
General distributional properties of discounted

warranty costs under minimal repair and risk

adjusted warranty costs

Thierry Duchesne and Fouad Marri

Abstract

In this paper we study the distributional properties (mean, variance, characteristic function) of the

discounted warranty cost (DWC) for general warranty programs including free replacement (FRW) pro

rata (PRW) and FRW/PRW in the context of perfect repair. Since only failure times and types are needed

in the derivation of these properties, the reliability of the systems is modeled according to a general

competing risk model. Under these assumptions, our results extend those obtained by Bai and Pham

(IEEE Transactions on Reliability, 2004). By obtaining the characteristic function of the DWC, we can

consider some risk management issues, an area that has not yet been extensively studied in this context

(Bai and Pham, European Journal of Operations Research, 2006). More precisely, we show how risk

adjustment principles considered in the economics and actuarial science literature can be applied to

the determination of a warranty reserve. Since some of these risk adjustment calculations require the

probability mass or density function of the DWC, we show how to numerically invert the characteristic

function of the DWC to obtain risk adjusted warranty costs with MATLAB in an appendix.

Index Terms

Characteristic function, competing risk model, Fast Fourier Transform, MATLAB, non homogeneous

Poisson process, perfect repair, premium principle, risk adjustment, warranty reserve.

This work was supported by the Natural Sciences and Engineering Research Council of Canada .

T. Duchesne is with the Department of Mathematics and Statistics, Laval University, Québec, QC, G1K 7P4, Canada (e-mail:
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ACRONYMS & ABBREVIATIONS

DWC discounted warranty cost

EDWC expected discounted warranty cost

EWC expected warranty cost

FFT fast Fourier transform

FRW free repair warranty

i.i.d. independent and identically distributed

NHPP nonhomogeneous Poisson process

PRW pro rata warranty

RAWC risk adjusted warranty cost

r.v. random variable

NOTATION

ı
√−1

k number of failure types/causes

λj(t) hazard rate for failure type j at time t

Λj(t) cumulative hazard function for type j at time t

CD(tW ) discounted cost of a warranty of duration tW

Fj(t) probability of failing of type j before or at time t

ϕX(z) characteristic function of a r.v. X evaluated at z

S(t) system reliability function at time t

Nj(t) number of failures of type j in time interval (0, t]

cj repair cost of a failure of type j

H(t) discount function at duration t

cjH
∗(t) discounted cost to manufacturer of a failure of type j at time t

Πprin{CD(tW )} risk adjusted cost of a warranty under adjustment principle prin

TC total discounted warranty cost for a lot of L systems

I. INTRODUCTION

When a manufacturer puts a new product on the market, several choices have to be made

with respect to the warranty program that will come along with the product. Examples of such

choices include the type of warranty policy, the duration of the warranty coverage, the warranty
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premium to be included in the price of the product, etc. (see, for instance, [11], [16] or [10], for a

more thorough treatment of these and related issues). Though these choices should not be made

completely independently of each other, our focus in this paper will be on warranty costs to the

manufacturer. Such costs have been investigated under several approaches and assumptions for

a wide range of warranty programs in the literature. Good reviews of the developments prior to

2002 can be found in [16] or [10]. More recently, Ja et al. [6], [7] have studied the properties of

the DWC and total warranty program costs for non renewable warranties under minimal repair.

Warranty costs have also been studied by Bai and Pham in [2], where they derive some properties

of the DWC for FRW and PRW policies for repairable series systems, and in [3], where they

propose a renewable full-service warranty policy for which they derive properties of the costs

for series, parallel, series-parallel and parallel-series systems. Chien [4] derived properties of

the warranty cost, optimal warranty period and optimal out-of-warranty replacement in the case

of a system with two possible types of failure, with minimal repair of failures of one type and

perfect repair for failures of the other type.

As Thomas and Rao [16] have pointed out, the risk and uncertainty that underlie warranties is

a threat to the manufacturer. It is therefore important that the manufacturer be able to measure

as best as possible the financial risk that he/she faces by issuing a warranty. Bai and Pham [3]

discuss the fact that “most researchers rely solely on expected warranty cost for the purpose

of warranty cost modeling and analysis”. If an infinite number of items were sold, and if the

probabilistic model that generates the warranty claims were known exactly, then the Law of

Large Numbers implies that the (perhaps discounted) EWC would give exactly the value of

the upcoming financial obligations of the manufacturer’s pertaining to the warranty program.

Unfortunately, many conditions for this are missing in practice–viz. only a finite number of

items are sold; the best probabilistic model is, at best, an approximation to the warranty claim

mechanism; all the items manufactured may not be independent; etc. For these reasons, the

amount of capital to be held against the warranty program should not only be its expected cost,

but rather the sum of the expected cost plus a loading for risk and uncertainty; we term the

latter sum a RAWC. In the warranty cost literature, such risk adjustments to the cost are usually

made during the determination of a warranty reserve. These reserves are normally calculated by

making use of the Central Limit Theorem to approximate the distribution of the total cost of a

large lot sale (e.g. [2], [6], [7]). If the reserve is built by embedding an equal portion of it in
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the price of every system sold in the lot, then this amounts to charging in the system’s price the

RAWC based on the standard deviation principle [18]. Adjustments to expected costs based on

other principles have received considerable attention in the economics, financial and actuarial

literature. The methods proposed in these different fields usually stem from two broad axiomatic

approaches: expected utility theory and distorted expectation theory [5], and we further discuss

these principles and consider their application to warranty costs in Section IV.

Our aims in this paper are (i) to derive the distributional properties of the DWC under general

conditions in the case of minimal repair and (ii) to give expressions for the RAWC under different

risk adjustment principles. Our developments will be based on the competing risk model, which

models the reliability of systems that can fail due to one of k possible failure types/causes. The

best known example of such a system is probably a series system of k components, see [9,

Chapter 15], but the competing risk model is applicable to any context where only failure types

and times are needed. The competing risk model can therefore be viewed as a compromise

between exact modeling of system reliability and a “black-box” approach that considers the

system as a single component [3], though closer in essence to the “black-box”. Our approach is

also mathematically convenient, as distributional properties of the DWC and the RAWC under

many principles can be obtained with relatively straightforward extensions of the usual derivations

that are needed to obtain the EWC or EDWC that can be found in the literature, e.g., [2], [3],

[6], [7]. The remainder of the paper is organized as follows. We first give the details of the

reliability and cost model in Section II and then derive the distributional properties of the DWC

in Section III. These distributional properties are first derived under general settings (a competing

risk model and a general warranty program) and then results are obtained for specific cases (FRW

and FRW/PRW) and, though we focus on fixed repair costs, we show how the calculations can

be generalized to random costs. We then consider RAWC calculations in Section IV. We give a

numerical illustration in Section V and our concluding remarks in Section VI. Since we obtain

some distributional properties of warranty costs via characteristic functions (Fourrier transforms),

we give an example of the MATLAB code that can be used for numerical inversion of these

transforms in the Appendix.
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II. RELIABILITY AND COST MODEL

Because our warranty cost calculations only depend on the times and types of failures, we

suppose a system whose reliability is dictated by a competing risk model, i.e., a system that can

experiment failure of one of k possible types/causes, where the hazard of a failure of cause j

at time t is given by

λj(t) = lim
h↓0

P [T ∈ [t, t + h), J = j| T ≥ t]

h
, t > 0, j ∈ {1, . . . , k}, (1)

where T and J represent the failure time and cause random variables, respectively. Note that if

k = 2, then we retrieve the model with type I and type II failures of [4], where the probability

that a failure at time t is of type I, q(t) = P [J = 1|T = t], is given by q(t) = λ1(t)/
∑

j λj(t).

(Note that even though the reliability model considered here reduces to the reliability model

in [4], our cost model discussed below does not.) While the λj(t) are the key elements for

cost calculations under minimal repair, results under perfect repair can also be obtained with

this competing risk model and they usually involve the reliability and cumulative incidence

functions. The former is the probability of no failure as a function of time, while the latter is the

probability of having experienced a failure of a given cause as a function of time [8, Chapter

9]. The reliability function is thus given by

S(t) ≡ P [T > t] = exp

{
−

∫ t

0

k∑
j=1

λj(u) du

}
, t > 0 (2)

and the cumulative incidence functions by

Fj(t) ≡ P [T ≤ t, J = j] =

∫ t

0

λj(u)S(u) du, t > 0, j ∈ {1, . . . , k}. (3)

Note that equations (2) and (3) do not require the independence of the latent failure times repre-

senting the times to failure due to each cause to be valid. Moreover, even without independence

of the latent failure times, the reliability and cumulative incidence functions are estimable from

the data that are usually observable from warranty data or lifetests, namely failure times and

causes or censoring times [8, Chapter 9].

Suppose a non renewable warranty of total duration tW . Using a notation inspired from [2], let

Nj(t) denote the number of failures due to cause j in the period (0, t] and let Sj`, j = 1, . . . , k,

` = 1, 2, . . . represent the time of the `th failure of the jth type. Suppose that failures of type j
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are repaired at a known, fixed cost cj , j = 1, . . . , k (we explain how to carry out the calculations

under random costs in Section III). Then the DWC is equal to

CD(tW ) =
k∑

j=1

∫ tW

0

cjH
∗(s) dNj(s) =

k∑
j=1

Nj(tW )∑

`=1

cjH
∗(Sj`), (4)

where we assume that H∗(·) is a deterministic function. The form of H∗(·) will depend on

the discount function as well as the type of warranty. For instance, for a FRW we have that

H∗(s) = H(s)I(0 < s ≤ tW ), where H(s) is the discount function and I(A) denotes the

indicator function that takes on value 1 if A is true, 0 otherwise. Note that most of the results that

we will present below readily extend to the case where the repair costs cj are time-dependent

by replacing cjH
∗(s) with H∗

j (s) ≡ cj(s)H
∗(s) in the formulae. For instance with linearly

increasing costs we set H∗
j (s) = (aj + bjs)H

∗(s) and (4) becomes

CD(tW ) =
k∑

j=1

∫ tW

0

H∗
j (s) dNj(s) =

k∑
j=1

Nj(tW )∑

`=1

H∗
j (Sj`) =

k∑
j=1

Nj(tW )∑

`=1

(aj + bjSj`)H
∗(Sj`).

III. DISTRIBUTIONAL PROPERTIES OF THE DWC

We now derive some distributional properties of the DWC defined by (4) under various types

of warranty programs. We first obtain the characteristic function of the DWC under the general

model of Section II then derive some more explicit results under a few special cases. We conclude

this section by outlining the procedure to get similar results under random repair costs or perfect

repair.

A. Distribution of the DWC under minimal repair

Let us assume that failures are minimally repaired, i.e., with negligible repair time and all

k hazard functions immediately pre- and post-repair at the same values. Under the competing

risk model and minimal repair, we have that the processes {Nj(t), 0 ≤ t ≤ tW}, j = 1, . . . , k

are independent counting processes with intensity function λj(t) (see Appendix A), i.e., NHPP.

This implies that for a fixed t, the Nj(t) are independent Poisson r.v. with E[Nj(t)] = Λj(t) ≡∫ t

0
λj(u) du.

The EDWC and variance of CD(tW ) under minimal repair have been derived by several

authors in the literature for specific warranty types (see [2] and references therein, for example,

for a recent general calculation with discounted costs). Interestingly, since the payments of a
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warranty are usually a deterministic function of the times of failures, the calculations of [2]

with an arbitrary discount function for the FRW and/or PRW can also be used to evaluate the

mean and variance of the DWC under any type of warranty under minimal repair, provided

that the function that maps the times of failures to the cost of the warranty is deterministic.

Unfortunately, there is usually no simple analytical form for the density or probability mass

function of CD(tW ), which is central to some risk adjustment methods. Nonetheless, there is a

relatively simple form for its characteristic function in general1. We can first find an expression

for the characteristic function of the DWC (see Appendix A):

ϕCD(tW )(z) ≡ E
[
eızCD(tW )

]
= exp

[
k∑

j=1

Λj(tW )

{∫ tW

0

eızcjH∗(s) λj(s)

Λj(tW )
ds− 1

}]
, (5)

where ı =
√−1. If we let C` denote the DWC for the `th system in a lot of L independent such

systems, then the characteristic function of the total DWC, TC =
∑

` C`, is given by

ϕTC(z) =
L∏

`=1

ϕC`
(z) = exp

[
L

k∑
j=1

Λj(tW )

{∫ tW

0

eızcjH∗(s) λj(s)

Λj(tW )
ds− 1

}]
. (6)

In specific cases (i.e., given warranty type, discount function and cause-specific hazards), the

probability mass or density function of CD(tW ) [resp. TC] can readily be obtained from ϕCD(tW )(z)

[resp. ϕTC(z)] via the (inverse) FFT algorithm [12, Chapter 12]. In Appendix B, we give an

example of the MATLAB code that can be used to implement the FFT. Applying standard results

from counting process theory [1, Chapter 2] to (4) or differentiating (5) with respect to z, we

retrieve the usual expressions (e.g., [2], [6]) for the EDWC and the variance of the DWC:

E[CD(tW )] =
k∑

j=1

∫ tW

0

cjH
∗(s)λj(s) ds (7)

V ar[CD(tW )] =
k∑

j=1

∫ tW

0

c2
jH

∗2(s)λj(s) ds. (8)

Equations (5)-(8) do not simplify if we leave H∗(·) and the λj(·) arbitrary, but explicit results

can be obtained under specific discount functions, warranty programs and distributions. Here are

some illustrations.

1Though the moment generating function (or Laplace transform) of the DWC r.v. usually exists, we work with its characteristic

function so that the (inverse) FFT algorithm can readily be applied
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1) FRW without discount: This is the simplest case since then H∗(s) = 1. We get

ϕCD(tW )(z) = exp

{
k∑

j=1

Λj(tW )(eızcj − 1)

}
. (9)

2) FRW/PRW without discount and exponential failures: Let us assume an FRW/PRW war-

ranty policy, with a free replacement period (0, tF ] and a pro rata replacement period (tF , tP ],

i.e.,

H∗(s) =





H(s), 0 < s ≤ tF(
1− s−tF

tP−tF

)
H(s), tF < s ≤ tP ,

(10)

where H(s) is the discount function. Let us put H(s) = 1 (no discount) and let us suppose that

λj(t) = λj . Then

ϕCD(tW )(z) = exp

{
k∑

j=1

tP (ξ − 1)

}
, (11)

where

ξ =
tF
tP

eızcj +

(
1− tF

tP

)
eızcj − 1

ızcj

.

3) With discount: When we use the discount function H(s) = exp(−δs), then the integral

involved in (5) cannot be solved in closed form. Fortunately, this integral needs not be solved

explicitly as it can be viewed as the characteristic function of a r.v. Vj = cj exp{−δ H∗(Uj)},

with Uj a r.v. having density λj(s)/Λj(tW ) for s ∈ [0, tW ], and we shall see how to use this fact

to numerically invert ϕCD(tW )(z) in Section V.

B. Extensions to random costs or perfect repair

We now briefly outline how the properties of the DWC can be obtained under random costs

or perfect repair.

1) Random costs: Most of the calculations done in this section can also be done when the

warranty costs cj are replaced by random costs Cj whose (joint) distribution is known. Indeed,

for probability and expectation (the latter including characteristic function) calculations, all one

has to do is to consider all results previously given in this section as conditional on the event

{Cj = cj , j = 1, . . . , k}, then integrate the results with respect to dF (c1, . . . , ck), the joint
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distribution of the Cj . For instance, let us look at the EDWC under minimal repair. From (7)

we get

E[CD(tW )] =

∫
· · ·

∫
E[CD(tW )|Cj = cj, j = 1, . . . , k] dF (c1, . . . , ck)

= E[E[CD(tW )|Cj, j = 1, . . . , k]] = E

[
k∑

j=1

Cj

∫ tW

0

H∗(s)λj(s) ds

]

=
k∑

j=1

µj

∫ tW

0

H∗(s)λj(s) ds, (12)

where µj = E[Cj]; of course if the Cj are constant, then µj = cj .

For variance calculations, we must use the formula

V ar[CD(tW )] = V ar[E[CD(tW )|Cj, j = 1, . . . , k]] + E[V ar[CD(tW )|Cj, j = 1, . . . , k]], (13)

where the conditional mean and variance in (13) are given by (7) and (8), respectively. This

yields

V ar[CD(tW )] =
k∑

j=1

σ2
j

{∫ tW

0

H∗(s)λj(s) ds

}2

+
k∑

j=1

(σ2
j + µ2

j)

{∫ tW

0

H∗2(s)λj(s) ds

}

+ 2
∑∑

j<j′
σjj′

{∫ tW

0

H∗(s)λj(s) ds

}{∫ tW

0

H∗(s)λj′(s) ds

}
, (14)

where σ2
j = V ar[Cj] and σjj′ = Cov(Cj, Cj′). (Note that the term on the second line of (14)

vanishes when the Cj are independent, and that σ2
j = σjj′ = 0 when the Cj are constant.)

2) Perfect repair: We can also derive some distributional properties of the DWC under perfect

repair and renewable FRW, i.e., when the system fails before time tW , the system is replaced

by a new system and the warranty starts anew. Under this type of warranty, the total duration

of the policy is unknown because the warranty will last until the system finally survives tW

consecutive units of time without failure. To derive the distribution of the cost of this warranty,

let us suppose that the cost of a perfect repair of a failure due to cause j is a fixed, known

constant cj . Let us denote the number of failures due to cause j during the warranty by Nj

and let N =
∑k

j=1 Nj be the total number of failures under warranty. In a different but closely

related context, Bai and Pham [3] have studied some of the distributional properties of N and the

Nj . Since N is the number of failures before the system finally survives to time tW , N follows

a geometric distribution with “success” probability S(tW ) and has probability mass function

P [N = n] = S(tW ){1− S(tW )}n, n = 0, 1 . . . (15)
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Given N = n, the joint distribution of N1, . . . , Nk is multinomial with total n and respective

success probabilities αj(tW ), j = 1, . . . , k, where αj(tW ) = P [J = j|T ≤ tW ] = Fj(tW )/{1 −
S(tW )}. We can now obtain (see Appendix A) the characteristic function of the undiscounted

warranty cost, C(tW ) =
∑k

j=1 cjNj:

ϕC(tW )(z) =
S(tW )

1−∑k
j=1 Fj(tW )eızcj

. (16)

From (16), we can derive the EWC, E[C(tW )] =
∑k

j=1 cjFj(tW )/S(tW ), and the variance of

the cost,

V ar[C(tW )] =
S(tW )

∑k
j=1 c2

jFj(tW ) +
∑k

j=1

∑k
l=1 cjclFj(tW )Fl(tW )

{S(tW )}2
.

Once again, we can use the FFT algorithm and (16) to get the probability mass function of

C(tW ). We are currently investigating the distributional properties of the DWC with perfect

repair and non renewable warranty.

IV. RISK ADJUSTED WARRANTY COST

As argued by Thomas and Rao [16, Section 4.4], risk and uncertainty should be taken into

account when making warranty economic decisions. Unfortunately, as remarked by Bai and

Pham [3], most studies of warranty costs focus on the EWC or EDWC. In this section we

illustrate how one can compute a risk adjusted warranty cost (RAWC). This RAWC can then

be embedded in the price of the system and used to build a warranty reserve. This problem of

building a warranty reserve has received considerable attention in the warranty literature (see

for example [6], [7], or [2] and references therein), where the problem is usually approached by

making use of the Central Limit Theorem to find the RAWC such that the probability that the

total warranty cost exceeds the warranty reserve is a (small) fixed value. In economics, finance

and insurance, this approach is referred to as the standard deviation principle. However in these

research areas there are other principles available to determine the amount of money one would

need to agree to take on a financial risk [18]. All of these principles, including the standard

deviation principle, have in common that if one is risk neutral, one will take on the risk X

for an amount of E[X] and the more risk averse one gets, the more one will want an amount

of money greater than E[X] in exchange of the risk. These principles, referred to as premium

principles in the insurance literature, usually relate to two broad axiomatic approaches. The first
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approach is zero-utility theory: the premium charged in exchange of the risk is such that the

expected utility of the premium Π(X) minus the expected value of the risk is the same as the

utility of a wealth of 0, i.e., u(0) = E[u{Π(X)−X}]. A second approach consists in charging

a premium Π(X) that is the expected value of the risk under a distorted distribution that gives

more weight to high values of the risk. Young [18] gives a nice review of premium principles

and their properties. In this section we consider three of these principles which, we feel, possess

a certain mathematical convenience and/or theoretical properties that make them useful under

the warranty cost model considered, and see how we can use these principles to calculate the

RAWC.

A. Standard deviation principle

The premium in exchange of a risk X under this principle is Πstdev(X) = E[X]+b
√

V ar[X].

This is the principle that is used in [6], [7], [2] where the value of b is chosen as follows. Let

L be the total number of systems sold and let C` be the DWC r.v. for the `th system. Assuming

that the L systems are independent and follow the same reliability model, by the Central Limit

Theorem one has that

P

[
TC − L µ√

L σ2
≤ z1−α

]
≈ 1− α,

where z1−α is the 100(1−α)th percentile of a standard normal distribution, µ = E[C`] and σ2 =

V ar[C`]. Hence with a reserve of L(E[C`] + b
√

V ar[C`]) with b = z1−α/
√

L, the manufacturer

has probability 1−α that the total DWC will not exceed the warranty reserve. For our warranty

model of Section II, substitution of (7) and (8) in Πstdev yields

Πstdev{CD(tW )} =
k∑

j=1

∫ tW

0

cjH
∗(s)λj(s) ds + b

√√√√
k∑

j=1

∫ tW

0

c2
jH

∗2(s)λj(s) ds. (17)

B. PH transform principle

The proportional hazard (PH) transform principle has received considerable attention in the

literature because it possesses several desirable properties sought in a risk adjustment principle

[17]. It is defined as ΠPH(X) =
∫∞
0

Sb(x) dx, where S(x) = P [X > x] and b ∈ (0, 1). Thus

ΠPH{CD(tW )} =

∫ ∞

0

{P [CD(tW ) > s]}b ds. (18)
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C. Esscher principle

This principle also has nice properties, albeit not as many as the PH transform. However, in

the case of discounted warranty costs, it is certainly more mathematically convenient than the

PH transform, as no numerical inversion of the characteristic function is needed. Indeed, the

premium for risk X under this principle is ΠEsscher(X) = d/dz ln MX(z)|z=b, where MX(z) =

E[exp(zX)] is the moment generating function of X and b > 0 is the risk aversion parameter.

Thus, from (5), we have that the Esscher RAWC in our warranty model is given by

ΠEsscher{CD(tW )} =
k∑

j=1

∫ tW

0

cjH
∗(s)ebcjH∗(s)λj(s) ds. (19)

Besides its mathematical convenience, this adjustment principle also has nice interpretations.

It can be viewed as a zero-utility premium when the utility function is given by u(x) =

{1− exp(−bx)}/b. It also corresponds to the premium that minimizes the loss function E[{X−
Π(X)}2ebX ], i.e., a weighted square loss with weight growing exponentially such that underes-

timation of the risk is penalized more harshly.

D. General properties

Young [18] discusses several properties that might be desirable in risk adjustment principles.

Here are four properties that seem to be particularly relevant in the case of RAWC.

• Positive risk loading, Π(X) ≥ E[X]: This means that the RAWC should be greater than

or equal to the expected cost. All principles considered here have this property.

• No rip-off, Π(X) ≤ max supp(X): This condition states that the RAWC should not exceed

the largest possible value of the cost. The standard deviation principle does not fulfill this

condition, but the PH transform and Esscher principles do.

• Homegeneity, Π(aX) = aΠ(X): Also referred to as scale invariance, this property states

that a multiplicative change in the measurement units of the costs (e.g., change of currency)

should result in the same change in the RAWC. In the list above, only the standard deviation

and PH transform principles exhibit this property.

• Monotonicity, P [X ≤ Y ] = 1 ⇒ Π(X) ≤ Π(Y ): If it is certain that the realized value of

risk X cannot exceed that of risk Y , then the risk adjusted cost of X should not exceed

the risk adjusted cost of Y . The only principle in the list above with this property is the

PH transform.
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E. Choice of α or b

In order to apply these principles in practice, the use of the standard deviation principle

requires fixing the value of the probability α that the total cost will exceed the reserve, while

the PH transform or Esscher principles need a value for the risk aversion parameter b. Though

it is beyond the scope of this paper to give a thorough treatment of this issue, we can point to

a few options found in the literature. A first option is to find the value of b or α by eliciting

the manufacturer’s utility function (e.g., [14]). Game theoretical approaches (e.g., [13], [2]) can

also be used to set the values of α or b as functions of the competition that the manufacturer

faces. Another method that would be applicable to any principle, as long as a model for sales as

a function of price is available, consists in finding the warranty duration and cost that maximize

the expected profit (e.g, [15], [7], [4]).

V. NUMERICAL ILLUSTRATION

In this section we give the EDWC and the RAWC under the three principles considered above.

For the sake of comparison, we use the setup from the numerical study in [2]. Thus we consider

a FRW policy (i.e., H∗(s) = exp(−δs) for s ∈ (0, tW ]) on a lot of 1,000 independent systems

that can suffer failures of three different types. The failure times and types follow the competing

risk model with cause-specific failure rates (with time measured in, say, years) given by

λ1(t) = 0.0611; λ2(t) = 0.0423t; λ3(t) = 0.0187t2.

The repair costs are c1 = 100, c2 = 150 and c3 = 200 and the discount rate is δ = 0.05.

To derive all the quantities of interest, we first numerically obtain the distribution of CD(tW )

using the FFT. Once this distribution is available, then it is straightforward to calculate the EDWC

and the RAWC under the various risk adjustment principles. Since we work with the FFT, we

must approximate the density of CD(tW ) by a probability mass function over the discrete domain

{0, h, 2h, 3h, . . . , (2n − 1)h}, where h is small and n is large (we used h = 0.01 and n = 16 in

our calculations). Let Uj , j = 1, 2, 3, represent r.v. with cumulative distribution functions

FUj
(u) = P [Uj ≤ u] =





0, u < 0

Λj(u)/Λj(tW ), 0 ≤ u < tW

1, u ≥ tW ,

j = 1, 2, 3
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and put Vj = cj exp(−δUj). The cumulative distribution function of Vj is

FVj
(u) = P [Vj ≤ v] =





0, v < cj exp(−δtW )

1− Λj{− ln(v/cj)/δ}/Λj(tW ), cj exp(−δtW ) ≤ v < cj

1, v ≥ cj.

The probability mass function of Vj is then defined as pVj
(sh) = FVj

((s + 1)h) − FVj
(sh) for

s ∈ {0, 1, . . . , 2n − 1}. The probability mass function of CD(tW ) is obtained via this algorithm:

1) Compute ϕVj
, the FFT of pVj

for j = 1, . . . , k.

2) Compute ϕCD(tW ), the FFT of the probability mass function of CD(tW ), which is given

by ϕCD(tW ) = exp{∑k
j=1 Λ(tW )(ϕVj

− 1)}.

3) Invert ϕCD(tW ) to obtain the probability mass function of CD(tW ).

We give an example of the implementation of this algorithm in MATLAB in Appendix B.

Using the above algorithm, we obtain results that are, up to numerical error, the same2 as [2].

Besides the mean and variance of the DWC, in Table I we also give the values of the RAWC

under the three risk adjustment principles considered in this paper. We give the RAWC for a

few values of α or b to give an idea of the sensitivity of the RAWC to the parameter (α or

b) values. As we can see, changing these values has a relatively large impact on the RAWC.

Another interesting observation coming out of Table I is that the RAWC computed under the

Esscher principle grows quicker as a function of tW than the RAWC under the PH transform

which, itself, increases quicker with tW than the RAWC under the standard deviation principle.

Since a longer warranty is riskier, it is not surprising to see the conservative Esscher RAWC

increasing quickly in tW .

VI. CONCLUSION

This paper has given a broad treatment of the distributional properties of the DWC under

minimal repair, for which the characteristic function under a general competing risk model

and warranty program has been derived. From this characteristic function, we have shown how

the EDWC and RAWC under three risk adjustment principles can be derived. We have also

highlighted how some of the results presented can be extended to random and/or time-varying

repair costs.

2Actually, we obtain the same EDWC as [2], but we only obtain their variance if we replace c2
j in (8) by cj .
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TABLE I

RESULTS OBTAINED USING THE SETTINGS OF THE NUMERICAL STUDY OF [2] FOR A FRW OF VARIOUS DURATIONS tW .

ALL RESULTS ARE BASED ON THE DISCRETIZED DISTRIBUTION OF CD(tW ) OBTAINED WITH THE FFT.

tW E[CD(tW )]
p

V ar[CD(tW )] Πα=0.1
stdev Πα=0.05

stdev Πb=1e−04
Esscher Πb=1e−03

Esscher Πb=0.975
PH Πb=0.95

PH

1 10.3 35.6 11.7 12.1 10.4 11.6 11.0 11.8

2 33.0 67.3 35.7 36.5 33.5 37.9 34.6 36.3

3 73.3 102 77.5 78.7 74.6 84.9 75.9 78.5

It would be interesting to see how the methods proposed in this paper could be extended to

other types of repair, or when different types of failures require repairs of different types, as in

[4]. It would also be interesting to see how the risk adjustment methods proposed here would

apply to other types of warranties for different types of systems, such as that considered in

[3]. Since our focus was on the statistical/probabilistic aspects of the problem, a more thorough

treatment of economics and management issues, such as elicitation of the risk aversion parameter

or the derivation of an optimal duration in a competitive environment, would be of interest.

APPENDIX A

SOME TECHNICAL DETAILS

Proof of independence of Nj(t), j = 1, . . . , k, competing risks with minimal repair

We sketch the proof for k = 2 for notational convenience, but the proof for a general k is

similar. We must show that P [N1(t) = m,N2(t) = n] = P [N1(t) = m]P [N2(t) = n]. We have
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that

P [N1(t) = m,N2(t) = n] =

∫
· · ·

∫

t11,...,t1m,t21,...,t2n

P
[
N1(t) = m,N2(t) = n and

{N1 jumps at t11, . . . , t1m, N2 jumps at t21, . . . , t2n}
]
dt

=

∫
· · ·

∫

t11,...,t1m,t21,...,t2n

{
m∏

`=1

λ1(t1`)

} {
n∏

`=2

λ2(t2`)

}
e−{Λ1(t)+Λ2(t)} dt

(20)

=

∫
· · ·

∫

t11,...,t1m

{
m∏

`=1

λ1(t1`)

}
e−Λ1(t) dt1

×
∫
· · ·

∫

t21,...,t2n

{
n∏

`=1

λ2(t2`)

}
e−Λ2(t) dt2

= P [N1(t) = m]× P [N2(t) = n].

(Remark: If we consider k latent failure times T1, . . . , Tk and set T = min(T1, . . . , Tk) and

J = {j : Tj = T}, then no assumption of independence on T1, . . . , Tk is necessary for (20) to

hold [8, Section 11.4]. The assumption of independence is required only when one needs the

joint distribution of T1, . . . , Tk, which is not the case under our warranty cost model.)

Characteristic function of cost under minimal repair

We want to compute

ϕCD(tW )(z) = E


exp



ız

k∑
j=1

Nj(tW )∑

`=1

cjH
∗(Sj`)






 .

We will use two facts here: (i) under minimal repair, the {Nj(t)} are independent NHPP and (ii)

for an NHPP with intensity λj(t), the conditional joint distribution of the jump times given the

number of jumps in (0, tW ] is that of the order statistics of a sample of i.i.d. random variables

with density λj(t)/Λj(tW ) [2]. Fact (i) implies that

ϕCD(tW )(z) =
k∏

j=1

E


exp



ız

Nj(tW )∑

`=1

cjH
∗(Sj`)






 .
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Then from fact (ii) we have that

E


exp



ız

Nj(tW )∑

`=1

cjH
∗(Sj`)





∣∣∣∣∣∣
Nj(tW ) = n


 = E

[
exp

{
ızcj

n∑

`=1

H∗(Uj(`))

}]

(since
∑

`

H∗(Uj(`)) =
∑

`

H∗(Uj`) ) = E

[
exp

{
ızcj

n∑

`=1

H∗(Uj`)

}]

= (E [exp {ızcjH
∗(Uj1)}])n = {ϕH∗(zcj)}n ,

where ϕH∗(zcj) =
∫ tW
0

eızcjH∗(u)λj(u)/Λj(tW ) du. Thus,

E


exp



ız

Nj(tW )∑

`=1

H∗(Sj`)






 = ϕNj(tW ){ln ϕH∗(zcj)},

with ϕNj(tW )(·) the characteristic function of the r.v. Nj(tW ). The latter being Poisson with mean

Λj(tW ), we get

E


exp



ız

Nj(tW )∑

`=1

H∗(Sj`)






 = exp

[
Λj(tW )

{
eln ϕH∗ (zcj) − 1

}]
,

which, after simplifying and taking product over j = 1, . . . , k, yields (5).

Characteristic function of DWC under renewable FRW with perfect repair

ϕCD(tW )(z) = E
[
E

[
eızC(tW )

∣∣ N
]]

= E
[
E

[
eız

P
j cjNj

∣∣ N
]]

= E
[
ϕN1,...,Nk|N(zc1, . . . , zck)

]
= E




{∑k
j=1 Fj(tW )eızcj

1− S(tW )

}N



=
S(tW )

1−∑k
j=1 Fj(tW )eızcj

.

APPENDIX B

MATLAB CODE FOR FAST FOURIER TRANSFORM

The FFT and its inverse are programmed in various software. We give an illustration of how

the algorithm described in Section V can be implemented in MATLAB. The complete MATLAB

code for the numerical study is available from the first author upon request.
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clear all

alpha = [0.0611,0.0432,0.0187]; % hazards = alpha * tˆbeta

beta = [0,1,2];

delta = 0.05; % discount rate

ks = [100,150,200]; % repair costs

tW = 1; % warranty duration

h = 0.01; % discretization step

n = 16; % length of vector for FFT

epsilon = 10ˆ-10 ;% pour "nettoyer" le vecteur final des proba

% calculation of Lambda_j(t_W)

lambda = alpha .* tW .ˆ (beta+1) ./ (beta+1);

% CDFs of V_1, V_2 and V_3

function x = cdf1(v, alpha, beta, delta, c, TW)

if(v<c(1)*exp(-delta*TW)) x =0;

elseif(v>=c(1)) x=1;

elseif((v>=c(1)*exp(-delta*TW))&(v<c(1)))

x=(1-(-log(v/c(1))/(delta*TW))ˆ(beta(1)+1));

end

function y = cdf2(v, alpha, beta, delta, c, TW)

if(v<c(2)*exp(-delta*TW)) y =0;

elseif(v>=c(2)) y=1;

elseif((v>=c(2)*exp(-delta*TW))&(v<c(2)))

y=(1-(-log(v/c(2))/(delta*TW))ˆ(beta(2)+1));

end

function z = cdf3(v, alpha, beta, delta, c, TW)

if(v<c(3)*exp(-delta*TW)) z =0;

elseif(v>=c(3)) z=1;

elseif((v>=c(3)*exp(-delta*TW))&(v<c(3)))

z=(1-(-log(v/c(3))/(delta*TW))ˆ(beta(3)+1));

end

% probability mass functions of the V_j

fv1 = zeros(1,2ˆn);

fv2 = zeros(1,2ˆn);

fv3 = zeros(1,2ˆn);

r1 = floor(ks(1)/h);
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r2 = floor(ks(2)/h);

r3 = floor(ks(3)/h);

for k = 1:r1

fv1(k+1) = cdf1(k*h, alpha, beta, delta, ks, tW)...

- cdf1((k-1)*h, alpha, beta, delta, ks, tW);

end

for k = 1:r2

fv2(k+1) = cdf2(k*h, alpha, beta, delta, ks, tW)...

- cdf2((k-1)*h, alpha, beta, delta, ks, tW);

end

for k = 1:r3

fv3(k+1) = cdf3(k*h, alpha, beta, delta, ks, tW)...

- cdf3((k-1)*h, alpha, beta, delta, ks, tW);

end

%FFT of the PMFs of the V_j

phi_fv1 = fft(fv1);

phi_fv2 = fft(fv2);

phi_fv3 = fft(fv3);

%FFT of the PMF of C_D(t_W)

phi_ctw = exp(lambda(1)*(phi_fv1-1)+lambda(2)*(phi_fv2-1)

+lambda(3)*(phi_fv3-1));

%Inversion of the FFT of C to get the PMF of C

fctw = real(ifft(phi_ctw));

x = h*(0:(2ˆn-1));

r=1;

for k = 1: length(fctw)

xPx(r,1) = x(k);

xPx(r,2) = fctw(k);

r = r+1;

end

end

% xPx is an array with the DWC in column 1 and the PMF of the DWC in column 2
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