurs all damage ratios take on the same value and we

get a c.d.f. for SCAT (2)
n with a stair case appearance. For instance if the damage ratios all

take on the value 1/5, the expected value of SCAT (2)
n is 300, the point of the first jump in

the stair case c.d.f. Note that given a catastrophe occurs, the distribution of SCAT (2)
n is a lot

more spread out around E[DCAT
n ] = 706 than is the case with independent damage ratios.

For random damage ratios, we see that the c.d.f. of SCAT (3)
n given a catastrophe occurs is
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concentrated around 7 points, each point corresponding to a possible value of the catastrophe

intensity. This makes sense as given a catastrophe of a specific intensity, SCAT (3)
n amounts

to a sum of independent random variables. For example, for the smallest of the 7 values of

the catastrophe intensity, the expected value of SCAT (3)
n is 480, the center point of the first

climb of the c.d.f. of SCAT (3)
n . Notice that the spread of the distribution of SCAT (3)

n about

E[DCAT
n ] given a catastrophe is intermediate between that of the distributions of SCAT (1)

n

and SCAT (2)
n .

From the c.d.f.’s, we can calculate ruin probabilities for various values of the risk loading

η. When η = 200%, all three ruin probabilities ζCAT (j)
n = 0.10, j = 1, 2, 3. When η = 400%,

ζCAT (2)
n = 0.074 while ζCAT (j)

n = 0.10, j = 1, 3. When η = 600%, ζCAT (3)
n = 0.076, ζCAT (2)

n =

0.074 and ζCAT (1)
n = 0.10. Hence, despite very large safety margins, the ruin probabilities

remain positive.

The results derived in Section 4.3 strongly suggest that companies selling protection

against the risk of catastrophes seek protection themselves, either through reinsurance or

insurance derivatives (see e.g. Schmock (1999), Harrington and Niehaus (1999), Christensen

and Schmidli (2000), Cox and Pedersen (2000), and Cox, Fairchild and Pedersen (2000)).

However ruin probabilities alone cannot be used to assess the dangerousness of a portfolio.

Indeed, the portfolio with deterministic damage ratios seems to be more risky given the

spread of its c.d.f. in Figure 1, but its ruin probability is the lowest. In Section 5 we

quantify the effect of the spread in the c.d.f.’s of SCAT (j)
n in terms of measures of the risk

level of the portfolios.
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5 Comparison between the catastrophe models

We now want to assess the riskiness of a portfolio when catastrophes are possible. We will

do so by comparing the risk level of the realistic catastrophe model (third model) proposed

in Section 3 to the risk level of portfolios based on the other two more extreme models

(first model and second model) of Section 3. We will rank the risk levels of these portfolios

using risk measures, to be reviewed in Section 5.1 for completeness. To make sure that

the portfolios are comparable, we will construct the portfolios so that the n risks insured

against catastrophes have the same marginal distributions in all three portfolios in Section

5.2. We use existing theory on risk ordering to derive theoretical orderings between the three

portfolios in Section 5.3. We illustrate these orderings with numerical examples in Section

6.

5.1 Risk measures

In this section we look at means of assessing the effect of potential catastrophes on the

riskiness of a portfolio. A risk measure is a system that allows us to quantify or compare

risks (Wirch, 1999). To compare the risk levels of our catastrophe models, we will consider

three risk measures used in risk management: the Stop-Loss premium, the Value-at-Risk

(V aR) and the Conditional Value at Risk (CV aR) (also called conditional tail expected

loss).

5.1.1 Coherent risk measures

Several different measures of riskiness have been proposed in the literature. Since different

measures may lead to different risk orderings, it is preferable to restrict our class of potential

risk measures to a set of risk measures that satisfy minimal requirements. Artzner et al.
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(1998, 1999) and Wirch (1999) give five properties that are desirable for risk measures.

They call risk measures that satisfy these properties coherent risk measures.

Definition 1 A coherent risk measure has the following properties:

• Property 1: The risk measure must be limited above by the maximum possible net loss.

• Property 2: The risk measure must be subadditive.

• Property 3: The risk measure must be multiplicative by a scalar.

• Property 4: The risk measure must be independent of the size of possible gains.

• Property 5: The risk measure must be scalar additive.

We examine separately three risk measures. While the CV aR is coherent, the stop-loss

premium and the V aR are not; we consider them nonetheless as they are widely used risk

measures in practice.

5.1.2 Stop-Loss premium

The stop loss premium, defined as πS(d) = E [(S − d)+], is the pure premium for a stop-loss

reinsurance contract with a given retention level d ≥ 0.

5.1.3 Value-at-Risk

The Value at Risk (V aR) is a popular risk measure in risk management and actuarial science.

In the actuarial literature, it is also referred to as the maximal probable loss.

Definition 2 The Value at Risk (V aR) with a confidence level α associated to the r.v. S is

defined by

V aRα(S) = inf {x ∈ R : FS(x) ≥ α} ,
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where 0 ≤ α ≤ 1.

The V aR is a popular risk measure even though it is not a coherent risk measure. The

properties 2 and 3 (Wirch, 1999) stated above are not satisfied by this risk measure. For

further information on the V aR see e.g. Embrechts et al. (2002) and Hürlimann (2003).

5.1.4 Conditional Value-at-Risk

The Conditional Value-at-Risk, also called the conditional tail expectation, is a coherent

risk measure proposed by Artzner et al. (1998, 1999) as an alternative to the V aR (see e.g..

Wirch (1999) and Hürlimann (2001)).

Definition 3 Let 0 ≤ α ≤ 1. The Conditional Value-at-risk CV aRα(S) with a confidence

level α associated to the r.v. S is defined by

CV aRα(S) = E [S|S > V aRα(S)] .

As mentioned e.g. in Hürlimann (2001), we have

CV aRα(S) = E [S|S > V aRα(S)] =

∫∞
V aRα(S) s dFS (s)

Pr (S > V aRα(S))

=
1

α

∫ ∞

V aRα(S)
{1− FS (s)} ds + V aRα(S).

A popular measure of the risk of death of an individual in demography and life actuarial

science is the residual life expectancy

eS (x) = E [S − x|S > x] =
πS(x)

1− FS(x)
,

see e.g. Klugman et al. (1998) or Bowers et al. (1997). The CV aR can be expressed as a

function of the residual life expectancy and V aR

CV aRα(S) = eSm (V aRα(S)) + V aRα(S),
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or, equivalently,

CV aRα (S) =
πS(V aRα(S))

1− FS (V aRα(S))
+ V aRα(S) =

πS(V aRα(S))

α
+ V aRα(S).

5.2 Construction of three comparable portfolios

We now construct three portfolios of risks, one portfolio coming from each of the three models

presented in Section 3. To make the comparisons meaningful, we have to construct the

portfolios so that the n random variables representing the damage ratios, UCAT
1 , . . . , UCAT

n ,

have the same marginal distributions in each portfolio.

The portfolios have the same structure, where we model the catastrophic claim amount

for the ith risk, XCAT
i , by

XCAT
i =





biU
CAT
i , M0 = 1

0, M0 = 0,

where M0 is a Bernoulli(q) random variable that takes on value 1 if, and only if, there is a

catastrophe affecting the portfolio in the period of interest. We will construct the portfolios

so that the joint distribution of U
CAT (j)
1 , . . . , UCAT (j)

n will be different for each portfolio. We

present the portfolios in reverse order (j = 3, 2, 1) as it is simpler to construct portfolios

with identical marginal distributions for the U
CAT (j)
i this way.

5.2.1 Realistic portfolio

We start by constructing a portfolio that is a relatively realistic representation of a group

of risks subject to potential catastrophes. This construction is based on the third model

(j = 3) from Section 3.2.3. We first suppose that there is at most one catastrophe affecting

the portfolio in the year with probability q. The indicator of such a catastrophe is a random

variable M0 having a Bernoulli distribution with mean q. Given a catastrophe, its intensity,

27



I, has a distribution with c.d.f. FI on the positive real line. Conditional on an observed

intensity I = x, we suppose that the damage ratios U
CAT (3)
i , i = 1, . . . , n are indepen-

dent random variables, with U
CAT (3)
i having conditional c.d.f. at u given by F

U
CAT (3)
i |I(u|x).

Thus, given M0, U
CAT (3)
1 , . . . , UCAT (j)

n are dependent random variables with marginal c.d.f.’s

F
U

CAT (3)
1

, . . . , F
U

CAT (3)
n

, where F
U

CAT (3)
i

(u) =
∫∞
0 F

U
CAT (3)
i |I(u|x)dFI(x), i = 1, . . . , n.

5.2.2 Portfolio based on comonotonic damage ratios

We now construct a portfolio based on the second model (j = 2) of Section 3.2.2. We first

define the property of comonotonicity (see e.g. Wand and Dhaene (1998), Wang (1998),

Baüerle and Müller (1998), Denuit et al. (2002)).

Definition 4 A vector of r.v., denoted Zcm = (Zcm
1 , ..., Zcm

n ), with marginals c.d.f. FZi
, is

said to be comonotonic if one of the three following conditions is fulfilled:

1. The c.d.f. of Z is given by

FZcm(x) = min(FZ1(x1), ..., FZn(xn)), x ∈ Rn;

2. We have

Zcm = (F−1
Z1

(U), ..., F−1
Zn

(U)),

where U ∼ Unif(0, 1);

3. There exists a r.v. V and increasing functions f1, ..., fm such that Zcm
i = fi (V ) for

i = 1, 2, ..., n.

We make our construction so that the damage ratios have the same marginal distributions

as in the realistic portfolio, but are comonotonic, i.e. U
CAT (2)
1 , . . . , UCAT (2)

n can be written as
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ψ1(I), . . . , ψn(I) for some r.v. I and increasing functions ψ1, . . . , ψn. To do so, we simply let

U
CAT (2)
i = F−1

U
CAT (3)
i

(FI (x)) , i = 1, . . . , n, (7)

where F−1

U
CAT (3)
i

(u) = inf{y : F
U

CAT (3)
i

(y) = u} is the inverse of the c.d.f. of U
CAT (3)
i and FI is

the c.d.f. of I, the catastrophe intensity. It is then easy to verify that under these assump-

tions, U
CAT (3)
1 , . . . , UCAT (3)

n and U
CAT (2)
1 , . . . , UCAT (2)

n are vectors of random variables with

identical marginal distributions but with a different joint distribution. It is also obvious that

the damage ratios as defined in (7) satisfy the definition of comonotonic random variables.

This portfolio with comonotonic proportions will be shown to be the riskiest of our

portfolios. It is also a portfolio that leads to relatively simple calculations. It will therefore

be a convenient upper bound for stop-loss premiums and other quantities of interest for

realistic portfolios. Moreover, we will see in the numerical example of Section 6 that this

upper bound is surprisingly tight.

5.2.3 Portfolio with independent damage ratios

We now construct a portfolio based on the first model (j = 1) of Section 3.2.1. In this

construction the damage ratios again have the same marginal distributions as in the realistic

portfolio, but this time we let these damage ratios be independent. This is simply done by

letting V1, . . . , Vn be independent uniform random variables on [0, 1], then by setting

U
CAT (1)
i = F−1

U
CAT (1)
i

(Vi), i = 1, . . . , n.

Again, one easily sees that we have independent random variables U
CAT (1)
1 , . . . , UCAT (1)

n with

marginal c.d.f.’s given by F
U

CAT (1)
1

, . . . , F
U

CAT (1)
n

, respectively.
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5.3 Ordering of risks

We compare the three portfolios on the basis of stochastic orders and dependence orders.

Ordering of risks is often applied, for example, in the establishment of stochastic bounds,

and can also be used to rank portfolios according to their dangerousness.

5.3.1 Basic results

We first present two definitions of stochastic orders between univariate r.v.’s which is often

used in actuarial science (for details, see e.g. Bäuerle et Müller (1998), Rolski et al. (1999)

et Kaas et al. (2001)).

Definition 5 Let X and X ′ be two r.v.’s such that E [X] < ∞ and E [X ′] < ∞. Then, X

precedes X ′ under stochastic dominance order, denoted X ≤sd X ′,if FX(x) ≥ FX′(x), for

all x ∈ R.

Definition 6 Let X and X ′ be two r.v.’s such that E [X] < ∞ and E [X ′] < ∞.Then, X

precedes X ′ under stop-loss order, denoted X ≤sl X ′, if E [(X − d)+] ≤ E [(X ′ − d)+], for

all d ∈ R, where (u)+ = max(u, 0).

Consider now two vectors of r.v.’s X = (X1, ..., Xn) and X ′ =
(
X ′

1, ..., X
′
n

)
where, for

each i, Xi and X
′
i have the same marginal distribution (i.e. Xi ∼ X

′
i for i = 1, 2, ..., n).

Define also S = X1 + ... + Xn and S ′ = X ′
1 + ... + X

′
n. Because of the assumptions on X and

X ′, we have E [S] = E [S ′].

When we want to compare X and X ′, we use dependence orders (see e.g. Shaked and

Shantikumar (1994) and Joe (1997) for details on dependence orders). Then, based on a

given relation between X and X ′, we can compare S and S ′. If we want to establish that

S precedes S ′ under stop-loss order, we first need to show that X precedes X ′ under the
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so-called supermodular order. The supermodular order is a dependence order which was

introduced in the actuarial context by Müller (1997) and Baüerle and Müller (1998) then

examined by e.g. Denuit et al. (2002). It allows the comparison of random vectors with the

same marginals. We first need to define a supermodular function.

Definition 7 A function g : Rm → R is said supermodular if

g(x1, ..., xi + ε, ..., xj + δ, ..., xm)− g(x1, ..., xi + ε, ..., xj, ..., xm)

≥ g(x1, ..., xi, ..., xj + δ, ..., xm)− g(x1, ..., xi, ..., xj, ..., xm)

is true for all x = (x1, ..., xm) ∈ Rm, 1 ≤ i ≤ j ≤ m and all ε, δ > 0.

This definition is an extension to the notion of convexity for a function d : R → R.

Proposition 6 If g is twice differentiable, then g is supermodular if and only if

∂2

∂xi∂xj

g(x) ≥ 0,

for all x ∈ Rm and 1 ≤ i ≤ j ≤ m.

Proof: See e.g. Marshall et Olkin (1988) or Bäuerle et Müller (1998). ut
For example, the functions g(x1, ..., xm) =

∑m
i=1 xi, g(x1, ..., xm) =

∑m
i=1 (xi − d)2 and g(x1, ..., xm) =

(
∑m

i=1 xi − d)+ are supermodular.

Let us define the supermodular order as presented in Bäuerle and Müller (1998):

Definition 8 Let X and X ′ be two vectors of r.v.’s X = (X1, ..., Xn) and X ′ =
(
X ′

1, ..., X
′
n

)

where, for each i, Xi and X
′
i have the same marginal distributions (i.e. Xi ∼ X

′
i for i =

1, 2, ..., n). Then, X precedes X ′ under the supermodular order, denoted X ≤sm X ′, if

E [g(X)] ≤ E [g(X ′)] for all supermodular functions g, provided their expectations exist.
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We precise that the supermodular ordering can be applied when we compare two vectors

of r.v.’s with same marginals. The supermodular ordering is used when we want to compare

r.v.’s with different degrees of dependence. The relationship between supermodular ordering

and comonotonicity is explored in Baürle and Müller (1998) and Goovaerts and Dhaene

(1999). We now state the following important result:

Proposition 7 If X ≤sm X ′,then S ≤sl S ′.

Proof: See e.g. Baüerle and Müller (1998). ut
The following proposition corresponds to Lorentz’s Inequality.

Lemma 8 Let X and Xcm be vectors of r.v.’s given by X = (X1, ..., Xn) and Xcm =

(Xcm
1 , ..., Xcm

n ) where, for each i, Xi and Xcm
i have the same marginal distributions (Xi ∼

Xcm
i , for i = 1, 2, ..., n), and where Xcm

1 , . . . , Xcm
n are comonotonic. Then, X precedes Xcm

under the supermodular order, denoted X ≤sm Xcm.

Proof: See e.g. Bäuerle and Müller (1998). ut
According to previous proposition, the comonotonicity corresponds to the strongest de-

pendent relation under supermodular ordering.

Lemma 9 Let X and XIND be vectors of r.v. given by X = (X1, ..., Xn) and XIND =

(XIND
1 , ..., XIND

n ) where, for each i, Xi and XIND
i have the same marginal distributions

(Xi ∼ XIND
i , for i = 1, 2, ..., n) and the components of XIND are independent. We as-

sume that the components of X are positively correlated. Then, XIND precedes X under the

supermodular order, denoted XIND ≤sm X.

Proof: See e.g. Müller (1997) and Dhaene and Goovaerts (1996). ut
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5.3.2 Application to our context

We now apply the above results on the stochastic orders and the dependence orders to

compare the catastrophe models.

Proposition 10 We have UCAT (1) ≤sm UCAT (3) ≤sm UCAT (2).

Proof: Clearly, the components of

UCAT (2) =
(
U

CAT (2)
1 , U

CAT (2)
2 , ..., UCAT (2)

n

)

are comonotonic, since they are deterministic functions of the intensity of the catastrophe.

The components of UCAT (3) are defined by common mixture which implies that they are

positively correlated. Then, we have UCAT (1) ≤sm UCAT (2) and UCAT (3) ≤sm UCAT (2) from

lemmas 8 and 9. ut

Proposition 11 We have

SCAT (1) ≤sl SCAT (3) ≤sl SCAT (2).

Proof: First, we have BCAT (1) ≤sm BCAT (3) ≤sm BCAT (2), since B
CAT (j)
i = biU

CAT (j)
i and

because the supermodular order is preserved under scalar multiplication (see Bäuerle and

Müller (1998)). Then, it follows that

DCAT (1) ≤sl DCAT (3) ≤sl DCAT (2) (8)

from Proposition 10. From Kaas et al. (2001, Chapter 10), (8) leads to SCAT (1) ≤sl

SCAT (3) ≤sl SCAT (2).ut
In the last proposition, we show that the third model for catastrophe risks, the more

realistic one, is bounded below by the first model and bounded above by the second model.

This implies that for any retention level d ≥ 0, we have

πSCAT (1) (d) ≤ πSCAT (3) (d) ≤ πSCAT (2) (d) . (9)
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Hürlimann (2003) shows that this further implies that

CV aRα

(
SCAT (1)

)
≤ CV aRα

(
SCAT (3)

)
≤ CV aRα

(
SCAT (2)

)
, (10)

for 0 < α < 1. The relations (9) and (10) are illustrated in the numeral example of Section 6.

These relations are useful when one wants to establish stochastic bounds for the distribution

of the third model.

Unfortunately, we cannot conclude that FSCAT (1) (x) ≥ FSCAT (2) (x) > πSCAT (3) (x) for all

x ≥ 0, which would have implied that V aRα

(
SCAT (1)

)
≤ V aRα

(
SCAT (3)

)
≤ V aRα

(
SCAT (2)

)

for 0 < α < 1. Stochastic bounds on V aRα

(
SCAT (2)

)
can still be obtained, as is explained

in Denuit et al. (1999).

6 Numerical illustration of the three risk models

We keep the construction of the three portfolios as described in Section 5. We consider a

portfolio of 300 insured risks divided into three classes of 100 risks each, with all the risks in

a given class having the same characteristics (say, same building type). Each class contains

25 risks of insured value 1, 25 risks of insured value 2, 25 risks of insured value 3 and 25

risks of insured value 4 (here one unit could represent, say, $US100,000). Thus, the total

insured value of this portfolio is bTOT = 750. The catastrophe occurrence indicator M0 is a

Bernoulli random variable with mean q = 0.2 (this value seems somewhat excessive, but it

is convenient for illustrative purposes).

Within the framework of the third model, we assume that, given a catastrophe occurs,

the r.v. I, representing the catastrophe intensity, takes on a value in {θ1, θ2, θ3, θ4, θ5} with

a mass probability function given by Pr(I = θ1) = 0.2, Pr(I = θ2) = 0.4, Pr(I = θ3) = 0.2,

Pr(I = θ4) = 0.15 and Pr(I = θ5) = 0.05.
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The conditional mass probability of the damage ratio r.v.’s given I = θi are provided in

Tables 1, 2 and 3. These conditional mass probabilities are inspired from the ATC-13 report

(Applied Technology Council, 1985), which uses earthquake data from California to model

the distribution of the damage ratios as a function of earthquake intensity. If the property

covered by the insurance contract i belongs to building type j, we let

Pr
(
U

CAT (3)
i = u |I = θk

)
= pj,θk

(u) , u ∈ {0.1, 0.2, ..., 1.0} , k = 1, 2, ..., 5.

[Insert Table 1 here...]

[Insert Table 2 here...]

[Insert Table 3 here...]

We derive the mass probability function (see Table 4) for U
CAT (3)
i and, consequently, of

U
CAT (1)
i and U

CAT (2)
i for the three types of buildings.

[Insert Table 4 here...]

In Table 5, we provide the expectation and the standard deviation of the damage ratios

UCAT (j) (j = 1, 2, 3) for the three types of building.

[Insert Table 5 here...]

In the context of the three models, the expected aggregate financial losses for the whole

portfolio is 80.05, i.e. E
[
SCAT (1)

]
= E

[
SCAT (2)

]
= E

[
SCAT (3)

]
= 80.05 and, given that a

catastrophe occurs, the expected aggregate financial losses for the whole portfolio is 400.25,

i.e.,

E
[
SCAT (j) |M0 = 1

]
= E

[
DCAT (1)

]
= E

[
DCAT (2)

]
= E

[
DCAT (3)

]
= 400.25.
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For each model, the standard deviations of the aggregate financial losses for the whole port-

folio are
√

V ar (SCAT (1)) = 160.17,
√

V ar (SCAT (2)) = 176.75, and
√

V ar (SCAT (3)) = 172.66,

and we also have
√

V ar (DCAT (1)) = 358.11,
√

V ar (DCAT (2)) = 395.19 and
√

V ar (DCAT (3)) =

386.04.

For the three models, we have provided in Tables 6 to 9 the c.d.f., the stop-loss premiums,

the V aR and the CV aR, respectively, of total amount of financial losses for the portfolio.

As we have shown in Section 5, we observe in Tables 7 and 8 that

πSCAT (1) (d) ≤ πSCAT (3) (d) ≤ πSCAT (2) (d)

for d ∈ [0, 750] and

CV aRα

(
SCAT (1)

)
≤ CV aRα

(
SCAT (3)

)
≤ CV aRα

(
SCAT (2)

)

for α = 0.80, 0.85, 0.90, 0.95, 0.99. These orderings are not observed for the c.d.f. and the

V aR. However, it seems that after a given point, the c.d.f. and the V aR are ordered in the

same way.

[Insert Table 6 here...]

[Insert Table 7 here...]

[Insert Table 8 here...]

[Insert Table 9 here...]

Suppose that the insurance company requires for each contract a loaded premium equal

to 125% of the expectation of eventual losses covered by the contract. Then, the insurance

company has a total amount of 100.04 that can be applied to finance the losses due to a

catastrophe. This amount is far below the conditional expectation of the aggregate financial

losses for the whole portfolio given that a catastrophe occurs, which is 400.25. In the context
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of the more realistic Model 3, the probability that the company will not have enough money

to pay the losses is 20%, which is the assumed probability that a catastrophe occurs over

the next year.

Let us also mention that the values given in the Tables 6 to 9 are exact and that no

simulation methods have been used. It is also interesting to notice that the stop-loss pre-

miums and the conditional values at risk obtained with Model 2 are safe (conservative) and

close upper bounds to those calculated with the more realistic Model 3. The computation of

stop-loss premiums and conditional V aR of a sum of comonotonic r.v.’s is relatively straight-

forward compared to the same computations under Model 3. The computation of stop-loss

premiums for sums of comonotonic r.v.’s is treated in detail in, for example, Dhaene et al.

(2002ab) and Kaas et al. (2001).

7 Conclusion

We have proposed a realistic individual catastrophe risk model. While realistic enough

to include random dependence of damage ratios on catastrophe intensities, the model is

sufficiently tractable to allow calculations of quantities such as premiums or limiting ruin

probabilities, and the derivation of stochastic orderings. Furthermore, the model is flexible

and general and can be applied to other types of insurance where “catastrophes” are possible

(e.g., epidemics in health insurance, other natural catastrophes). We also derived some

interesting results from this model, such as a formal illustration of the non diversifiability of

the catastrophic risk.

Future work can be done in this area. In this paper we have modelled the risk over a

single fixed time period. It would be interesting to extend the model proposed to a dynamic

model in continuous time. To our knowledge a survey of the specific forms of the functions ψ
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that link the catastrophe intensities to the damage ratios for the main types of catastrophes

does not exist in a form ready to be used by actuaries. Such a survey would benefit both

practitioners and researchers in actuarial science.

A Proofs of results from Section 5

Most of the proofs below require the use of Chebychev’s inequality:

Lemma 12 (Chebychev’s inequality) Let U be a r.v. with mean E(U) and variance V ar(U).

Then ∀k > 0, we have

P
(
|U − E [U ]| > k

√
V ar(U)

)
≤ 1

k2
.

A.1 Proof of Proposition 1:

We have

ζn = Pr

(
Tn >

n∑

i=1

(1 + η) E [Yi]

)

= Pr (Tn > (1 + η) E [Tn])

= Pr (Tn − E [Tn] > ηE [Tn])

≤ Pr (|Tn − E [Tn]| > ηE [Tn]) . (A.1)

Applying the Chebychev Inequality, (A.1) becomes

ζn ≤ Pr (|Tn − E [Tn]| > ηE [Tn]) = Pr


|Tn − E [Tn]| > ηE [Tn]√

V ar [Tn]

√
V ar [Tn]




≤
(√

V ar [Tn]
)2

(ηE [Tn])2 .
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From (5) and (6), we have

ζn ≤
(√

V ar [Tn]
)2

(ηE [Tn])2 =

∑n
i=1 V ar [Yi]

(η
∑n

i=1 E [Yi])
2 ≤

∑n
i=1 b2

(η
∑n

i=1 a1)
2 =

n× b2

(η × n× a1)
2 .

Hence,

limn→∞ζn ≤ limn→∞
n× b2

(η × n× a1)
2 → 0,

implying that the ruin probability ζn goes to 0 when n →∞. ut

A.2 Proof of Proposition 2:

Let ξ = |η| = −η. We have

ζn = Pr (Tn > (1 + η) E [Tn]) = Pr (Tn − E [Tn] > −ξE [Tn])

= 1− Pr (Tn − E [Tn] < −ξE [Tn])

≥ 1− Pr (|Tn − E [Tn]| > ξE [Tn]) . (A.2)

Applying the Chebychev Inequality, (A.2) becomes

ζn ≥ 1− Pr (|Tn − E [Tn]| > ξE [Tn])

= 1− Pr


|Tn − E [Tn]| > ξE [Tn]√

V ar [Tn]

√
V ar [Tn]




≥ 1−
(√

V ar [Tn]
)2

(ηE [Tn])2 . (A.3)

Substituting (5) and (6) into (A.3) we get

ζn ≥ 1−
(√

V ar [Tn]
)2

(ξE [Tn])2 = 1−
∑n

i=1 V ar [Yi]

(ξ
∑n

i=1 E [Yi])
2 ≥ 1−

∑n
i=1 b2

(ξ
∑n

i=1 a1)
2 = 1− n× b2

(ξ × n× a1)
2 .

Then,

limn→∞ζn ≥ 1− limn→∞
n× b2

(η × n× a1)
2 → 1

implying that the probability ζn goes to 1 when n →∞. ut
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A.3 Proof of Proposition 3:

When we condition on M0, the ruin probability ζCAT (1)
n can be written in those terms

ζCAT (1)
n = Pr

(
SCAT (1)

n >
n∑

i=1

π
CAT (1)
i

)

=
1∑

k=0

Pr(M0 = k)Pr

(
SCAT (1)

n >
n∑

i=1

π
CAT (1)
i

∣∣∣∣∣ M0 = k

)

= qPr

(
DCAT (1)

n >
n∑

i=1

π
CAT (1)
i

)

Then, we get

limn→∞ζCAT (1)
n = qlimn→∞Pr

(
DCAT (1)

n >
n∑

i=1

π
CAT (1)
i

)

Following Proposition 3, we have

limn→∞Pr

(
DCAT (1)

n >
n∑

i=1

π
CAT (1)
i

)
= 1

and consequently

limn→∞ζc
n = q × 1 = q = 1− Pr (M = 0) ,

which is the desired result. ut

A.4 Proof of Proposition 4:

We have

ζCAT (2)
n = Pr

(
SCAT (2)

n >
n∑

i=1

π
CAT (2)
i

)

=
1∑

k=0

Pr (M0 = k) Pr

(
SCAT (2)

n >
n∑

i=1

π
CAT (2)
i |M = k

)

= q Pr

(
SCAT (2)

n >
n∑

i=1

π
CAT (2)
i |M = 1

)
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= q Pr

(
n∑

i=1

biU
CAT (2)
i > (1 + η)× E [M0]×

n∑

i=1

biE
[
U

CAT (2)
i

])

= q Pr

(
n∑

i=1

biψi (I) > (1 + η)× E [M0]×
n∑

i=1

biE [ψi (I)]

)
. (A.4)

Since, under our assumptions on η, (1 + η) E [M0] < 1, it is clear that

(1 + η)× E [M0]×
n∑

i=1

biE [ψi (I)] <
n∑

i=1

biE [ψi (I)] .

There exists a strictly positive number c such that

Pr

(
n∑

i=1

biψi (I) > (1 + η)× E [M0]×
n∑

i=1

biE [ψi (I)]

)
> c > 0,

for all n > 0. Then (A.4) becomes q ≤ ζCAT (2)
n ≥ q × c. ut

A.5 Proof of Proposition 5:

We have

ζCAT (3)
n = Pr

(
SCAT (3)

n >
n∑

i=1

π
CAT (3)
i

)

=
1∑

k=0

Pr (M0 = k) Pr

(
SCAT (3)

n >
n∑

i=1

π
CAT (3)
i |M0 = k

)

= q Pr

(
DCAT (3)

n >
n∑

i=1

π
CAT (3)
i

)
.

Then, we condition on the intensity of the catastrophe,

ζCAT (3)
n = q Pr

(
DCAT (3)

n >
n∑

i=1

π
CAT (3)
i

)

= q
∫

θ∈Ω
Pr

(
n∑

i=1

biU
CAT (3)
i >

n∑

i=1

π
CAT (3)
i |I = θ

)
dFI (θ)

= q
∫

θ∈Ω
Pr

(
n∑

i=1

biU
CAT (3)
i > (1 + η)× E [M0]×

n∑

i=1

biE
[
U

CAT (3)
i

]
|I = θ

)
dFI (θ) .
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There exists a θ0 ∈ Ω such that

(1 + η)× E [M0]×
n∑

i=1

biE
[
U

CAT (3)
i

]
<

n∑

i=1

biE
[
U

CAT (3)
i |I = θ

]

for all θ ≥ θ0. We recall that
(
U

CAT (3)
i |I = θ

)
are independent by assumption. From

Propositions 2 and 3, we have

limn→∞ Pr

(
n∑

i=1

biU
CAT (3)
i > (1 + η)× E [M0]×

n∑

i=1

biE
[
U

CAT (3)
i

]
|I = θ

)
→ 0

for θ < θ0 and

limn→∞ Pr

(
n∑

i=1

biU
CAT (3)
i > (1 + η)× E [M0]×

n∑

i=1

biE
[
U

CAT (3)
i

]
|I = θ

)
→ 1

for θ ≥ θ0. Then, the dominated convergence theorem allows us to pass the limit inside the

integral, which gives

limn→∞ζCAT (3)
n = q

∫

θ∈I

{
limn→∞ζCAT (3)

n Pr

(
n∑

i=1

biU
CAT (3)
i > (1 + η)

×E [M0]×
n∑

i=1

biE
[
U

CAT (3)
i

]
|I = θ

)}
dFI (θ)

= q (1− FI (θ0))

and, letting c = 1− FI (θ0), we obtain the desired result. ut
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23. Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events

for Insurance and Finance. Springer-Verlag, Berlin.

24. Embrechts, P., McNeil, A., Straumann, D. (2002). Correlation and dependence in risk

management: properties and pitfalls. Risk Management: Value at Risk and Beyond,

M.A.H. Dempster (Ed), Cambridge University Press, Cambridge, 176-223.

25. Gerber, H. U. (1979). An Introduction to Mathematical Risk Theory. S.S. Huebner

Foundation. University of Pennsylvania. Philadelphia.

26. Goovaerts, M. J. and J. Dhaene (1999). Supermodular ordering and stochastic annu-

ities. Insurance: Mathematics and Economics, 24, 281-290.

27. Harrington, S. and Niehaus, G. (1999), Basis risk catastrophe insurance derivative

contracts. Journal of Risk and Insurance, 66, 49-82.

28. Hürlimann, W. (2001). Analytical evaluation of economic risk capital for portfolios of

Gamma risks. ASTIN Bulletin, 31, 107-22.

29. Hürlimann, W. (2003). Conditional value-at-risk bounds for compound Poisson risks

and a normal approximation. Journal of Applied Mathematics, 3, 141-154.

30. Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall,

London.

31. Kaas, R., Goovaerts, M.J., Dhaene, M. and M. Denuit (2001). Modern Actuarial Risk

Theory, Kluwer, Amsterdam.

32. Klugman, S.A., Panjer, H. H., Willmot, G.E. (1998). Loss Models : From Data to

Decisions, Wiley, New York.

45



33. McNeil, A.J. (1997). Estimating the Tails of Loss Severity Distributions Using Extreme

Value Theory. ASTIN Bulletin, 27, 117-37.

34. Meyers, G. (1999). A discussion of the paper by S. Wang, “Aggregation of correlated

risk portfolios: Models and Algorithms,” Proceedings of the Casualty Actuarial Society,

LXXXVI.

35. Müller, A. (1997). Stop-loss order for portfolios of dependent risks. Insurance: Math-

ematics and Economics 21, 219-223.

36. Panjer, H. H. and G. E. Willmot (1992). Insurance Risk Models. Society of Actuaries.

Schaumburg, IL.

37. Reiss, R.-D., and Thomas, M. (1997). Statistical Analysis of Extremal Values, Basel:

Birkhäuser.
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Figure 1: Cumulative distribution function of the aggregate catastrophic loss for the three

models. Solid line: independent damage ratios (j = 1), dotted line: damage ratios deter-

ministic (j = 2), dashed line: damage ratios random (j = 3)



θ1 θ2 θ3 θ4 θ5

u p1,θ1 (u) p1,θ2 (u) p1,θ3 (u) p1,θ4 (u) p1,θ5 (u)

0.1 0.2 0 0 0 0

0.2 0.4 0.05 0 0 0

0.3 0.2 0.25 0 0 0

0.4 0.1 0.20 0.05 0 0

0.5 0.1 0.15 0.25 0.05 0

0.6 0 0.10 0.25 0.25 0

0.7 0 0 0.20 0.25 0.1

0.8 0 0 0.15 0.20 0.2

0.9 0 0 0.10 0.15 0.4

1.0 0 0 0 0.10 0.3

Table 1: Conditional probabilities of damage ratios for building type 1.
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θ1 θ2 θ3 θ4 θ5

u p2,θ1 (u) p2,θ2 (u) p2,θ3 (u) p2,θ4 (u) p2,θ5 (u)

0.1 0.3 0 0 0 0

0.2 0.5 0 0 0 0

0.3 0.2 0 0 0 0

0.4 0 0.3 0 0 0

0.5 0 0.4 0.3 0 0

0.6 0 0.2 0.4 0 0

0.7 0 0.1 0.2 0.1 0

0.8 0 0 0.1 0.2 0.1

0.9 0 0 0 0.4 0.5

1.0 0 0 0 0.3 0.4

Table 2: Conditional probabilities of damage ratios for building type 2.
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θ1 θ2 θ3 θ4 θ5

u p3,θ1 (u) p3,θ2 (u) p3,θ3 (u) p3,θ4 (u) p3,θ5 (u)

0.1 0.1 0 0 0 0

0.2 0.2 0 0 0 0

0.3 0.4 0.1 0 0 0

0.4 0.2 0.2 0.1 0 0

0.5 0.1 0.4 0.2 0 0

0.6 0 0.2 0.4 0.1 0

0.7 0 0.1 0.2 0.2 0.15

0.8 0 0 0.1 0.4 0.20

0.9 0 0 0 0.2 0.40

1.0 0 0 0 0.1 0.25

Table 3: Conditional probabilities of damage ratios for building type 3.
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Building Type 1 Building Type 2 Building Type 3

u Pr
(
U

CAT (j)
i = u

)
Pr

(
U

CAT (j)
i = u

)
Pr

(
U

CAT (j)
i = u

)

0.1 0.0400 0.060 0.0200

0.2 0.1000 0.100 0.0400

0.3 0.1400 0.040 0.1200

0.4 0.1300 0.120 0.1400

0.5 0.1575 0.220 0.2200

0.6 0.1475 0.160 0.1750

0.7 0.1225 0.095 0.1175

0.8 0.0700 0.055 0.0900

0.9 0.0625 0.085 0.0500

1.0 0.0300 0.065 0.0275

Table 4: Mass probability function for UCAT (j) for j = 1, 2, 3.

Building Type 1 Building Type 2 Building Type 3

E
[
UCAT (j)

]
0.51325 0.54400 0.54375

√
V ar [UCAT (j)] 0.31573 0.24426 0.20127

Table 5: Expectation and standard deviation of UCAT (j).
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x Model 1 Model 2 Model3

0 0.8 0.8 0.8

50 0.8 0.8 0.8

100 0.8 0.808 0.8

150 0.8 0.812 0.8

200 0.8 0.832 0.840

250 0.8 0.840 0.840

300 0.8 0.864 0.840

350 0.8 0.882 0.840

360 0.8 0.882 0.860

370 0.8 0.882 0.910

380 0.806 0.908 0.920

390 0.834 0.908 0.920

400 0.899 0.908 0.920

450 1 0.940 0.920

500 1 0.943 0.960

550 1 0.967 0.960

600 1 0.970 0.962

650 1 0.985 0.990

700 1 0.994 1

750 1 1 1

Table 6: The c.d.f. FSCAT (1) , FSCAT (2) and FSCAT (3) at different values x.
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d Model 1 Model 2 Model3

0 80.0300 80.0300 80.0300

50 70.0300 70.0300 70.0300

100 60.0300 60.1308 60.0300

150 50.0300 50.6312 50.0300

200 40.0300 41.6312 40.6341

250 30.0300 33.3340 32.6340

300 20.0300 25.7364 24.6340

350 10.0300 18.9382 16.6349

400 0.8684 13.6908 11.5420

450 0 9.2315 7.5424

500 0 6.3068 4.9960

550 0 3.8592 2.9960

600 0 2.2095 1.0001

650 0 0.9985 0.2365

700 0 0.2869 0

750 0 0 0

Table 7: Stop-loss premium for the 3 models and for different values of retention d.
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α Model 1 Model 2 Model3

0.8 318.8 75. 149.4

0.85 393.1 275. 357.5

0.90 400.3 375. 367.6

0.95 407.6 525. 467.6

0.99 418.0 700. 645.9

Table 8: Value at Risk for the 3 models and for different values of α.

α Model 1 Model 2 Model3

0.8 400.2500 400.2500 400.2500

0.85 404.7880 478.8194 460.7416

0.90 408.7942 548.9134 510.2741

0.95 413.9292 644.2073 594.7062

0.99 422.4290 747.9167 673.7500

Table 9: Conditional Value at Risk for the 3 models and for different values of α.
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