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Abstract. In many reliability applications, there may not be a unique plausible scale in which to measure time to
failure or assess performance. This is especially the case when several measures of usage are available on each
unit. For example, the age, the total number of flight hours, and the number of landings are usage measures that
are often considered important in aircraft reliability. Similarly, in medical or biological applications of survival
analysis there are often alternative scales (e.g., Oakes, 1995). This paper considers the definition of a “good” time
scale, along with methods of determining a time scale.
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1. Introduction

In many failure time applications there may not be a unique plausible scale in which to
model or analyze failures. For example, with automobiles we might use age of the vehicle
or miles driven as time scales in assessing reliability; with aircraft engines we might use
total hours of operation since the last major overhaul, the total number of engine cycles, or
perhaps some composite measure of duration and stress that takes account of engine speed
and startup periods. In biological or medical applications, examples include problems
involving exposure to hazardous substances (e.g., Oakes, 1995) and problems concerning
the choice of a time origin in disease history or treatment studies (e.g., Farewell and Cox,
1979).

Methods of survival and failure time analysis assume that a time scale has been selected.
The question of what constitutes a “good” time scale is often mentioned but has received
rather little attention in the literature, with a few notable exceptions (e.g., Farewell and Cox,
1979; Oakes, 1995; Kordonsky and Gertsbakh, 1993, 1995a, 1995b, 1997a). Similarly, the
question of how to select a time scale has not received much study. The purpose of this
paper is to address these issues.

Because real world processes and their consequences occur in “real” or chronological
time, it obviously plays an important role. Nevertheless, there are reasons for adopting an
alternative time scalet in certain contexts:

1. The failure process may depend primarily ont , so that it is scientifically “sufficient”.
Care is needed in formalizing this concept, but, for example, the probability a unit
survives beyond a certain chronological timex may depend only on itst-value atx.
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2. A time scalet as described in 1. has advantages for experimental design and decision
making. For example, if the failure process for an automobile component depends
primarily on the mileage accumulated then reliability studies in which test vehicles
are driven many miles over short time periods may be extrapolated to ordinary cus-
tomer usage conditions. Environmental stresses such as temperature, humidity or road
conditions may also be incorporated into time scales.

3. A time scalet for which the failure distribution is concentrated over a short interval is
useful for monitoring systems and scheduling maintenance and replacement interven-
tions. The same is true for individuals being monitored for the occurrence of some type
of event.

4. The effect of treatments or covariates may be most directly or simply expressed on
some scale other than chronological time; a similar comment applies to the choice of
alternative time origins for chronological time (e.g., Breslow et al., 1983).

Farewell and Cox (1979), Kordonsky and Gertsbakh (1993, 1995a, 1995b, 1997a) and
Oakes (1995) have discussed the selection of a time scale from linear combinations of
specified variables. However, there has been little comprehensive discussion of time scales
and that is our objective here; we provide a general framework and new results concerning
time scale specification. In Section 2 we present a general conceptual framework in which
the analysis of time scales is equivalent to the analysis of models of failure in the presence
of time-varying covariates. In Section 3 we examine known classes of failure time models
and show how they fit within our framework. Approaches to model fitting and time scale
selection methods are discussed in Section 4, and new semiparametric approaches are
proposed. In Section 5 we examine the concept of small variation in failure times and give
new results for an approach due to Kordonsky and Gertsbakh (1993, 1995a, 1995b, 1997a)
which involves choosing a scale for which the coefficient of variation (CV) for failure time
is minimized. Section 6 presents examples involving automobile reliability and the fatigue
life of steel, respectively. Some additional discussion is given in Section 7.

2. Ideal Time Scales

In the following, we letx ≥ 0 represent chronological time measured from an origin that
typically corresponds to the “birth” or introduction of a unit into service. The random
variableX denotes the chronological time or age at failure for an item or unit. Our inves-
tigation of time scales is based on the idea of time-varying covariates (see Kalbfleisch and
Prentice, 1980) associated with each unit. These are defined so as to be left-continuous
functions ofx, and represent factors that are thought to be related to failure. For each
unit, we have covariatesz1(x), . . . , zq(x), x ≥ 0. A special class of covariates will be of
particular interest later on:usageor exposuremeasures. We define usage measures to be
external time-varying covariates that are non-decreasing inx. We sometimes derive usage
measuresyi (x) as fully specified increasing functionals of{z1(u), . . . , zq(u);0 ≤ u ≤ x}.
For example,z1(x) might be the engine temperature for a car at agex, and y1(x) could
represent the cumulative number of degree-hours on this car’s engine atx.
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It is convenient to denotey0(x) = x and lety(x) = (y0(x), y1(x), . . . , yp(x))t and
z(x) = (z1(x), . . . , zq(x))t . We termP(x) = {y(u),0 ≤ u < x} andZ(x) = {z(u),0 ≤
u < x} as theusageandcovariate path(orhistory) up to chronological timex, respectively.
The set of all possible usage [covariate] historiesP(x) [Z(x)] is denoted byP(x) [Z(x)],
and for convenience we writeP [Z] for P(∞) [Z(∞)]. A time scale(TS) is then a
function of chronological time and covariates. This is consistent with other authors such as
Kordonsky and Gertsbakh (1993, 1995a, 1995b, 1997a) and Oakes (1995). Formally, we
consider a TS to be a non-negative-valued functional8 : R+ ⊗ Z → R+ that maps(x,Z)
to8[x,Z(x)] and such that8[x,Z(x)] is non-decreasing inx for all Z ∈ Z. The value
tZ (x) = 8[x,Z(x)] is the operational time (“time” for short) atx for the covariate pathZ.

In this paper, we focus on covariates that areexternal. An external covariate (Kalbfleisch
and Prentice 1980, Section 5.3) is one for which the historyZ for a unit is determined
independently of the failure process for that unit, such as an environmental or usage factor.
In some applications one might want to consider time scales that incorporate “internal”
measures such as the amount of physical deterioration in a unit. These are more difficult to
address and we defer discussion to Section 7.

Covariate pathsZ are assumed to vary from unit to unit in the population. Although they
are often randomly determined, the fact that they are external means that the distribution
of failure time conditional on the realized pathZ for a unit is easily interpreted. For the
chronological time of failureX, we make the reasonable assumption that

Pr [X > x|Z] = Pr [X > x|Z(x)], x ≥ 0 (1)

for all Z ∈ Z. By conditioning onZ we maketZ (x) = 8[x,Z(x)] a specified function
of x, and we can therefore also determine the distribution of the generalized failure time
T = 8[X,Z(X)] givenZ from (1).

Some authors (e.g., Singpurwalla and Wilson, 1993 or Murthy et al., 1995) approach
multiple time scales by modeling directly the joint distribution of an operational failure
time T and chronological failure timeX. In our framework a joint model for(T, X) can
be obtained by specifying a distribution for the covariate pathsZ, and we can examine the
effect of different paths or distributions forZ on the distribution of(T, X). The approach
we take is more comprehensive; note for example that models for(T, X) alone do not
use information aboutZ except for the single valueT = 8[X,Z(X)]. In addition, our
approach allows alternative time scales to be considered in situations where the covariate
pathsZ are not random but are fixed by study design, as in accelerated life test experiments
(c.f., Nelson, 1990, Chapter 10).

We would like to develop concepts that lead to “good” time scales. IftZ (x) = 8[x,Z(x)]
is to be “sufficient” for the calculation of failure probabilities, then we want fort such that
t = 8[x,Z(x)] for somex that

Pr [T > t |Z] = Pr [T > t ]

= G(t), (2)

whereT = 8[X,Z(X)], andG(·) does not depend onZ. In addition, we wantt to change
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whenever

Pr [X > x|Z] = S0[x,Z(x)]

does. This leads us to define an ideal time scale as follows:

Definition 2.1. tZ (x) = 8[x,Z(x)] is an ideal time scaleif it is a one-to-one function of
S0[x,Z(x)]. Furthermore, in that case

Pr [X > x|Z] = G[tZ (x)]
= Pr [T > tZ (x)],

whereG(·) is a survivor function that does not depend onZ.

This definition has been considered by various authors (e.g., Cinlar and Ozekici (1987)
and Kordonsky and Gertsbakh (1993), who use the terms “intrinsic” and “load-invariant”
time scales, respectively). Definition 2.1 implies thatT is statistically independent ofZ in
situations where the covariate paths are random, but it is of course functionally dependent
onZ. Under this definitiont is “sufficient” for describing the failure process as far as the
covariates that make upZ are concerned. An investigation of ITS’s is equivalent to an
investigation of models forX conditional onZ.

Any set of external covariates will generate an ITS, and an ITS is not necessarily “good” or
useful. A search for a “good” ITS is equivalent to a search for “good” covariates and “good”
models for Pr [X > x|Z(x)]; that is, we want models for whichZ is highly predictive for
X. We therefore now consider approaches to regression modeling; then we reconsider the
concept of a “good” time scale and modeling strategies.

3. Models of Failure and Time Scales

If S(x|Z) = Pr [X > x|Z] is continuous at allx, let h(x|Z) be the corresponding hazard
function, so that

S(x|Z) = exp

{
−
∫ x

0
h(u|Z)du

}
. (3)

We note that iftZ (x) = 8[x,Z(x)] is any ITS relative toZ then from Definition 2.1 we
have

Pr [X > x|Z] = G[tZ (x)] (4)

and

h(x|Z) = hG[tZ (x)]t ′Z (x), (5)

wherehG(t) = −G′(t)/G(t) is the hazard function corresponding to the survivor function
G(t) andt ′Z (x) = dtZ (x)/dx.
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Sometimes the distribution ofX givenZ may have a non-zero probability mass at certain
x values; for example, if equipment is turned on and off then there may be a non-zero
probability of failure at the instant a unit is turned on (e.g., Follmann, 1990). Then we
allow S(x|Z) = Pr [X > x|Z] to have jump discontinuities. The survivor function can be
written as (e.g., Kalbfleisch and Prentice, 1980, Section 1.2.3)

S(x|Z) = exp

{
−
∫ x

0
hC(u|Z)du

} ∏
uj≤x

{
1− hD(uj |Z)

}
, (6)

wherehC(u|Z) is an integrable hazard function corresponding to the continuous part of
S(x|Z) andu1,u2, . . . are the jump points forS(x|Z). The valueshD(uj |Z) are the discrete
hazard function components

hD(uj |Z) = Pr [X = uj |X ≥ uj ,Z],

and

S(x|Z) = exp

{
−
∫ x

0
hC(u|Z)du+

∫ x

0
log[1− hD(u|Z)] d N(u|Z)

}
, (7)

whered N(u|Z) equals 1 if a jump inS(x|Z) occurs atu, and 0 otherwise. Note that

tZ (x) = 8[x,Z(x)] =
∫ x

0
hC(u|Z)du+

∫ x

0
log[1− hD(u|Z)] d N(u|Z) (8)

is an ITS, withG(t) = exp(−t) in the format (2). Any one-to-one function oftZ (x) also
defines an ITS.

3.1. Collapsible Models

Oakes (1995) introduced the notion of collapsibility.

Definition 3.1.Let y1(x), . . . , yp(x)be a specified set of usage factors. Then the distribution
of X|P is collapsible iny1(x), . . . , yp(x) if

Pr [X > x|P] = S0[y(x)]. (9)

That is, the survival probability at chronological timex depends on the pathP(x) up tox
only through the endpointy(x). In this case, ITS’s are of the form

tP(x) = 8[x, y1(x), . . . , yp(x)] (10)

= 8[y(x)].

It may seem that collapsibility is a very restrictive assumption. However, the possibility of
defining measuresyj (x) based on stress, usage or environmental factors allows considerable
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flexibility. Note that collapsibility is defined in terms of usage measures, rather than general
external covariates. It is not possible to define a function ofx, z1(x), . . . , zq(x) that would be
non-decreasing inx for allZ ∈ Z, unless the functionszj ’s themselves are non-decreasing.

Collapsible models have not been studied or used much, but have some nice proper-
ties. One is that if we wish to compute the marginal distribution ofX for some specified
probability distribution on the usage pathsP, then (9) implies that

Pr [X > x] = E{S0[y(x)]} .
Thus the expectation involves only the distribution ofy1(x), . . . , yp(x) for the givenx and
not the entire pathP(x) up tox. A more general property that implies the first one concerns
prediction through Pr [X > x + s|X ≥ x,P(x)]. It is easily seen that

Pr [X > x + s|X ≥ x,P(x)] = E

{
exp

[
−
∫ x+s

x
h(u|P(u))du

]∣∣∣∣P(x)}
= E

{
S0[y(x + s)]

S0[y(x)]

∣∣∣∣P(x)}
= E{S0[y(x + s)]|P(x)}

S0[y(x)]
.

The required expectation concerns just the usage vector at timex+s and not the entire path
from x to x + s.

In some settings distinct usage paths never cross, e.g., whenyj (x)’s are linear inx. In that
case all models forX givenP are collapsible in the trivial sense that eachP is identified
by its y(x) value at any given timex. However, the ITS (10) is not in general of simple
functional form. The attraction of using collapsible models is to consider fairly simple
parametric specifications8[y(x);η] in (10), thus yielding easily interpreted operational
times. Oakes (1995) and Kordonsky and Gertsbakh (1993, 1995a, 1995a, 1997a) consider
models in which

tP(x) = ηty(x)

is assumed linear inx andy1(x), . . . , yp(x), andG in (4) has a specified parametric form.
Semiparametric approaches can also be adopted. For example, Kordonsky and Gertsbakh
consider a method of estimatingη without a parametric model forG; this is examined in
Section 5. We outline approaches to model fitting and selection in Section 4, and a more
detailed treatment of collapsible models will be given elsewhere.

3.2. Generalized Time Transform Models

A time transform (TT) or accelerated failure time (AFT) model is one in which (4) holds
with the ITS

tZ (x) =
∫ x

0
ψ [z(u)] du, (11)
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whereψ is a positive-valued function, andG is a survivor function. Such models have been
studied in survival analysis (e.g., Cox and Oakes, 1984; Robins and Tsiatis, 1992; Lin and
Ying, 1995) and also have an extensive history in reliability (e.g., Nelson, 1990, Chapter
10, Doksum and H´oyland, 1992), where thezj (u)’s typically represent time-varying stress
factors. The model with (11) written in terms ofr [z(u)] = ψ−1[z(u)] is a probabilistic
analog of Miner’s (1945) rule.

Bagdonaviˇcius and Nikulin (1997) have proposed models that extend the AFT model.
Indeed, their formulations are sufficiently broad to include multiplicative hazards, pro-
portional odds, and other models. We consider here only Model 2 of Bagdonaviˇcius
and Nikulin (1997): in this case Pr [X > x|Z] is of the form (4) buttZ (x) is given
by

tZ (x) =
∫ x

0
ψ [z(u)] dG−1S0(u), (12)

whereS0 is also a survivor function. IfG = S0 then (12) reduces to (11) and gives the AFT
model. If we selectG(u) = exp(−u), on the other hand, and letS0(u) be arbitrary, then
we get

Pr [X > x|Z] = exp

{
−
∫ x

0
ψ [z(u)]h0(u)du

}
, (13)

whereh0(u) = −S′0(u)/S0(u) is the hazard function corresponding toS0(u). This is the
well known multiplicative hazards model (Cox, 1972).

The assumptions and approaches taken with AFT and collapsible models are rather dif-
ferent. With AFT models it is customary to specifyψ [z(u)] in (11) parametrically: for
example, Lin and Ying (1995) and others considerψ [z(u)] = exp{βtz(u)}, and many reli-
ability models (e.g., Nelson, 1990, Chapter 10) can be written in this form. However, it is
clear that in this case the ITS

tZ (x) =
∫ x

0
exp{βtz(u)}du (14)

cannot in general be expressed in the collapsible model form (10) for any usage measures
y1(x), . . . , yp(x) that can be represented as fully specified functionals of{z(u),0≤ u ≤ x}.

3.3. Hazard-Based Specifications

When time-varying covariates are present it is convenient to specify failure time models via
the hazard function. For arbitrary covariatesz(x) we make the reasonable assumption that
the hazard function ofX givenZ satisfies

h[x|Z] = h[x|Z(x)], (15)

so that in the continuous case (3) becomes

Pr [X > x|Z] = exp

{
−
∫ x

0
h[u|Z(u)] du

}
. (16)
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As noted in (8), this can be considered as an ITS model with

tZ (x) =
∫ x

0
h[u|Z(u)] du. (17)

Discrete components can be incorporated into the models as in (8).
AFT models introduced in Section 3.2 assume that

h[x|Z(x)] = ψ [z(x)]hG

(∫ x

0
ψ [z(u)] du

)
,

whereas the collapsible models of Section 3.1 assume that (replacingZ with P)

h[x|P(x)] = d8[y(x)]
dx

hG(8[y(x)]).

It was noted previously that AFT and collapsible models are generally quite distinct. A
case where they intersect is foradditive hazard modelswith positive covariates, for which

h[x|Z(x)] = h0(x)+ βtz(x), (18)

with h0(x) a baseline hazard function. Then

tZ (x) =
∫ x

0
h[u|Z(u)] du= H0(x)+ βty∗(x),

whereH0(x) =
∫ x

0 h0(u)du andy∗(x) = (y1(x), . . . , yq(x))t , with

yj (x) =
∫ x

0
zj (u)du, j = 1,2, . . . ,q.

By (10), this model is collapsible. Jewell and Kalbfleisch (1996) and Singpurwalla (1995)
consider models of the form (18) along with stochastic models for the covariate processes,
and develop some specialized prediction formulas of the type mentioned in Section 3.1.

Another widely-used family of models with time-varying covariates is the multiplicative
hazards family (13), whereh[x|Z(x)] = ψ [z(x)]h0(x). These can be viewed as generalized
TT models arising from (12) but they are not in general collapsible.

3.4. “Good” Time Scales

It is not possible to give a universal definition of a good time scale. Rather, we identify
qualities that a good scalet should possess: (i) scientific relevance, (ii) a parsimonious
and accurate description of variation in failure times under varying usage, exposure or
environmental conditions, (iii) a relatively “compact” distribution for operational timeT ,
(iv) succinct and meaningful summarization of the effects of fixed or time-varying covariates
that are of special interest. The selection of covariates to be considered for time scale
construction and the relative weight given to qualities (i)-(iv) will vary according to the
specific context.
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In reliability and other areas the quality (iii) of “small” variation inT is often mentioned,
but this is somewhat elusive. We restrict attention to ITS’s since, given a set of time-varying
factors, they are “sufficient” in the sense of (2). However, ITS’s are defined only up to
monotone transformations so that marginal variation inT cannot be the only consideration,
even if it is adjusted for scale of measurement. In addition, the “goodness” ofT is dependent
on the existence and selection of “good” time-varying factors forZ. The crucial issue is as
for prediction using regression models: we want factors for which the relative variation in
X is small, givenZ. This translates into small variation inT . Some aspects of the small
variation concept are considered in Section 5.

Not all covariates in a given situation need to be used for a time scale. For simplicity we
define ITS’s in (2) as a function8[x,Z(x)] of all covariates, but we could have additional
covariatesw(x) which are conditioned on but not used inT . In that case we replace (2)
with the requirement that

Pr [T > t |Z,W] = Pr [T > t |W],

whereW is the covariate history{w(x); x ≥ 0}. For example, in a clinical settingW might
represent treatments or other discrete individual level factors such as sex. For simplicity
we will continue to writeT as in (2), however.

3.5. Modeling Strategies

There are two broad approaches with which we may investigate time scales. One is the
traditional failure time analysis approach via models forX given the covariate historyZ.
This leads to a specification of the conditional hazard function forX ash(x|Z(x)), and

Pr [X > x|Z(x)] = exp

{
−
∫ x

0
h(u|Z(u))du

}
(19)

in the continuous case. Standard modeling paradigms such as proportional hazards or
accelerated failure time may be used. Within these frameworks we would search for the
time scales by examining the cumulative hazard in (19), as described in Sections 3.2 and
3.3.

The other approach is to express (19) directly as a function of an ITS:

Pr [X > x|Z(x)] = G[tZ (x)]. (20)

In this case we have the option of specifyingG andtZ (x) parametrically or semiparametri-
cally. Collapsible models are a special case of (20) in whichtZ (x) is of the form8[y∗(x)],
wherey∗(x) is a vector consisting ofx and usage measures. With this approach the search
for a time scale is emphasized, and models with meaningful or easily interpreted scales may
readily be considered.

Example 3.1. (Linear TS models).Suppose there is a single usage factory(x) and no other
time-varying covariates. Some authors (e.g., Kordonsky and Gertsbakh, 1993; Oakes, 1995)
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have considered collapsible models for which

Pr [X > x|P] = G[η0x + η1y(x)], (21)

so thattP(x) = η0x + η1y(x) is an ITS. Hereη0 andη1 are real parameters andG is a
distribution function which may also involve unknown parameters.

It is interesting to compare an approach of Farewell and Cox (1979), which also empha-
sizes linear TS’s. They search for a model for which

h(x|P) = h0[η0x + η1y(x)]. (22)

It is readily seen that this model is not collapsible in general, since

Pr [X > x|P] = exp

{
−
∫ x

0
h0[η0u+ η1y(u)] du

}
.

In fact,ψ(x) = η0x + η1y(x) is not an ITS and so the Farewell-Cox use of linear TS’s is
quite different than that in (21).

4. Model Fitting and Time Scale Selection

In this section we outline some recent and some new approaches to estimation and time scale
selection, in which we consider parametric specifications fortZ (x) in (20). If a parametric
specification for the distributionG is also adopted, then estimation via maximum likelihood
is straightforward, as indicated by Oakes (1995) and reviewed in Subsection 4.1. In some
cases we may prefer to leaveG nonparametric; we discuss this in Subsection 4.2 and we
propose some new approaches. A more detailed discussion will be given elsewhere.

4.1. Parametric Estimation Based on a model (20)

Parametric estimation based on a model (20) is easily implemented (e.g., Kordonsky and
Gertsbakh, 1993 or Oakes, 1995). Suppose for example thatG(t) = G(t;φ) and that
tZ (x) = tZ (x;η), whereφ andη are parameter vectors. Consider a random sample of
n units, of which some fail and some are censored. Letxi denote the failure or censoring
time (chronological time) for uniti , and letδi = 1 if xi is a failure time andδi = 0 if it is
a censoring time. All covariatesZ are external and their marginal distribution is assumed
to have no information aboutφ or η. Thus we condition onZ and the likelihood function
under a continuous model (20) is

L(φ,η) =
n∏

i=1

fG[tZ i
(xi )]

δi G[tZ i
(xi )]

1−δi

=
n∏

i=1

{
−G′[tZ i

(xi )]t
′
Z i
(xi )

}δi

G[tZ i
(xi )]

1−δi , (23)
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where fG(t) = −G′(t) is the density function corresponding toG(t) and t ′Z (x) =
dtZ (x)/dx. Note that (23) involvest ′Z i

(xi ) at failure times, even for collapsible mod-
els.

The above assumes implicitly thattZ (x;η) is an ITS for someη. Constructing a model
that includes (20) as a sub-model can serve as a model assessment procedure. Suppose for
example that we wish to consider a collapsible model (20) withtZ (x) = t [x, y(x);η] for
some usage measurey(x). We might consider the expanded family

Pr [X > x|Z(x)] = G
{
t [x, y(x);η]eβ

′
z∗(x)

}
, (24)

wherez∗(x) is a vector of additional covariates which may include functions ofx; if β = 0
the collapsible model holds. This approach is also valuable when we wish to select a time
scale based on certain factors, but other covariates are to be included in the model.

Farewell and Cox (1979) use this general approach to select a linear time scalet =
η0x + η1y(x) by definingz∗(x) as−η1x + η0y(x) and findingη to give an estimate
of β = 0. However, as discussed in Section 3.5, they employ a multiplicative hazards
framework and their method does not give an ITS whenz∗(x) is dropped.

4.2. Semiparametric Estimation

Various ad hoc approaches might be used to estimate the parameterη in tZ (x;η) while
leaving the distributionG in (20) unspecified. An ITS is one for which (2) holds, i.e.,T is
independent ofZ, so we could, for example, stratify the covariate pathsZ i (i = 1, . . . ,n)
into K groups that are homogeneous in some sense. If we letŜj (t;η) denote the empirical
survivor function (the Kaplan-Meier estimate, assuming some units have censored failure
times) then we might chooseη to minimize some measure of disparity among theK
distributionsŜ1(t;η), . . . , ŜK (t;η). The feasibility of this approach depends on our ability
to form theK groups in an effective way and, in particular, so that the disparity among the
Ŝj (t;η)’s varies significantly asη varies.

Another possibility is to selectη to make sample covariances between some function of
valuestZ i

(xi ;η) and some function ofZ i equal to zero. A third semiparametric procedure
proposed by Kordonsky and Gertsbakh (1993, 1995a, 1995b, 1997a) for linear time scales
is to chooseη so as to minimize the sample CV for the valuesti = tZ i

(xi ;η), i = 1, . . . ,n;
we consider this approach in Section 5 and find its usefulness to be quite limited.

The estimation ofη can also be viewed as a semiparametric regression problem withXi

as response andZ i as covariate. The model (20) is, however, rather nonstandard. If we
instead consider (again in the absence of censoring) the response asTi = tZ i

(Xi ;η) and
note that we can without loss of generality forceTi to have mean 1, then we might estimate
η by least squares. That is, we

minimize
n∑

i=1

{
tZ i
(xi ;η)− 1

}2
(25)
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subject to

1

n

n∑
i=1

tZ i
(xi ;η) = 1. (26)

We could alternatively assume a specified mean for some monotonic function ofTi and
minimize its variance; for example, force logtZ i

(Xi ;η) to have mean 0 and minimize

n∑
i=1

{
log tZ i

(Xi ;η)
}2
. (27)

Least squares and minimum CV methods do not adapt easily to censored data. Another
approach, better able to handle censored data, would be via rank regression methods (e.g.,
Robins and Tsiatis, 1992, Lin and Ying, 1995.) Duchesne and Lawless (1999) develop this
approach.

The computation of estimates via such methods can be complex, and the efficiency of
some methods is likely to be poor; considerable study is needed. We provide brief examples
of estimation in Section 6.

We conclude this section with a remark on model assessment. Oakes (1995) and Sec-
tion 4.1 mention model expansion as a means of model assessment. Informal checks based
on the examination of generalized residualst̂i = tZ i

(xi ; η̂) can also be employed. In
particular, thet̂i ’s should be roughly independent of functions of the covariate pathsZ i ;
this can be used in both semiparametric and parametric settings, though as for all types of
residual analysis, study of specific models is needed to assess effectiveness and the extent
to which thet̂i ’s mimic a random sample oft ′i s. Distributional assumptions aboutG in (20)
can be assessed through residuals, but this is likely to be effective only for models which
are fitted parametrically.

5. Small Variation and Time Scale Selection

Some authors have suggested that one select a time scale that gives a compact distribution,
or small variation, for failure timeT . There is no obvious connection between this concept
and that of ideal time scales. Indeed, any monotone increasing function ofT is an ITS
if T is, whereas measures of variation or relative variation are not invariant under general
transformations.

Nevertheless, the concept of small variation is widely considered by practitioners in areas
such as reliability. The main approach to time scale selection using this concept is due to
Kordonsky and Gertsbakh (1993, 1995ab, 1997a); they suggest that if a parametric family
of time scalestP(x) = 8[yP(x);η] is being considered, thenη be chosen so as to minimize
the squared coefficient of variation ofT = tP(X), that is, Var(T)/E2(T). This is used in
practice by considering complete (uncensored) samples in which chronological timesxi and
corresponding usage measuresyi (xi ) = (yi 0(xi ) = xi , yi 1(xi ), . . . , yip(xi )) are observed
for unitsi = 1, . . . ,n. Then the operational timesti (η) = 8[yi (xi );η] are considered and
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η is estimated by minimizing

ĈV
2
[ti (η)] = V̂ar[ti (η)]

Ê
2
[ti (η)]

, (28)

whereV̂ar and̂E denote sample variance and sample mean, respectively.
Kordonsky and Gertsbakh apply this method to linear time scale familiestP(x) = ηty(x).

In this case one easily obtains that the unrestricted minimum of (28) is obtained at

η̃ ∝ Σ̂
−1
µ̂, (29)

whereYi j = yi j (Xi ), Σ̂ is the sample covariance matrix for(Xi ,Yi 1, . . . ,Yip)
t andµ̂ is

the sample mean vector for(Xi ,Yi 1, . . . ,Yip)
t . The CV is invariant under scale changes

to T , and so anyη proportional to the right side of (29) may be used. Kordonsky and
Gertsbakh assume thatη ≥ 0 and it may happen that the right side of (29) has negative
elements. In the two-dimensional case Kordonsky and Gertsbakh select eitherηt = (1, 0)
or ηt = (0, 1) (corresponding toT = X or T = Y, respectively), according to whichever

gives the smaller̂CV
2

for T(η).
It is not clear how this approach relates to those discussed in Sections 3 and 4. Note in

addition that the minimum CV method may be used without any information on the path
P(x) except for the endpoint(Xi ,Yi 1, . . . ,Yip) and that it seemingly applies to situations
where the paths are randomly determined, rather than fixed.

The theorem below is new and it identifies a setting in which the minimum CV method
gives consistent estimates. We consider situations where the usage paths{y(x), x ≥ 0}
may be represented by a finite-dimensional parameterθ, in which case we write the ideal
time scales astP(x) = 8[x,θ], whereθ = θ(P). This assumption is clearly too restrictive
for many settings, but provides a reasonable approximation to reality in some. So far, proofs
of validity of the minimum CV under more general conditions are elusive; we note that
Kordonsky and Gertsbakh provide no proof of validity at all.

THEOREM 5.1 Consider models for which Pr[X > x|P] = G(8[x,θ;η0]), whereθ is a
random finite-dimensional parameter that completely identifiesP and where the function
8 has the form

8[x,θ;η] = u(x)v(θ;η), (30)

whereη is a finite-dimensional parameter. Also denote t(η) = u(x)v(η,θ) and T(η) =
u(X)v(η,Θ), so that t(η0) is an ITS. Then for anyη we have

CV2[T(η)] ≥ CV2[T(η0)],

and if CV2[T(η)] = CV2[T(η0)] then t(η) is also an ITS.
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Proof: Let µT =E[T(η0)]=E[T(η0)|Θ=θ] andσ 2
T = Var[T(η0)] = Var[T(η0)|Θ =

θ]; µt andσ 2
T do not depend onθ because of (2). Then

CV2[T(η)] = Var[T(η)]/E2[T(η)]

= VarΘ[E[T(η)|Θ]] + EΘ[Var[T(η)|Θ]]

E2
Θ[E[T(η)|Θ]]

=
{

VarΘ

[
v(η,Θ)

v(η0,Θ)
E[u(X)v(η0,Θ)|Θ]

]

+ EΘ

[(
v(η,Θ)

v(η0,Θ)

)2

Var[u(X)v(η0,Θ)|Θ]

]}

× E−2
Θ

[
v(η,Θ)

v(η0,Θ)
E[u(X)v(η0,Θ)|Θ]

]

=
µ2

TVarΘ

[
v (η,Θ)

v (η0,Θ)

]
+ σ 2

TEΘ

[(
v (η,Θ)

v (η0,Θ)

)2
]

µ2
TE2

Θ

[
v (η,Θ)

v (η0,Θ)

]
⇒ CV2[T(η)] ≥ σ 2

T/µ
2
T = CV2[T(η0)].

In addition, equality can hold only ifv(η,θ)/v(η0,θ) is constant with respect toθ. (We
suppose the distribution ofΘ is such that Var[v(η,θ)/v(η0,θ)] > 0 implies this.) But in
this caset (η) = ct(η0), wherec does not depend onθ, which is also an ITS.

Theorem 5.1 thus shows that we can identify ITS’s within the family (30) by findingη’s
that minimizeCV2[T(η)]. This coversseveral important situations. Suppose for instance
that there is a single usage factory(x) and that usage pathsP are of the form

y(x) = θx, x ≥ 0, (31)

whereθ has some distribution in the population of interest. Linear time scales as in model
(21) can in this case be expressed as

tP(x) = η1x + η2y(x) = x(η1+ η2θ),

which is of the form (30). BecauseCV and ITS’s are both invariant to scale changes, we
can consider the single parameter formT(η) = X + ηY. Minimization of CV2[T(η)]
yields the unique value

η = µYσ
2
X − µXσXY

µXσ
2
Y − µYσXY

, (32)

which is consistent with (29).
To estimate the parameterη in an ITS model of the form (30) we can minimize the

sample coefficient of variation (28) for a complete (uncensored) samplet1(η), . . . , tn(η).
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Whenη0 is unique, assuming finiteness and smoothness of E[T(η)] and Var[T(η)] in the
neighborhood ofη0 will ensure that̃η minimizing (28) is a consistent estimator forη0.

There are some subtleties concerning minimum CV estimation. For example, if we
assumeη0 ≥ 0, under the parameterizationT(η) = X + ηY the right side of (32) is non-
negative. However, the estimateη̃ based on minimization of (28) is obtained by replacing
σ 2

X, σ 2
Y, σXY, µX andµY in (32) with sample-based estimates, and it can be negative. In

particular, it may be shown thatη̃ < 0 if either of the following two conditions holds:

A:
σ̂ 2

X

µ̂2
X

<
σ̂XY

µ̂Xµ̂Y
<
σ̂ 2

Y

µ̂2
Y

B:
σ̂ 2

Y

µ̂2
Y

<
σ̂XY

µ̂Xµ̂Y
<
σ̂ 2

X

µ̂2
X

.

If case A holds then̂CV
2
[ti (η)] is minimized subject toη ≥ 0 atη = 0 and if B holds then

it is minimized atη = ∞, thus leading to the choice ofX or Y, respectively, as the ideal
time scale. As Kordonsky and Gertsbakh note, cases A and B are automatically ruled out
if σ̂XY < 0.

If ĈV
2
[T(η)] can be shown to be minimized atη = η0 for other time scale models, then

under mild smoothness assumptions we can estimateη0 consistently as here. However,
as noted, we have at present a proof only for models of the form (30). A more detailed
discussion of minimum CV and other semiparametric methods will be given elsewhere.
The efficiency of minimum CV is considered in an example in Section 6.

Semiparametric estimation of ITS parametersη without specifyingG in (20) was dis-
cussed in Section 4.2, where it was suggested that the independence ofT and covariate
pathZ (or usage pathP) for an ITS be exploited. Theorem 5.1 holds because of this
independence and it is this rather than the unconditional variability inT(η) (i.e. variability
in T(η) when bothX andP are considered random) that seems crucial.

6. Examples

We consider a pair of real examples which illustrate features of time scale selection.

6.1. Automobile Reliability

Lawless et al. (1995) considered the time to failure in automobile systems as a function of
age (chronological time since sale)x and cumulative mileagey(x), and fitted models based
on warranty data. They considered a model where (20) is of the form

Pr [X > x|P] = G[x1−ηy(x)η;φ]. (33)

They actually obtained this model by assuming that for a given automobilei we have
yi (x) = αi x, with αi as a fixed covariate. They considered accelerated failure time models
where Pr [X > x|αi ] was of the formG[xαηi ]; this gives (33) sinceαi = yi (x)/x. The



172 DUCHESNE AND LAWLESS

linearity assumption is widely used with automobiles, but (33) can be used more generally.
It has the nice feature that ifη = 0, then agex is the ITS and ifη = 1 then mileage
y(x) is.

Several authors have considered linear time scales, as mentioned earlier. An alternative
to (33) could be to consider

Pr [X > x|P] = G[x + ηy(x);φ]. (34)

Either of models (33) or (34) can be fitted by maximum likelihood via (23), if we take
G to have a specific parametric form; Lawless et al. (1995) assumedG to be Weibull.
Oakes (1995) and Kordonsky and Gertsbakh (1997a) have also fitted Weibull models in
conjunction with (34).

With y(x) = αx, models (33) and (34) meet the requirements of Theorem 5.1; semi-
parametric estimation via minimum CV should therefore yield consistent estimators of
the parameterη. To assess minimum CV and compare it with parametric maximum
likelihood and an ad hoc least squares approach, we performed some simulations based
on the models fitted by Lawless et al. (1995). Although they had censored data, we
consider only complete samples here because minimum CV handles only this case at
present.

Model (33)

We simulated 1000 samples of size 100 from the model with (33) given by

Pr [X > x|α] = exp
{−(xαη/φ1)

φ2
}
, (35)

whereφ1 = 60 andφ2 = 1, and where logα is normally distributed with meanµ = 2.37
and standard deviationσ = 0.58. These parameters are selected to match the estimates in
Lawless et al. (1995), and thus to be physically plausible. The units associated with these
parameter values are years,x, and thousands of miles,y(x). We repeated this procedure for
three values ofη0, namely 0.1, 0.5 and 0.9. (For the data in Lawless et al. (1995) a value ofη

near 0.9 was indicated). For each sample, we computed the maximum likelihood estimates
(MLE’s) of the parameters under the Weibull model along with the minimum CV and least
squares (see Lawless, 1982, page 331) estimates ofη. We first computed the estimators
of η with no constraint on their value. However, since an ITS must be non-decreasing in
all the usage measures,η must be in the interval [0, 1]. We thus also obtained estimates
of η constrained to [0, 1]. This was discussed for minimum CV in Section 5 and for least
squares and maximum likelihood, we used the constrained optimization functionnlminb
in S-Plus.

Table 1 shows simulation means and variances of the three estimators ofη for both the
constrained and unconstrained versions. In both cases, the estimators have reasonably
small bias, though it is interesting that the constrained estimates have slightly larger bias
for the casesη0 = 0.1 andη0 = 0.9. However, the minimum CV estimator is less efficient
than the least squares (LS) estimator, with an efficiency relative to maximum likelihood of
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Table 1.Summary of simulations, model (33).

η̂ unconstrained

η0 = 0.1 η0 = 0.5 η0 = 0.9
Ê[η̂] V̂ar[η̂] Ê[η̂] V̂ar[η̂] Ê[η̂] V̂ar[η̂]

MLE 0.095 0.034 0.50 0.031 0.89 0.034
min CV 0.087 0.065 0.50 0.058 0.88 0.059

least squares 0.10 0.052 0.50 0.045 0.90 0.056

η̂ constrained to [0,1]

η0 = 0.1 η0 = 0.5 η0 = 0.9
Ê[η̂] V̂ar[η̂] Ê[η̂] V̂ar[η̂] Ê[η̂] V̂ar[η̂]

MLE 0.12 0.017 0.50 0.032 0.87 0.019
min CV 0.15 0.029 0.50 0.053 0.84 0.033

least squares 0.14 0.025 0.50 0.051 0.86 0.026

around 57% for the former compared to about 65% for the latter. If one considers a log-
normal distribution instead of a Weibull in (35), the minimum CV estimator again would
not outperform the LS estimator, the latter being the MLE in this setup. The LS procedure is
thus as good or better than the minimum CV method for two popular lifetime distributions
under model (33).

Model (34)

Several authors (e.g., Oakes, 1995; Kordonsky and Gertsbakh, 1997a) consider models of
the linear form (34) when looking for an ITS. Advantages of such models include an easy
interpretation of the parameterη and collapsibility. However, there is an intrinsic difficulty
with the parameterization in (34). The parameterη is in many situations confounded with a
scale parameter inG, and cannot be estimated precisely. This is easily seen when we write
(34) in this form:

Pr [X > x|P] = G

(
x[1+ ηα]

φ1
;φ2

)
, (36)

whereφ1 is a scale parameter andφ2 is a vector of other parameters. Whenηα is large
compared to one, the model for Pr [X > x|P] becomes approximatelyG[x(η/φ1)α;φ2],
and we can only accurately estimateψ = η/φ1 andφ2. If there is not sufficient variability
in the values of the slopes (αi ’s) in the sample or if the variation inX givenα is too large,
inferences about the time scale parameterηmay be very imprecise. Note also that in (36),η

is not invariant to changes in the units ofy, whereas in (35) it is. Restrictingη to be in [0,1]
by using the parameterizationt (η) = (1− η)x + ηy does not eliminate these problems.

We simulated samples of size 100 from model (34), with

Pr [X > x|α] = exp
{−[x(1+ ηα)/φ1]φ2

}
, (37)

whereη = 840,φ1 = 63800 andφ2 = 1, so that the values of Pr [X > x|α] obtained were
close to the ones from the model (35) withη = 0.9, φ1 = 60 andφ2 = 1. As expected,
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Figure 1. Contours of the log-likelihood evaluated atφ2 = 1 and profile log-likelihood ofψ for a typical sample
from model (38).

it was nearly impossible to get precise estimates ofη andφ1 for samples generated from
model (37) and the previous distribution ofα, and both the MLE and minimum CV estimates
varied greatly from sample to sample. Estimation in (37) is clarified if we use the alternate
parameterization

Pr [X > x|α] = exp
{−[x(λ+ ψα)]φ2

}
, (38)

whereψ = η/φ1 andλ = 1/φ1. In this case we can estimateψ accurately. However,
inferences aboutλ remain imprecise. Figure 1 shows the profile log-likelihood contours in
ψ andλ as well as the log-likelihood profile inψ for a single sample of size 100.
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Table 2.Linear scale parameter estimates, Kordonsky and
Gertsbakh (1995a) data.

Method Estimate 95% confidence interval

MLE, Weibull 6.61 (5.33, 8.89)
MLE, lognormal 6.97 (5.20, 9.67)
Quasi-likelihood 6.91 (5.33, 9.75)

Rank 6.59 (5.40, 10.11)
Minimum CV 6.77 (4.99, 8.77)

Simulations with very large sample sizes support the consistency of the minimumCV2

estimator̃η, but for samples of size 100 the enormous variability of bothη̃ and the MLE make
efficiency comparisons of little value. However, the difficulties discussed here do not always
arise with linear time scale models. When the pathsP in the sample are sufficiently variable
and when the variation inX givenP is sufficiently small, precise estimation ofη is possible.
The next example illustrates this, and considers interval estimation and model checking.

6.2. Fatigue Life of Steel Specimens

Kordonsky and Gertsbakh (1995a) gave data on the lifetime of steel specimens subjected
to cyclic loading. Thirty specimens were divided into six groups of size 5, and the loading
program for each group was a repeated sequence of high stress and low stress cycles.
Kordonsky and Gertsbakh used the cumulative number of low stress cycles as their “real”
time x, and the number of high stress cycles as their usage measurey(x). Because of
the large number of cycles applied and the loading programs, the relationship between
x and y(x) was well approximated by a straight line through the origin; slopes of the
approximating lines varied from about 0.05 to 18. This large variability in slopes makes the
estimation of a linear time scale relatively precise in spite of the small sample size. There
were no censored observations.

Kordonsky and Gertsbakh (1995a) fit the linear TS modelt (η) = x + ηy(x) by the
minimum CV method, to get̃η=6.77. They did not consider interval estimation or the
adequacy of the linear TS. We consider estimation ofη in model (34) using four other
methods, for comparison: (i) and (ii) maximum likelihood (ML) under Weibull and log-
normal specifications forG in (34), (iii) a quasi-likelihood method which is similar to least
squares, and (iv) a rank based method. Methods (iii) and (iv) are discussed in Duchesne
and Lawless (1999).

Table 2 shows the estimates and approximate 95% confidence intervals. The confidence
intervals for ML are based on the likelihood ratio statistic, those for the quasi-likelihood
and rank based methods are based on variance estimates given by Duchesne and Lawless
(1999), and that for minimum CV is based on the bootstrap percentile method (Efron and
Tibshirani, 1993, Chapter 13). The estimates are quite precise and confidence intervals
from the different methods are in good agreement. As one might expect, they indicate the
importance of the number of high stress cycles.
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Figure 2. Failure times versus path features, scaleT = X + 6.7y(X).

For informal model checks, we use the fact that failure timesTi (η0) are independent of
the usage path if the time scale is ideal. We therefore plot valuesti (η̂) versus features of
the usage paths. For example, Figure 2 shows a plot of theti (η̂)’s using the minimum
CV estimateη̂ = 6.77 versus the ratio of high to low stress cycles and the proportion
of high stress cycles in the specimen’s loading program. This and other checks do not
suggest any inadequacies in the model (34). We remark, on the other hand, that such
plots do provide evidence against multiplicative scale models of the form (33) for this data
set.

Probability plots of theti (η̂)’s can be used to check on specific functional forms forG in
(34), such as the Weibull. However, they are not able to detect non-ideal time scales very
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well; for that purpose plots as in Figure 2 are crucial. For the current data set, Weibull and
log-normal probability plots suggest either model is consonant with the data, provided a
linear TS is used.

7. Conclusion

The investigation of alternative time scales raises interesting problems. Key ideas are that
we seek scales which “capture” most of the variation in failure times, given a set of time-
varying covariates, and that the time scales be fairly easy to interpret. This led us to consider
ideal time scales and models of the form (20), in whichtZ (x) is specified in terms of a
parameter vectorη. As Section 6 indicates, care may be needed in the parameterization
and fitting of such models.

The concept of small variation in operational failure timesT is very useful but harder
to pin down. The essential problem is one of identifying time-varying covariates which,
when known and conditioned upon, make (conditional) variation in the chronological time
of failure X small. There is no obvious general validity to approaches that seek to minimize
unconditional relative variation inT , though there is a connection with conditional variation
of X givenZ in some cases, as shown in Section 5. Further study is needed.

Many methodological issues associated with time-scale models of the form (20) require
further investigation, particularly ones associated with semiparametric estimation. Duch-
esne and Lawless (1999) investigate some rank based and quasi-likelihood methods.

This paper has excluded internal time-varying covariates, but there are clearly many set-
tings where we might want to consider them. For example, in assessing the survival time
or disease occurrence for persons infected with the human immunodeficiency virus (HIV)
it is natural to investigate “biological” time scales which include information about varia-
tion in an individual’s immune function across time. Similarly, in planning maintenance
actions for a system or piece of equipment it is desirable to consider internal covariates mea-
suring deterioration or degradation of the system; this is referred to as “condition-based”
maintenance.

If the covariate historyZ(x) has internal components we need to consider the joint
distribution ofX andZ, and in particular Pr [X > x, Z(x)]. This can be written in product
integral form in the absolutely continuous case as

Pr [X > x, Z(x)] =
∏
(0,x]

{1− h(u|Z(u))du}Pr [dZ(u)|Z(u), X > u],

whereh(u|Z(u)) is as previously the hazard function forX atu, conditional on the covariate
historyZ(u). This gives

Pr [X > x, Z(x)] = exp

{
−
∫ x

0
h(u|Z(u))du

}∏
(0,x]

Pr [dZ(u)|Z(u), X > u].

It is tempting to consider monotone functions of

tZ (u) =
∫ x

0
h(u|Z(u))du (39)
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as operational time scales, but it should be noted that such scales are not ITS’s in the sense
of (2), and (1) does not hold. We hope to discuss these issues and time scales based on (39)
in a future communication.

Finally, there are essentially no rigorous studies of time scale performance for reliability
areas such as maintenance and replacement, in spite of the fact that composite time scales are
often used (e.g., Kordonsky and Gertsbakh, 1997b). Work in this area would be welcome.
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