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Abstract. In this paper we consider semiparametric inference methods for the time scale parameters in general

time scale models (Oakes, 1995; Duchesne and Lawless, 2000). We use the results of Robins and Tsiatis (1992) and

Lin and Ying (1995) to derive a rank-based estimator that is more efficient and robust than the traditional minimum

coefficient of variation (min CV) estimator of Kordonsky and Gerstbakh (1993) for many underlying models.

Moreover, our estimator can readily handle censored samples, which is not the case with the min CV method.
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1. Introduction

In many survival analysis applications, modeling failure using a scale other than real

(chronological) time may be more appropriate than using real time at failure as the time

variable. For example, cumulative mileage may be a better measure of the age of a car than

real time since purchase. More generally, composite scales that are based on real time and

one or more measures of usage, stress or exposure may be considered. Kordonsky and

Gertsbakh (1993), Oakes (1995) and Duchesne and Lawless (2000) consider this type of

problem and they investigate the concept of load invariant or ideal time scale. Let x

represent a fixed value of real (chronological) time and let z(x) represent the value of usage

or exposure1 measures at time x. Define PðxÞ ¼ fzðuÞ; 0 � u < xg, the usage path or

history up to time x. Then an ideal time scale (ITS) is a function �[�, �] of x and PðxÞ such
that the conditional survivor function of the real time at failure, X, given the whole usage

history, P ¼ limx!lPðxÞ, can be written as

Pr ½X > xjP� ¼ Gð�½x;PðxÞ�Þ; ð1Þ

where G(�) is a positive, 1
1, decreasing function. As stated, (1) merely says that an ITS is

a one-to-one function of the survivor function of X given P, and is not unique. The

usefulness of (1) comes from the modeling choices that it suggests. Both �[�, �] and G(�)
can be fully specified, depend on a vector of parameters, or one of �[�, �] or G(�) can be left
arbitrary.
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Modeling through (1) allows us to emphasize scales �½x;PðxÞ� that are simple or easily

interpreted. A class of models that emphasizes simple time scales has been suggested by

Oakes (1995). These are termed collapsible models and are such that

Pr ½X > xjP� ¼ H ½x; zðxÞ�; ð2Þ

where z(x) is the value of the usage or exposure measures in P at time x, and H [�, �] is
some decreasing function of x and the elements of z(x). It is easily seen that (2) is a special

case of (1), where �½x;PðxÞ� � �½x; zðxÞ�, i.e., the conditional survivor function only

depends on the endpoint of the usage path PðxÞ:

Pr ½X > xjP� ¼ Gð�½x; zðxÞ�Þ: ð3Þ

Examples of collapsible models seen in the literature (with only one usage factor) include

Pr ½X > xjP� ¼ Gðð1
 �Þxþ �zðxÞÞ

and Pr ½X > xjP� ¼ Gðx1
�zðxÞ�Þ;

where z(x) are monotone functions of x.

Lin and Ying (1995) and others consider a time-scale model where

�½x;PðxÞ;�� ¼
Z x

0

exp f�tzðuÞg du; ð4Þ

where z(u) is the value of all the covariates in P at time u, and � is a vector of unknown

parameters. This model is known as an accelerated failure time model (Cox and Oakes,

1984; Robins and Tsiatis, 1992; Bagdonavičius and Nikulin, 1997a). It is a natural model

in some applications, but it is not generally collapsible. Note that the covariates, z(x), need

not be monotone with this model.

Models where G(�) and �[�, �] in (1) are both specified parametrically can be handled by

straightforward maximum likelihood (e.g., Oakes, 1995; Duchesne and Lawless, 2000).

Our objective in this paper is to develop semiparametric inference for the parameters of a

time scale, �[�, �], when G(�) is left unspecified. This case has yet to be thoroughly

investigated in the literature. Kordonsky and Gertsbakh (1993, 1995a,b, 1997) proposed

the minimum coefficient of variation (min CV) method, which consists of choosing the

value of the time scale parameter that minimizes the squared sample coefficient of variation

of the failure times in scale �[�, �]. More precisely, consider collapsible models and a

sample of n uncensored observations of the form ðxi;PiÞ; i ¼ 1; 2; . . . ; n, and assume that

Pr ½X > xjP� ¼ Gð�½x; zðxÞ; ��Þ; ð5Þ

where � is a time scale parameter (vector) to be estimated from data. Let ti(g) ¼ �[xi,
zi(xi); �] and tð�Þ ¼

P
tið�Þ=n, where xi is the observed real failure time. Then the min
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CV estimator of � is given by

�̂̂CV ¼ argmin
�

Pn
i¼1 t

2
i ð�Þ 
 ntð�Þ2

� �
=ðn
 1Þ

tð�Þ2
:

Duchesne and Lawless (2000) show that this estimator is consistent for a special type of

collapsible model, but more generally, the properties of the method are not known. Another

practical limitation of the min CV estimator is that it cannot readily handle censoring.

In this paper, we propose a semiparametric method for inference about the time scale

parameter � in (5), and study it and the min CV method. In Section 2, we use the approach

of Robins and Tsiatis (1992) and Lin and Ying (1995) to provide an estimation procedure.

We study its performance in finite samples and compare it to that of the min CV method

through Monte Carlo simulations in Sections 3 and 4. An illustration and a discussion of

model assessment are given in Section 5. Concluding remarks are given in Section 6.

2. Rank-Based Estimation Method

We wish to estimate � without specifying G(�) in

Pr ½X > xjP� ¼ G½tPðx; �Þ�; ð6Þ

where tPðx; �Þ ¼ �½x; zðxÞ; �� and G(�) is a survivor function. We assume that for a given x,

(6) depends on z(s) only for s � x. It is convenient to introduce some further notation. Let

Xi*, i ¼ 1, . . . , n denote a sequence of n independent failure times. Under right-censorship,

we observe Xi ¼ min(Xi*, Ci) and �i ¼ I [Xi* � Ci], i ¼ 1, . . . , n, where Ci is the censoring

time for the ith item and I [�] is the indicator function. For each item, we also observe

Pi ¼ fziðxÞ; x � 0g; for convenience, we assume that z(0) ¼ 0. Finally, following Lin and

Ying (1995), we make the usual assumption that given Pi, Xi* and Ci are independent,

i ¼ 1, . . . , n, i.e., that censoring is uninformative.

2.1. Semiparametric Estimating Function for h

Under model (6), the log-likelihood for g is given by

lð�Þ ¼
Xn
i¼1

Z l

0

YiðxÞ
�
ln 	½tPi

ðx; �Þ� þ ln tVPi
ðx; �Þ

�
�
dNiðxÞ 
 	½tPi

ðx; �Þ�tVPi
ðx; �Þdx

�
; ð7Þ

where 	[u] is the hazard function corresponding to G(u), Ni(u) is a counting process taking

value 0 if u < Xi* and 1 if u � Xi*, Yi(u) is 1 if individual i is at risk of failing at real
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time u, 0 otherwise, and tVPi
ðx; �Þ ¼ dtPi

ðx; �Þ=dx. From here on, we assume that tPðx; �Þ is
smooth in x and � and that it is strictly increasing in x. Moreover, we make the assumption

that for each P and each g, the mapping

tPð�; �Þ : IRþiIRþ

x ! tPðx; �Þ

is one-to-one, with inverse t
1
P ð�; �Þ, i.e

tPðx; �Þ ¼ tZt
1
P ðt; �Þ ¼ x:

When 	[�] is specified parametrically, the likelihood score @l(�)/@� is an unbiased

estimating function.

In order to estimate � semiparametrically, we use a linear rank estimating function,

generalized so as to allow for time-varying covariates. This method is discussed in detail in

Robins and Tsiatis (1992), who use it to estimate the parameters of an accelerated failure

time model.

First, define N~~iðt; �Þ ¼ I ½tPi
ðXi; �Þ � t; � ¼ 1� and Y~~iðt; �Þ ¼ I ½tPi

ðXi; �Þ � t� and let

dL̂̂ðt; �Þ ¼
Pn

j¼1 Y
~~
jðt; �ÞdN~~jðt; �ÞPn
j¼1 Y

~~
jðt; �Þ

:

To obtain an estimator, say �̂̂ , of � we use the estimating function

U~~ð�Þ ¼
Xn
i¼1

Z l

0

Y~~iðt; �ÞQðPi; t; �Þ dN~~iðt; �Þ 
 dL̂̂ðt; �Þ
� �

¼
Xn
i¼1

Z l

0

Y~~iðt; �Þ Q½Pi; t; �� 

Pn

j¼1 Y
~~
jðt; �ÞQ½Pj; t; ��Pn
j¼1 Y

~~
jðt; �Þ

 !
dN~~i ðt; �Þ

¼
Xn
i¼1

�i ðQ½Pi; tPi
; ðxi; �Þ; �� 
QiÞ; ð8Þ

where the weight Q½Pi; t; �� is a function of the usage path for item i, of the time in scale

tPð�; �Þ and of �, and Qi is the average of the Q½Pj; tPi
ðxj; �Þ; ��’s of the individuals still at

risk when (in scale tPð�; �Þ) item i fails. In the Appendix we follow the arguments of

Robins and Tsiatis (1992) to show that the score (8) is an unbiased estimating function,

i.e., E½U~~ð�0Þ� ¼ 0, where �0 is the true value of g.
We would like to choose a weighting function Q in (8) that will yield an estimator of �

that is as efficient as possible. Because (8) is an unbiased estimating function, it will yield

consistent estimators for general Q. However, no choice of Q is uniformly optimal for
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every survivor function G in (6). Robins and Tsiatis (1992) derive the optimal weighting

function under an exponential survivor function. In the Appendix, we use their results to

derive the following weighting function, which is optimal under G(t) ¼ exp(
	t):

Q½P; t; �*� ¼ @

@�
ln tVPðt
1

P ðt; �*Þ; �Þ





� ¼ �*

ð9Þ

We choose the exponential distribution here as it is the only continuous distribution with a

constant hazard function, which we need in order to obtain a weighting function that does

not involve any value of the hazard function.

Piecing together equations (8) and (9), we obtain the following ‘‘optimal’’ linear rank-

type estimating function, i.e., an estimating function that may be used to obtain estimates

of g when G is arbitrary, but is optimal when G is the exponential survivor function:

U~~optð�*Þ ¼
Xn
i¼1

Z l

0

Y~~iðt; �*Þ
@

@�
ln tVPi

ðx; �Þ
� �





� ¼ �*

x ¼ t
1
Pi
ðt; �*Þ

� deNiðt; �*Þ 
 dL̂̂ðt; �*Þ
n o

¼
Xn
i¼1

�i
@

@�
ln tVPi

ðxi; �Þ





� ¼ �*


 Qi

 !
; ð10Þ

where Qi is the average of the @lntVP=@�’s of the individuals still at risk when (in scale

tPð�; �*Þ) individual i fails. Note that under the accelerated failure time model for time-

varying covariates, i.e., with tpð�; �Þ as in (4), we obtain the same score as Robins and

Tsiatis (1992) and Lin and Ying (1995).

Because estimating functions of the form (8) or (10) are not continuous nor monotone in

� in general, we find the estimator not by solving U~~ð�Þ ¼ 0, but by minimizing the length

of U~~, i.e., the estimator of � is defined by

�̂̂¼ argmin
�2N

U~~ð�ÞtU~~ð�Þ; ð11Þ

where N is a compact subset of IRq; q ¼ dimð�Þ. When � is unidimensional, this can be

done with the golden section search algorithm (Press et al., 1992). When � is of higher

dimension, Lin and Ying (1995) propose to use the simulated annealing algorithm

described in Lin and Geyer (1992).

Robins and Tsiatis (1992) argue that
ffiffiffi
n

p ð�
�0Þ is asymptotically normal with mean

vector 0 in general settings while Lin and Ying (1995) show that �̂̂ is strongly consistent

under the accelerated failure time model.

To illustrate this method, let us consider the linear scale model tP(x; �) ¼ ð1�Þxþ �zðxÞ
(Kordonsky and Gertsbakh, 1993, 1995a,b and 1997; and Oakes, 1995). For smooth z(x)
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this is also an accelerated failure time model; just replace exp{�tz(u)} with 1 
 � þ �zV(u)
in equation (4), where zV(x) ¼ dz(x)/dx. Under this model, (10) becomes

U~~optð�Þ ¼
Xn
i¼1

�i
zVðxiÞ 
 1

1
 � þ �zVðxiÞ

 Qi

� �
; ð12Þ

where Qi is the average of the (zV(x) 
 1)/(1 
 � þ �zV(x))’s still at risk when (in scale

(1 
 �)x þ �z(x)) individual i fails. In order to compute the score (12) for a fixed value of

�, we need the value of everyone’s covariate z(�) and its derivative zV(�) at every failure

time (1 
 �)x þ �z(x). Thus, to minimize the square of (12) with respect to �, we need to

observe z(x) in continuous time for every individual. In many applications the usage

measures z(x) are parameterized (for example z(x) ¼ �x as in Lawless et al., 1995; Oakes,

1995; or Kordonsky and Gertsbakh, 1997), or zV(x) is piecewise constant, as in Lin and

Ying (1995), so the information needed is available.

2.2. Variance of Ũ(��� ) and Inference About ���

Robins and Tsiatis (1992) argue that estimating functions of the form (8) are consistent and

asymptotically multivariate normal with mean vector 0 and variance matrix that can be

consistently estimated by n
1V(�), with

V ð�Þ ¼
Xn
i¼0

Z l

0

Y~~iðt; �Þ
Pn

j¼1 Y
~~
jðt; �ÞQ�2ðPj; t; �ÞPn

j¼1 Y
~~
jðt; �Þ

"



Pn

j¼1 Y
~~
jðt; �ÞQðPj; t; �ÞPn
j¼1 Y

~~
jðt; �Þ

 !�2
35dN~~iðt; �Þ; ð13Þ

where the Q’s are as defined earlier and, for any vector u, u�2 denotes the outer product uut.

From this result, we use the following approximate (1 
 �)100% confidence regions for

�, proposed by Lin and Ying (and indirectly by Robins and Tsiatis (1992)):

f� : U~~ð�ÞtV
1ð�ÞU~~ð�Þ � 
2
q;1
�g; ð14Þ

where q is the number of parameters in � and 
2
q;1
� is the (1 
 �)th quantile of a chi-

square distribution on q degrees of freedom.

Suppose we wish to test if one of the parameters of �, say �1, is equal to some fixed

value �0. Let �
1 be the parameter vector without �1. Following Lin and Ying (1995), we

use the following quadratic form:

Gð�0Þ ¼ inf
�1¼�0
�
1

U~~ð�ÞtV
1ð�ÞU~~ð�Þ; ð15Þ
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which is asymptotically chi-square with one degree of freedom under the hypothesis �1 ¼
�0. We can get confidence intervals for �1 of a form similar to that of (14) simply by

inverting the quadratic form (15).

Lin and Ying (1995) suggest the use of V
1(�̂̂) rather than V
1(�) in (14). These two

options are asymptotically equivalent; however, through Monte Carlo simulations (dis-

cussed in Duchesne, 1999), we found that the coverage of intervals of the form (14) was

more stable, especially in cases where �̂̂ was more variable.

Estimating function (10) apparently yields an estimator of � that is consistent and

asymptotically normal for any distribution G(�) and time scale function tPð�; �Þ that are not
too ill behaved, and this estimator has minimum asymptotic variance within the class (8)

when G(�) is the exponential distribution. In the next section we assess normality and

confidence interval coverage through a small simulation study.

3. Simulation Study of the Proposed Estimator

According to Robins and Tsiatis (1992), estimators obtained from (8) will be consistent

and asymptotically normal. However, they do not give precise conditions on the form of

the usage histories, Pi, the form of the time scale function, tPi
ðx; �Þ, or the distribution

function, G(�), for these asymptotic results to be valid. Lin and Ying (1995) do give precise

conditions for the validity of their asymptotic results, but their conclusions are restricted to

the case of the accelerated failure time model (4) with Q½Pi; t; �� ¼ ziðt
1
Pi
½t; ��Þ. Asymp-

totic analysis of semiparametric estimators for accelerated failure time models under other

particular conditions can also be found (see for example Bagdonavičius and Nikulin

(1997b) and Bordes (1999)), and a rigorous treatment of (10) can presumably be given.

We consider instead some empirical investigation of the methodology in finite samples.

In this section, we examine the behavior of �
ˆ
as defined in the previous section and we

look at the coverage of the confidence intervals defined by (14) through a simulation study

based on some simple collapsible models. The first two models studied are part of the

family of separable scale models (Duchesne and Lawless, 2000). Let us suppose that the

usage paths are completely described by some vector of parameters, say �. For example,

items used at constant rates have usage paths of the form P ¼ f�x; x � 0g, and the value

of � entirely specifies P. A separable scale model is of the form

Pr ½X > xjP� ¼ Pr ½X > xj�� ¼ G½uðxÞvð�; �Þ�; ð16Þ

where u(�) is a non-negative, increasing function and v(�, �) is positive-valued.
The first model that we study is the linear scale model where y(x) ¼ �x and

tPðx; �Þ ¼ ð1
 �Þxþ �yðxÞ, which is of the separable scale form with u(x) ¼ x and

v(�; �) ¼ (1 
 �) þ ��. The second model is the multiplicative scale model with y(x) ¼ �x
and tPðx; �Þ ¼ x1
�yðxÞ�; this is a separable scale model with u(x) ¼ x and v(�; �) ¼ ��.
Finally, we consider a model where y(x) ¼ x� and tPðx; �Þ ¼ ð1
 �Þxþ �yðxÞ; this is not a
separable scale model. The validity of the estimator and of the confidence intervals has

been studied for various choices of distribution by Duchesne (1999). Here we report on the
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results obtained with a Weibull survivor function with shape parameter value 3 and scale

parameter value 1000; other choices of distributions affect the efficiency of the estimator,

but not the coverage proportion of the intervals very much. For the separable scale models,

the path parameters, �, were simulated from atan(Q) � uniform(0, �/2), and in the non-

separable scale case, we simulated from Pr[Q ¼ �] ¼ 1/3, � ¼ 1/2, 1 and 2, for

computational reasons2. Censoring times (in the x scale) were generated independently

from a normal distribution chosen so as to obtain specified censoring proportions. We used

the golden section search algorithm (Press et al., 1992) to solve our estimating equations,

as described in Section 2.1. We report on the simulations done with � ¼ 0.5, the results not

varying much for different values of � (see discussion in Duchesne (1999) and Duchesne

and Lawless (2000)). The results of these simulations are summarized in Table 1. Averages

and standard deviations of estimators are based on 2000 simulations of samples of size 100

and coverage proportions of 95% confidence intervals derived from result (14) are based

on 10,000 samples of size 100. In all the simulations reported, the parameter � and its

estimators are restricted to the range [0, 1].

Except in one case, the estimated bias of the estimators was small, and the coverage of

the intervals based on (14) was very good for all the models at every censoring level. The

larger bias and large standard deviation of �̂̂ in the non-separable scale model with 60%

censoring are due to an asymmetric distribution for �̂̂ in that setting and, in particular, a

discrete probability mass at �̂̂ ¼ 1:

4. Comparison of Rank and min CV Estimators

We now compare the min CV and rank-based estimators of the time scale parameter

through a simulation study based on the three models of Section 3. For each model, we

simulated data using different survivor functions G(�) and different distributions for the

usage paths. The distributions were chosen so as to reflect the practical settings of

Kordonsky and Gertsbakh (1995a) and Lawless, Hu and Cao (1995), and also to see the

impact of variations in the form and the variability of the distributions of Q and X |Q on

the distribution of the estimators.

For each model we generated failure times in the ideal time scale from three different

survivor functions: G1 is Weibull with shape 3 and scale 1000, G2 is Weibull with shape 1

Table 1. Simulation results for the rank-type estimator (11) under different models. For each model, we give a

sample average and standard deviation of the estimator, along with a proportion of coverage of the true value of

the time scale parameter by nominal 95% confidence intervals. True value of � is 0.5.

Linear scale Mult. scale Non-separable scale

Cens. % �̂̂ S�̂̂ cover. �̂̂ S�̂̂ cover. �̂̂ S�̂̂ cover.

0% 0.500 0.032 94.6% 0.501 0.022 94.9% 0.499 0.022 94.9%

20% 0.503 0.043 94.8% 0.502 0.032 94.9% 0.500 0.029 95.0%

60% 0.515 0.10 95.0% 0.505 0.054 94.2% 0.587 0.19 95.6%
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and scale 1000, and G3 is log normal with location 6.7 and scale 0.35. Note that the mean

and variance of G1 and G3 are equal. For the first two models, the path parameter, Q, is

generated using two distributions: F1 represents atan(Q) � uniform(0, �/2) and F2

represents atan(Q) � uniform(�/5, 2�/5). For the numerical considerations mentioned in

Section 3, the path parameter for the third model is only generated using Pr [Q ¼ �] ¼ 1/3,

� ¼ 1/2, 1 and 2, which we denote as distribution F3. For each model, we generated 2000

samples of size 100. The results are summarized in Table 2, where the min CV and rank

estimators are compared with parametric maximum likelihood based on the true model.

From Table 2, the min CV estimator is virtually as good as the maximum likelihood

estimator when the survivor function is Weibull with shape parameter 3. However, its

efficiency is poorer in the other cases, and is less than that of the rank-based estimator.

For the two models generated from the distributions (G2, F2), none of the three

estimators (MLE, rank, min CV) could accurately estimate the time scale parameter.

The distributions of the estimators had probability masses at � ¼ 1.0 and hence the

efficiency comparisons under (G2, F2) reported in Table 2 are of limited interest. For these

probability models, the variability in the usage paths is small and is coupled with a large

variability in the distribution of X |Q, making it very difficult to distinguish between the

‘‘survivor function effect’’ and the ‘‘time scale effect’’ with samples of size 100.

5. An Example

Duchesne and Lawless (2000) consider data on the fatigue life of 30 steel specimens,

provided by Kordonsky and Gertsbakh (1995a). The specimens were subjected to

Table 2. Efficiency (relative to maximum likelihood) for the min CV and rank-based estimators based on

2000 samples of size 100. True value of � is 0.5.

Failure time distribution

Path distribution G1 G2 G3

Linear scale model tPðx; �Þ ¼ xð1
 � þ ��Þ
Rank min CV Rank min CV Rank min CV

F1 97.6% 99.8% 97.5% 63.3% 80.4% 60.6%

F2 97.4% 99.7% 121% 92.1% 80.1% 59.6%

Multiplicative scale model tPðx; �Þ ¼ x��

Rank min CV Rank min CV Rank min CV

F1 98.9% 99.7% 98.9% 54.7% 80.4% 61.5%

F2 97.5% 99.8% 81.7% 73.6% 79.5% 59.4%

Model tPðx; �Þ ¼ ð1
 �Þxþ �x�

Rank min CV Rank min CV Rank min CV

F3 96.0% 98.5% 96.1% 62.3% 78.9% 59.2%
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alternating periods of low and high stress cycles, until a defined failure occured. Duchesne

and Lawless followed Kordonsky and Gertsbakh (1995a) in letting x represent the

cumulative number of low stress cycles and defining y(x) as the cumulative number of

high stress cycles corresponding to x. To a close approximation, yi(x) ¼ �ix for the ith

specimen (i ¼ 1, . . . , 30).
Duchesne and Lawless (2000) fit linear collapsible models with Pr ½X > xjP� ¼

Gðxþ �yÞ. We consider the same model under the alternative parameterization with t ¼
(1 
 �)x þ �y, where 0 � � � 1, and in addition we consider two multiplicative scales of

the form t ¼ x1
�y(x)�. We let x be the cumulative number of low stress cycles in the first

case and we let x be the total number of cycles in the second case. In both cases, we let y(x)

be the cumulative number of high stress cycles at x.

Estimates of � and 95% confidence intervals are given for all three time scale models

using the four different inference methods in Table 3. For the three models considered, the

inference methods agree well and seem to suggest that both the number of low and high

stress cycles are important, but with a greater weight given to the number of high stress

cycles. The agreement between the rank-based and other estimates is poorer for the

multiplicative scales which, as we discuss below, do not appear ideal.

Table 3. Time scale parameter estimates(95% confidence intervals), Kordonsky and Gertsbakh

(1995) data.

Method Linear scale Mult. scale 1 Mult. scale 2

MLE, Weibull1 0.868(0.842, 0.899) 0.800(0.715, 0.885) 0.539(0.460, 0.632)

MLE, lognormal1 0.875(0.839, 0.906) 0.789(0.724, 0.854) 0.555(0.466, 0.643)

Rank 0.868(0.844, 0.910) 0.800(0.662, 0.930) 0.538(0.450, 0.693)

Minimum CV2 0.871(0.833, 0.898) 0.804(0.686, 0.896) 0.547(0.469, 0.643)

1 Confidence intervals: likelihood ratio.
2 Confidence intervals: bootstrap percentile.
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Figure 1. Failure times versus path features, scale t ¼ (1 
 �)x þ �y(x).
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To find which of the three scales is more appropriate, we look at generalized residual

plots as described by Duchesne and Lawless (2000). The estimated failure times tið�̂̂Þ in a

time scale are plotted against path features; if the time scale is ideal, no systematic

departures from a horizontal band should be seen.

Figures 1 and 2 show plots for the linear TS and the first multiplicative TS. There does

not seem to be any trend in the plots of Figure 1. However, the plots in Figure 2 (especially

the right hand panel) show a quadratic trend, where the items with extreme usage rates tend

to fail earlier than items with average usage rates. A similar pattern is seen for the second

multiplicative TS. These plots thus indicate no problem with the ITS assumption for the

linear time scale, but problems with the assumption that the multiplicative scales are ideal.

6. Conclusion

We have proposed a semiparametric estimator of the time scale parameter in models of the

form (5), based on an approach suggested by Robins and Tsiatis (1992). This estimator

performs well in simulations under models considered in Sections 3 and 4. We are able

to derive confidence intervals for the time scale parameter, handle censoring, and the

estimator seems more efficient than the min CVestimator in most of the models considered.

A rigorous examination of asymptotic properties for the rank-type and the min CV

estimators has not been undertaken. Conditions on the form of the survivor function, G(�),
the ideal time scale, tPðx; �Þ, and the usage histories, P, for consistency and asymptotic

normality of �̂̂ would be of interest.

Finally, calculation of the Qi’s in the estimating function (8) requires a lot of information.

In general, the value of the covariates, zi (x), and their derivative, ziV(x), are needed for

every item at every failure time in the scale tPðx; �Þ in order to compute the value of U~~ð�Þ.
This virtually means that the values of covariates along with their derivatives need to

be observed in continuous time, unless the covariate paths are defined parametrically.
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Figure 2. Failure times versus path features, scale t ¼ x1
�y(x)�, x cumulative number of low stress cycles.
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These conditions may be difficult to obtain in many settings. Methods of approximating

U~~ð�Þ are needed in such cases.

Appendix A

A.1 Unbiasedness of (8)

Without loss of generality, we can rewrite (8) as

U~~ð�Þ ¼
Xr
i¼1

Q½PðiÞ; tPðiÞ ðXðiÞ; �Þ; �� 
 QðiÞ

� �
;

where r ¼
Pn

i¼1 �i is the number of observed failures, (i) is the label of the ith individual

to fail in scale tPð�; �Þ and

QðiÞ ¼
Pn

j¼1 Y
~~
j½tPðiÞ ðXðiÞ; �Þ; ��Q½Pj; tPðiÞ ðXðiÞ; �Þ; ��Pn

j¼1 Y
~~
j½tPðiÞ ðXðiÞ; �Þ; ��

is the average of theQ’s of individuals still at risk when (in scale tPð�; �Þ) individual (i) fails.
Now let us write U~~ð�Þ ¼

Pr
i¼1 U

~~ðiÞð�Þ and prove that E½U~~ðiÞð�0Þ� is zero. Let T(i)
represent the time of the ith failure in scale tPð�; �0Þ and Ft denote the risk set just prior to

time t in scale tPð�; �0Þ and all the usage histories. Then

E½U~~ðiÞð�0Þ� ¼ E E U~~ðiÞð�0ÞjTðiÞ ¼ t;Ft

� �� �
¼ E

�
E½Q½PðiÞ; TðiÞ; �0� 
 QðiÞjTðiÞ ¼ t;Ft�

�
¼ E

�
E½Q½PðiÞ; t; �0�jTðiÞ ¼ t;Ft� 
 QðiÞ

�
;

the last equality holding because we can calculate the value of the Q’s of everybody still at

risk at time t (and hence, their average) given Ft. This implies that

E ½Q½PðiÞ; t; �0�jTðiÞ ¼ t;Ft� ¼
Xn
j¼1

Y~~j½t; �0�Q½Pj; t; �0�Pr½ðiÞ ¼ j�:

Since tPð�; �0Þ is an ITS, every individual still at risk at time t is equally likely to be the

one that fails at that time. Hence,

E½Q½PðiÞ; t; �0�jTðiÞ ¼ t;Ft� ¼
Xn
j¼1

Y~~j½t; �0�Q½Pj; t; �0�Pn
j¼1 Y

~~
j½t; �0�

¼ QðiÞ;

which implies that E U~~ð�0Þ
� �

¼ 0.
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A.2 Derivation of (9)

Substituting our notation in Proposition A.1 of Robins and Tsiatis (1992), we get that the

optimal choice for Q in (8) is

Qopt½Pi; t; �*� / 
 @ln 	0½t�
@t

@tPi
ðwi; �Þ
@�






� ¼ �*
þ @

@�
ln

@

@wi

tPi
ðwi; �Þ






� ¼ �*

" #

where wi ¼ t
1
Pi
ðt; �*Þ and ‘‘/’’ means ‘‘proportional to’’. Thus, when G(�) is the

exponential survivor function, 	0[t] ¼ 	 and we get that

Qopt½Pi; t; �*� /
@

@�
ln tVPi

ðt
1
Pi
ðt; �*Þ; �Þ






� ¼ �*

;

which yields (9).
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Notes

1. Usage, stress or exposure measures are assumed to be left-continuous, external time-varying covariates.

2. With these values of �, we can get a closed form expression for x ¼ t
1
P ðt; �Þ and thus do not have to resort to

numerical methods to calculate x for given t, � and �.
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