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Abstract: In several reliability applications, there may not be a unique plau-
sible scale in which to analyze failure. In this paper, I consider semiparametric
methods of time scale selection. I propose a rank-based estimator of the time
scale parameters that can readily handle censored observations. I illustrate how
to assess the form of the time scale through generalized residuals. I also give
ideas for nonparametric estimation of the time scale.
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1.1 Introduction

In many reliability applications, there may not be a unique plausible time scale
in which to assess performance or model failure. For example, should we mea-
sure the age of an automobile in calendar time since purchase or in cumulative
mileage, or perhaps even in a function of these two measures [Lawless et al.
(1995)]? Should we measure the age of an aircraft in calendar time, cumulative
flight time, or number of landings [Kordonsky and Gertsbakh (1993, 1995ab,
1997)]? Should we measure the lifetime of miners exposed to asbestos dust in
biological age or in cumulative exposure [Oakes (1995)]?

Even though it is possible to model most processes with respect to chrono-
logical time, there are some advantages in adopting an alternative scale t in
certain contexts [Farewell and Cox (1979), Duchesne and Lawless (2000)]. To
name a couple:

1. the failure mechanism itself may depend primarly on t, so that it is in
some way “scientifically sufficient”. For example, the probability that an
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item fails after some chronological time x may depend only on its age in
the alternative scale t at time x;

2. the effect of treatments or covariates may be most simply expressed on
some scale other than real time.

In this paper, I present some semiparametric methods of inference for a spe-
cial class of models emphasizing simple time scales introduced by Oakes (1995).
In Section 2, the concept of ideal time scale is presented and a class of simple
models is considered. I derive semiparametric estimators of the time scale pa-
rameters for these models in Section 3. Semiparametric model assessment from
generalized residuals is illustrated through an example in Section 4. I provide
ideas for completely nonparametric estimation of the ideal time scale in Section
5. Some concluding remarks are given in Section 6.

1.2 Modeling failure

Let x denote chronological time from an origin that usually corresponds to the
birth or introduction of a unit into service. Let X represent the random variable
of chronological time or age at failure for a unit.

Definition 1.2.1 A usage measure is a time-varying covariate, say z(x), such
that

• z(x) is left-continuous;

• z(x) is non-decreasing in x;

• z(0) = 0;

• z(·) is external, i.e. its history is determined independently of the failure
time X.

Examples of usage measures include the cumulative mileage on an automobile,
the cumulative number of landings of an aircraft and the cumulative amount of
exposure of a rat to a potential carcinogen.

Now suppose that for each unit under study, the usage path (or history) is
available, i.e. we are given Z = {z1(x), . . . , zp(x); x ≥ 0} for every unit, where
z1(x), . . . , zp(x) are p usage measures. Let Z represent the set of all possible
usage paths. We conceive of a time scale (TS) as a function of chronological time
and usage measures. Formally, we consider a TS to be a non-negative-valued
functional Φ : IR+⊗Z → IR+ that maps (x,Z) to Φ[x,Z] and such that Φ[x,Z]
is non-decreasing in x for all Z ∈ Z. We use the notation tZ (x) = Φ[x,Z] to
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emphasize that Φ[x,Z] is the time (age) in the Φ-scale of a unit on path Z at
chronological time x.

Usage paths are assumed to vary from unit to unit in some population.
The fact that they are external allows us to investigate the distribution of
time to failure conditional on the realized path Z. Some advantages of such a
conditional approach is that it is valid for experiments where the usage histories
are fixed by study design, and a single model may be used for populations with
dissimilar usage accumulation tendencies.

The following definition of an ideal time scale has been considered by several
authors1 [Cinlar and Ozekici (1987), Kordonsky and Gertsbakh (1993, 1995ab,
1997), Bagdonavičius and Nikulin (1997a) and Duchesne and Lawless (2000)]
and it relates an ideal time scale to the conditional probability of survival given
the usage history:

Definition 1.2.2 Let T = Φ[X,Z] represent the random variable of time to
failure measured in scale Φ. Then Φ defines an ideal time scale (ITS) if for all
Z ∈ Z and all t ≥ 0 such that t = Φ[x,Z] for some x ≥ 0,

Pr [X > x|Z] = Pr [T > t] (1.1)
= G(t),

where G(·) is a strictly decreasing survivor function.

This defines an ITS as any time scale that is a one-to-one function of the
conditional survivor function Pr [X > x|Z]. A consequence of Definition 1.2.2
that will be useful for inference later on is that if Φ is an ideal time scale, then
Pr [T > t|Z] = Pr [T > t], which means that the failure times in the ITS,
though functionally dependent of Z, are statistically independent of the usage
paths.

Let us now consider the cases where Pr [X > x|Z] is continuous and differ-
entiable in x for all x ≥ 0 and Z ∈ Z. Then one approach to modeling is to
incorporate the effect of Z on X through the conditional hazard function:

Pr [X > x|Z] = exp
{
−

∫ x

0
h(u|Z(u)) du

}
, (1.2)

where Z(x) = {z1(u), . . . , zp(u); 0 ≤ u < x}. We can rewrite (1.2) so as to
emphasize an ITS:

Pr [X > x|Z] = G(Φ[x,Z]), (1.3)

where G is a strictly decreasing survivor function and Φ[x,Z] is an ITS for
Pr [X > x|Z]. The two models described in (1.2) and (1.3) are equivalent and
the relationship between the ITS in (1.3) and the conditional hazard function
in (1.2) is given by

h(x|Z(x)) = hG(Φ[x,Z])
d

dx
Φ[x,Z], (1.4)

1These authors do not necessarily use the term ideal time scale, however.
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where hG(u) = −d lnG(u)/du is the hazard function corresponding to survivor
function G.

Generally, models with a simple form for h(x|Z(x)) will have a complex
form for Φ[x,Z] and vice-versa. In this paper, we consider a class of models for
which Φ[x,Z] is of a simple form. This class of model was introduced by Oakes
(1995) and is defined as follows:

Definition 1.2.3 The model Pr [X > x|Z] is collapsible in x, z1(x), . . . , zp(x)
if

Pr [X > x|Z] = f(x, z1(x), . . . , zp(x)), ∀x ≥ 0, Z ∈ Z,

where f : IR(p+1)+ → IR+ is non-decreasing in x, z1(x), . . . , zp(x).

This definition means that for a collapsible model, the ITS’s will be of the form
Φ[x, z1(x), . . . , zp(x)], i.e. the probability of surviving past a certain time x
depends on the value of the usage measures at x only, not on their past history.
This is a rather strong assumption and we will see how it can be verified in
Section 4.

1.3 Semiparametric inference

Usually, we specify an ITS up to a finite vector of unknown parameters that
are to be estimated from observed data. Of special interest is the case where
we observe (x1,Z1, δ1), . . . , (xn,Zn, δn), where δi = 1 if xi is an observed failure
time and δi = 0 if xi is a right-censoring time, i = 1, 2, . . . , n, and where we
postulate the model

Pr [X > x|Z] = G(Φ[x, z1(x), . . . , zp(x);η]), (1.5)

where η is a finite vector of unknown parameters and G is a strictly decreasing
survivor function left unspecified. Oakes (1995) considered inference in the case
where G was specified up to a finite vector of parameters.

Kordonsky and Gertsbakh (1993, 1995ab, 1997) propose a method of estima-
tion for η when G is left unspecified in (1.5). Let tZ i

(xi; η) = Φ[xi, z1,i, . . . , zn,i; η],
i = 1, . . . , n. Then Kordonsky and Gertsbakh propose to use the value of η that
minimizes the squared sample coefficient of variation of the tZ i

(xi;η)’s as an
estimate of η. This method is numerically simple, yields consistent estima-
tors in several frameworks, and a time scale with small coefficient of variation
may be desirable in some engineering applications. However, Kordonsky and
Gertsbakh (1995b, 1997) have to assume a parametric form for G when some
observations in the sample are censored. Defining a censored nonparametric
version of the coefficient of variation is also a problem, as extrapolation of the
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tail of the distribution is needed when the largest time in the sample is a censor-
ing time. Moreover, it is not clear that this method is efficient, as investigated
by Duchesne and Lawless (2000).

As an alternative, we can adapt a rank-based method derived for the ac-
celerated failure time model proposed by Robins and Tsiatis (1992) and Lin
and Ying (1995). This method shows good efficiency properties and can readily
handle censoring. Furthermore, the estimating functions obtained are derived
directly from the conditional probability model given in (1.5) and in cases where
they have a simple form, they have a nice interpretation that relates to the in-
dependence of the failure times in the ideal time scale and the usage paths.

It is convenient to introduce some further notation. Let X∗
i , i = 1, . . . , n

denote a sequence of n independent failure times. Under right-censorship, we
observe Xi = min(X∗

i , Ci) and δi = I[X∗
i ≤ Ci], i = 1, . . . , n, where Ci is the

censoring time for the ith item and I[·] is the indicator function. Finally, we
assume that given Zi, X∗

i and Ci are independent, i = 1, . . . , n.
Under model (1.5), the log-likelihood for η is given by

l(η) =
n∑

i=1

∫ ∞

0

{(
lnλ[tZ i

(x; η)] + ln t′Z i
(x; η)

)
dNi(x) (1.6)

−Yi(x)λ[tZ i
(x; η)]t′Z i

(x; η) dx

}
,

where λ[u] is the hazard function corresponding to G(u), Ni(u) is a counting
process taking value 0 if u < X∗

i and 1 if u ≥ X∗
i , Yi(u) is 1 if individual i

is at risk of failing at real time u, 0 otherwise, and t′Z i
(x;η) = dtZ i

(x; η)/dx.
Assuming that the usual regularity conditions hold, we can take the derivative
with respect to η under the integral sign and obtain the following score function:

U(η) =
n∑

i=1

∫ ∞

0






λ′[tZ i

(x; η)]
λ[tZ i

(x;η)]
∂tZ i

(x;η)
∂η

+
∂t′Z i

(x; η)/∂η

t′Z i
(x; η)


 dNi(x)

−Yi(x)

(
λ′(tZ i

(x;η)]
∂tZ i

(x;η)
∂η

t′Z i
(x; η) (1.7)

+λ[tZ i
(x; η)]

∂t′Z i
(x; η)

∂η

)
dx

}
.

Following Lin and Ying (1995), let us now replace the unknown cumulative haz-
ard function by its Nelson-Aalen estimator (in scale tZ (x; η)) and the derivative
of the unknown hazard function by zero. After rearranging the terms, we get

Ũ(η) =
n∑

i=1

∫ ∞

0

∂ ln t′Z i
(x; η)

∂η

∣∣∣∣∣
x=x−1[t,η,Z i]

(
dÑi(t; η)− Ỹi(t; η) dΛ̃[t; η]

)
,

(1.8)
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where x−1[t, η,Zi] is the value of x such that tZ i
(x; η) = t, and where

Ñi(t;η) =

{
0, if t < tZ i

(Xi; η)
1, if t ≥ tZ i

(Xi; η)

Ỹi(t;η) =

{
1, if individual i is at risk of failing at time t in scale tZ (x;η)
0, otherwise

Λ̃[t; η] = value of Nelson-Aalen estimator in scale tZ (x; η) at time t.

Notice that the score (1.8) is of the form

n∑

i=1

δi

(
Qi −Qi

)
,

where Qi = ∂ ln t′Z i
(x;η)/∂η and Qi is the average of the Qi’s still at risk

when item i fails (in scale tZ (x;η)). This means that score (1.8) is an unbiased
estimating function. However this score is not continuous, so we define the
estimator of η to be arg minη Ũ(η)tŨ(η), the minimum being taken over all η
in some compact region [Lin and Ying (1995)].

Asymptotic properties of estimators of this type are discussed in Robins and
Tsiatis (1992), Ying (1993), Lin and Ying (1995), Bagdonavičius and Nikulin
(1997b) and Bordes (1999). In paticular, we have that a relatively accurate
approximate (1− α) confidence region for η is given by

{η : Ũ(η)tV −1(η)Ũ(η) ≤ χ2
k;1−α}, (1.9)

where k = dim(η), χ2
k;1−α is the 1− α quantile of a chi-square distribution on

k degrees of freedom and

V (η) =
n∑

i=1

∫ ∞

0

[∑n
j=1 Ỹj(t; η)Q⊗2

j (t;η)
∑n

j=1 Ỹj(t; η)
(1.10)

−
(∑n

j=1 Ỹj(t; η)Qj(t; η)
∑n

j=1 Ỹj(t; η)

)⊗2

 dÑi(t;η), (1.11)

where

Qj(t; η) =
∂ ln t′Zj

(x; η)

∂η

∣∣∣∣∣∣
x=x−1[t,η,Zj ]

and, for some vector u, u⊗2 denotes the outer product uut.
Duchesne (1999) argued that two conditions were necessary for precise es-

timation of η with this and any inference method: large variability in the
observed usage paths Zi, and a distribution Pr [X > x|Z] with small variation.
Through simulations, he observed that when these conditions were not met, all
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the estimators considered were biased and inaccurate. For most of the models
he considered, the rank-based estimator seemed to be more efficient than the
minimum coefficient of variation estimator.

Now, as an illustration, let z(x) = θx and put tZ (x; η) = (1−η)x+ηθx, i.e.
usage is acccumulated at a constant rate, θ, and the ITS is a linear combination
of real time and usage. Assuming no censoring and substituting those values
into (1.8), we obtain

Ũ(η) =
n∑

i=1

θ(i) − 1
1− η + ηθ(i)

(
1− 1

n
− 1

n− 1
− · · · − 1

n− i + 1

)
, (1.12)

where (i) is the label of the ith item to fail in scale (1− η)x + ηθx. Notice that
this last score is the one we would get if we were to test no association between
the failure times in scale (1−η)x+ηθx and the “covariates” (θ−1)/(1−η+ηθ)
using rank regression with exponential scores. As θ completely defines the usage
path in this case, this is consistent with the definition of an ITS which implies
that the failure times in the ITS are independent of the usage histories.

1.4 Semiparametric model assessment

Supposing that a collapsible model is appropriate is a strong assumption. In this
section, we propose a simple graphical method based on generalized residuals
to assess the adequacy of a specified time scale. We use data provided by
Kordonsky and Gertsbakh (1995a) to illustrate the method.

As was mentioned earlier, the failure times in the ITS are independent of
the usage histories. This means that if we could plot these times against some
features of the usage paths, we should observe only scatter, without any type
of trend. Unfortunately, unless the value of η is known, we do not observe the
failure times in the ITS. Nevertheless, if we have a good estimate of η, say η̂,
the generalized residuals tZ i

(xi; η̂), i = 1, 2, . . . , n will be close to the failure
times in the ITS. We can thus plot these generalized residuals against some
features of the usage histories; if we observe any type of trend in any of the
plots, this is evidence that tZ (x;η) is not an ITS.

To illustrate this method, let us fit two different time scales to the data
provided by Kordonsky and Gertsbakh (1995a). First, let us fit a linear scale
of the form tZ (x; η) = (1 − η)x + ηz(x), where x is the number of low stress
cycles and z(x) = θx is the number of high stress cycles. Using the rank-based
estimator of Section 1.3, we obtain η̂ = 0.868, which is very close to 0.871, the
value obtained with the minimum coefficient of variation method. The 95%
confidence interval derived from equation (1.9) is (0.844, 0.910). Now, let us
fit a multiplicative scale of the form tZ (x; η) = xηz(x)1−η. The estimates of
η obtained with the rank-based and minimum coefficient of variation methods
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are respectively 0.800 and 0.804. The 95% confidence interval for η from (1.9)
is (0.662, 0.930). Figure 1 shows a plot of the generalized residuals against the
path parameter θ for both scales. There does not seem to be any apparent trend
in the plot for the linear scale, but there is a definite quadratic trend in the
plot for the multiplicative scale. The linear scale seems to be more appropriate
in this case.
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Figure 1. Generalized residual plots: failure times in scales
0.132x + 0.868z(x) (left) and x0.200z(x)0.800 (right) versus the proportion of

high stress cycles.

1.5 Nonparametric age curves

The nice interpretation of a model collapsible in x, z1(x), . . . , zp(x), is that the
items travel on a path that crosses age curves. For example if a model is
collapsible in x and z(x), and if a linear scale of the form 0.2x + 0.8z(x) is
ideal, then all the points in the positive quadrant on a line parallel to the line
0.2x + 0.8z = c have the same age in the ITS, i.e. Pr [X > x|Z] is constant
over these lines. An interesting consequence of this is that if we could draw the
level curves of Pr [X > x|Z] nonparametrically, we would have a picture of the
form of the ITS function Φ[x, z1(x), . . . , zp(x)].

Little work has been done in this area. In the case where the usage paths
can be completely described by a finite vector of parameters, say θ, we can try
to adapt some of the nonparametric quantile regression algorithms described in
the literature [Lejeune and Sarda (1988), Cole and Green (1992)]. However for
the simple linear and multiplicative scales described above, these nonparametric
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quantile regression methods exhibit some serious edge effects that distort the
picture of the ideal time scale function.

We can adopt another approach to nonparametric estimation of the ideal
time scale when the usage paths are such that we have several observations
distributed among a few groups of similar paths. Then we can group those
similar paths together, estimate a given quantile of X in each group of paths,
then draw segments between the estimated quantiles. These segments should
form a curve that will be representative of the form of the ideal time scale. To
illustrate, consider the following two models: Pr [Xi > x|Zi] = G(x + zi(x))
and Pr [Xi > x|Zi] = G(x2 + zi(x)2), and assume that zi(x) = θix, where
the θi’s vary in [0,∞) within the population of items. We generated a sample
of size 400 from both models with G being the Weibull(shape=5, scale=9)
and atan(Θ) ∼Uniform(0,π/2). Then for both samples, we split the positive
quadrant in 4 slices, estimated the quintiles of X in each slice, then drew lines
that linked corresponding quintiles together. The results are shown in Figure
2.
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Figure 2. Age curves drawn nonparametrically.

The two plots in Figure 2 clearly identify the linear and quadratic forms of
the ideal time scales. However, these two samples were “nicer” than the samples
we are likely to encounter in practice; we had a large number of observations
and the usage paths were nicely spread over the whole positive quadrant. Fine
tuning this age curve drawing method is required. Perhaps introducing smooth-
ing or combining this method with a quantile regression algorithm could yield
good nonparametric estimates of the ITS.
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1.6 Conclusion

The selection of an ideal collapsible time scale is not a trivial exercise. When
a parametric form for the time scale has been selected, semiparametric meth-
ods based on ranks allow for precise parameter estimation, even under right-
censoring, provided that enough variability in the covariate histories is observed
and that these covariates are good predictors of failure.

Supposing that a simple time scale is ideal is a strong assumption that should
be verified. A simple graphical method based on semiparametric generalized
residuals has been proposed. More formal semiparametric methods would be
desirable. Nonparametric estimation of the ideal time scale has not yet been
investigated thoroughly, but it seems to be possible in the case of collapsible
models.
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